Important Notice

- Reproduction of any part of this manual in any form whatsoever without the express written consent of Hamilton Bonaduz AG is forbidden.
- The contents of this manual are subject to change without notice.
- All efforts have been made to ensure the accuracy of the contents of this manual. However, should any errors be detected, Hamilton Bonaduz AG would greatly appreciate being informed of them.
- The above notwithstanding, Hamilton Bonaduz AG can assume no responsibility for any errors in this manual or their consequences.
- Copyright © 2000, 2001 Hamilton Bonaduz AG, Bonaduz Switzerland. All rights reserved.
- Windows NT™, Windows 2000™ and Windows XP™ are registered trademarks of Microsoft Corporation
- Microlab™ is a registered trademark of Hamilton Bonaduz AG
Table of Contents

1 Introduction .. 1-1
 1.1 GENERAL INFORMATION .. 1-1
 1.1.1 ML STAR ... 1-2
 1.1.2 ML STAR IVD ... 1-2
 1.1.3 ML STAR Extensions .. 1-2
 1.1.4 Description of text icons for special notes .. 1-2
 1.2 STRUCTURE OF THIS MANUAL .. 1-3
 1.3 SERVICE MANUAL UPDATES ... 1-4
 1.4 SERVICE NEWS ... 1-4
 1.4.1 Upgrades .. 1-4
 1.4.1.1 Firmware upgrade ... 1-4
 1.4.1.2 Service Software upgrade ... 1-4
 1.4.1.3 User Software upgrade ... 1-4
 1.5 MANUALS OVERVIEW ... 1-5
 1.5.1 User Manual P/N 610766 ... 1-5
 1.5.2 Operators Manual P/N 610889 .. 1-5
 1.5.3 Programmers Guide P/N 610888 .. 1-5
 1.5.4 Service Manual P/N 610754 ... 1-5
 1.5.5 Firmware Reference Guides .. 1-5
 1.5.6 Verification Reference Guide ... 1-5
 1.6 SOFTWARE OVERVIEW ... 1-6
 1.6.1 User Software P/N 911004 ... 1-6
 1.6.2 User Software for Microlab STAR IVD P/N 911039 1-6
 1.6.3 Service Software P/N 911003 .. 1-6
 1.6.4 Firmware ... 1-6
 1.6.5 Adjustment Macro Programs ... 1-6
 1.6.6 Updates ... 1-7
 1.7 SERVICE PLAN ... 1-7
 1.8 PART RETURN TAG .. 1-7
 1.8.1 Return Goods Authorization ... 1-7
1.9 FEEDBACK ..1-8
1.10 CONTACTING HAMILTON ..1-8

2 Microlab® STAR Instrument ... 2-1

2.1 OVERVIEW ..2-1
 2.1.1 Key Features ...2-2
 2.1.2 ML STAR IVD ..2-4
 2.1.2.1 Total Aspiration and Dispense Monitoring (TADM)2-4
 2.1.3 Product variants of Microlab® STAR Instruments2-5
 2.1.4 Pipetting Head and Tip / Needle Combinations2-5

2.2 TECHNICAL SPECIFICATIONS ..2-6
 2.2.1 Technical Status of ML STAR Instrument ..2-10
 2.2.2 Computer Requirements ..2-11
 2.2.3 Software Requirements ...2-11

2.3 SERVICE PART CLASSIFICATIONS ...2-12
 2.3.1 Service Assemblies ..2-12
 2.3.2 Exchange for Parts and Assemblies ...2-12

2.4 ML STAR SERVICE KIT P/N 173970 ...2-13
 2.4.1 Service Tool Maintenance ..2-14

2.5 DISPOSAL OF ML STAR INSTRUMENTS ...2-14

3 Service Software ..3-1

3.1 OVERVIEW ...3-1
 3.1.1 How to Install the Service Software ...3-1
 3.1.2 Service Software Root Directory structure ..3-2

3.2 STARTING THE SERVICE SOFTWARE ...3-3

3.3 HELP MENU ..3-6

3.4 DEINSTALLATION OF SERVICE SOFTWARE ..3-7

4 Installation of the instrument ..4-1

4.1 OVERVIEW ..4-1
 4.1.1 Installation Qualification ...4-1
 4.1.1.1 Microlab STAR Installation Qualification ..4-2
 4.1.1.2 Microlab STAR IVD Installation Qualification4-3
 4.2 INSTALLATION ...4-4
4.2.1 Workplace environment ... 4-4
4.2.2 Unpacking the instrument .. 4-5
 4.2.2.1 Accessory boxes ... 4-6
 4.2.2.2 Accessories ... 4-7
 4.2.2.3 Packing List ... 4-7
4.2.3 Hooking up the instrument .. 4-10
 4.2.3.1 Putting the Instrument in place ... 4-10
 4.2.3.2 Power / Voltage ... 4-11
 4.2.3.3 Communication ... 4-12
 4.2.3.4 Tip Waste station ... 4-13
4.2.4 Software Installation ... 4-14
 4.2.4.1 User Software Installation .. 4-14
 4.2.4.2 Check Access rights for C:\Barcodes 4-15
 4.2.4.3 Accessories Installation (ML STAR IVD) 4-17
 4.2.4.4 Service Software Installation ... 4-17
4.2.5 Software Presettings ... 4-17
 4.2.5.1 Overview .. 4-17
 4.2.5.2 Instrument Configuration .. 4-17
 4.2.5.3 User Software settings ... 4-18
 4.2.5.4 User Software settings (ML STAR IVD) 4-19
 4.2.5.5 Defining Access Rights (ML STAR IVD) 4-20
 4.2.5.6 Remote Access ... 4-24
4.2.6 Adjustment and Calibration .. 4-26
 4.2.6.1 Instrument Check Procedure ... 4-27
 4.2.6.2 Automatic Adjustment ... 4-28
4.2.7 Weekly Maintenance (ML STAR IVD) ... 4-28
4.2.8 Verification .. 4-28
4.2.9 Performing a test run .. 4-28
4.2.10 Service Software Removal .. 4-28

5 Disassembly ... 5-1
5.1 OVERVIEW .. 5-1
5.2 CHECKLIST FOR DEINSTALLATION .. 5-1
 5.2.1 Decontamination .. 5-2
 5.2.2 Removing Tips or Needles ... 5-2
 5.2.3 Disconnect ML STAR Instrument .. 5-2
 5.2.4 Remove all items on ML STAR Instrument 5-2
 5.2.5 Remove Panels .. 5-2
 5.2.6 Packing the ML STAR Instrument .. 5-3
 5.2.7 User Software Deinstallation ... 5-13

6 Adjustment and Calibration ... 6-1
6.1 OVERVIEW .. 6-1
6.1.1 The Art / Principle of Adjusting ...6-2
6.1.2 Interpretation of correction values ...6-2
6.1.3 Order of adjustment and calibration ..6-3

6.2 ADJUSTMENT TOOLS AND MACRO PROGRAMS6-5
6.2.1 Tools for Pipetting Arm and Channels ...6-5
6.2.2 Tools for Autoload Adjustment ...6-8
6.2.3 Tools for Verification of ML STAR IVD ...6-9
6.2.4 Adjustment Macro Programs ..6-11

6.3 ADJUSTING PIPETTING CHANNEL ...6-14
6.3.1 Pipetting Channels degrees of freedom ...6-15
6.3.2 Pipetting Channel Adjustment Tool ...6-16
6.3.3 Pipetting Channel Alignment ...6-17

6.4 ADJUSTING PIPETTING ARM ...6-19
6.4.1 Pipetting Arm degrees of freedom ...6-21
6.4.2 Pipetting Arm Z Alignment ..6-22
6.4.3 Pipetting Arm X-Alignment ..6-24

6.5 ADJUSTING PIPETTING ARM WITH CHANNELS6-30

6.6 CALIBRATING PIPETTING ARM WITH CHANNELS6-37
6.6.1 Pipetting Channel Positioning Check (LLD Check):6-38

6.7 PRESSURE ADJUSTMENT VALUES OF TADM (ML STAR IVD)6-39

6.8 ADJUSTING AUTOLOAD DRIVE ...6-40
6.8.1 Autoload drive degrees of freedom ...6-41
6.8.2 Cog wheel synchronization ...6-42
6.8.3 Loading tray adjustment ...6-44
6.8.4 Automatic Autoload Adjustment Procedure6-46

6.9 VERIFICATION ..6-47
6.9.1 Volume Verification ..6-47
6.9.2 Verification Kit’s ...6-47
6.9.3 Verification after replacement, or remounting6-48

7 Components ...7-1
7.1 OVERVIEW ...7-1
7.2 REPLACEMENT OF COMPONENTS ..7-1
7.3 COMPONENTS OVERVIEW ...7-2
7.3.1 ML STAR ..7-2
7.3.2 ML STAR IVD ...7-3

7.4 COVERS OF THE MICROLAB® STAR ...7-4

7.4.1 Front Window and Panels left & right side ...7-4
 7.4.1.1 Part List.. 7-4
 7.4.1.2 Function.. 7-5
 7.4.1.3 Replacement .. 7-5

7.4.2 Deck Panels ..7-7
 7.4.2.1 Part List.. 7-7
 7.4.2.2 Function.. 7-8
 7.4.2.3 Replacement .. 7-8

7.4.3 Pipetting Arm housing ...7-14
 7.4.3.1 Part List.. 7-15
 7.4.3.2 Function.. 7-15
 7.4.3.3 Replacement .. 7-16

7.5 PIPETTING ARM ...7-17

7.5.1 Part List ...7-18

7.5.2 Main Components ...7-19

7.5.3 Replacement ...7-19

7.5.4 Pipetting Arm Replacement Frame P/N 182108..7-21
 7.5.4.1 Part List.. 7-22

7.6 PIPETTING ARM X-DRIVE ..7-23

7.6.1 Part List ...7-24

7.6.2 Function...7-24

7.6.3 Replacement ...7-25

7.7 PIPETTING CHANNELS ..7-26

7.7.1 Part List ...7-27

7.7.2 Function...7-28

7.7.3 Replacement ...7-29

7.7.4 Part Numbers for original and replacement Parts......................................7-31

7.8 PIPETTING HEADS ..7-32

7.8.1 Part List ...7-33

7.8.2 Function...7-33

7.8.3 Replacement ...7-34

7.8.4 Part Numbers for original and replacement Parts......................................7-36

7.9 AUTO LOAD DRIVE ...7-37

7.9.1 Part List ...7-39

7.9.2 Function...7-39
7.9.3 Part Numbers for original and replacement Parts .. 7-46
7.10 AUTO LOAD X-DRIVE ... 7-46
 7.10.1 Part List ... 7-47
 7.10.2 Function ... 7-47
 7.10.3 Replacement ... 7-48
7.11 INSERTION GUIDES .. 7-49
 7.11.1 Part List ... 7-50
 7.11.2 Function ... 7-50
 7.11.3 Replacement ... 7-50
7.12 LOADING TRAY ... 7-51
 7.12.1 Part List ... 7-52
 7.12.2 Function ... 7-52
 7.12.3 Replacement ... 7-52
7.13 ADDITIONAL INSTRUMENT COMPONENTS ... 7-53
 7.13.1 Tip Waste ... 7-53
 7.13.2 Spillage Trays .. 7-53
 7.13.3 Instrument Parts .. 7-53
 7.13.4 Teaching Box .. 7-53
 7.13.5 Teaching Station .. 7-54
7.14 ACCESSORIES .. 7-54
8 Electronics ... 8-1
 8.1 OVERVIEW .. 8-1
 8.1.1 Functional Overview ... 8-2
 8.1.2 Functional Description ... 8-3
 8.1.2.1 Interfaces: .. 8-3
 8.1.2.2 ML STAR Instrument communication architecture: 8-3
 8.1.2.3 Firmware and Data .. 8-3
 8.1.3 Boards Overview .. 8-4
 8.1.4 Location of electronically components ... 8-5
 8.1.4.1 Part List .. 8-6
 8.1.5 Covers over electronics ... 8-6
 8.1.6 Node settings / Dip Switches ... 8-8
8.2 POWER ... 8-9
 8.2.1 Function ... 8-9
 8.2.2 Power Components .. 8-9
10 Troubleshooting and Error Handling ... 10-1

10.1 OVERVIEW ..10-1
10.1.1 Version Information ..10-1

10.2 TRACE FILES ...10-1
10.2.1 Communication Trace files ...10-1
10.2.2 System Trace files ..10-2
10.2.3 Investigation of Errors with Trace files ...10-2

10.3 ERROR HANDLING ..10-4
10.4 FIRMWARE ERROR CODES ..10-13

11 ML STAR Extensions ..11-1

12 Appendices ..12-1

12.1 APPENDIX A ..12-1
12.1.1 Glossary ..12-1

12.2 APPENDIX B ..12-7
12.2.1 Installation Qualification ...12-7
12.2.1.1 IQ Microlab STAR ..12-7
12.2.1.2 IQ Microlab STAR IVD ..12-9
12.2.2 Maintenance Checklist ...12-11

12.3 APPENDIX C ..12-15
12.3.1 Service news ..12-15
12.3.2 Parts return tag ..12-16
12.3.3 Problem report form ..12-17

12.4 APPENDIX D ..12-18
12.4.1 Microlab® STAR Firmware Addresses: ...12-18
12.4.2 Microlab® STAR Firmware Files: ...12-18
12.4.3 Firmware Reference Guides ...12-19
12.4.3.1 Master Module Command Specification ...12-19
12.4.3.2 X0 Module Command Specification ..12-21
12.4.3.3 Pipetting Channel Module Command Specification12-23
12.4.3.4 Auto Load Module Command Specification12-25
12.4.3.5 Wash Station Module Command Specification12-27
12.4.3.6 Temperature Controlled Carrier Module Command Specification12-29
12.4.3.7 iSwap Module Command Specification ...12-31

12.5 APPENDIX E ..12-33
12.5.1 Microlab® STAR Service Kit ..12-33
12.5.1.1 Parts ..12-33
12.5.1.2 Tools ... 12-36
12.5.2 ML STAR Verification Kit .. 12-37
12.6 APPENDIX F PART LIST SUMMERY .. 12-38
12.6.1 Instrument Cover Part List .. 12-38
12.6.2 Covers over electronics ... 12-38
12.6.3 Deck Panel Part List ... 12-38
12.6.4 Pipetting Arm Cover Part List .. 12-39
12.6.5 Pipetting Arm Part List ... 12-39
12.6.6 Replacement Frame Pipetting Arm P/N 182108 Part List ... 12-40
12.6.7 Pipetting Arm's X Drive Part List ... 12-41
12.6.8 Pipetting Channels Part List .. 12-41
12.6.9 Pipetting Head Part List ... 12-41
12.6.10 Autoload Part List ... 12-42
12.6.11 Autoload's X Drive Part List ... 12-42
12.6.12 Insertion Guide Part List .. 12-43
12.6.13 Loading tray Part List ... 12-43
12.6.14 Tip Waste Part List ... 12-43
12.6.15 Spillage Trays Part List .. 12-44
12.6.16 Instrument Parts .. 12-44
12.6.17 Teaching Station .. 12-44
12.6.18 Teaching Box ... 12-44
12.6.19 Boards Part List and accessories ... 12-45
12.6.20 Cables Part List .. 12-45
12.7 INDEX .. 12-46
1 Introduction

1.1 General Information

This Service Manual is a field service guide and is to be used only by Service Technicians trained and / or authorized by HAMILTON Bonaduz AG.

Repaired units must meet the quality standards set by HAMILTON Bonaduz AG.

No part of this manual may be copied or handed on to a third party. Owners of Service Manuals are registered and only they will be issued with update information such as Service Manual Updates and Service Bulletins.

⚠️

Attention: You should read User Manual Chapter 1 "General Information" before repairing or servicing the system.

⚠️

Attention: Never lift a fully assembled instrument (with carriers, racks, etc.) from one work bench to another. First lock pipetting Arm X-movement and channels by using protective covers from packaging.

Check instrument for level position and adjustments after placing on the new work bench.

⚠️

Attention: Good laboratory practice (GLP) is a must. Protect yourself before working on the Microlab® STAR Instrument - wear safety gloves. Ensure that, where applicable, decontamination has been carried out.

⚠️

Attention: Be aware of moving Parts inside the Microlab Star Instruments e.g. when ever working inside the Instrument, e.g. if not all covers are closed and the Instrument has to be operated, e.g. via service software.
1.1.1 ML STAR

Descriptions in this Manual often refer to Microlab® STAR instrument with Autoload Option. Disregard such references if the instrument to be serviced is a Manual Load Microlab® STAR.

1.1.2 ML STAR IVD

Additional Information for the Microlab® STAR IVD instrument will be found in each chapter where components, procedures are different from or additional to the basic Microlab® STAR instrument.

However, since the ML STAR IVD is not yet on the market at the time of writing, further changes must be expected.

Once the ML STAR IVD is available, there will be a Service Manual update as well.

1.1.3 ML STAR Extensions

By “Extensions” we mean assemblies such as the Temperature-Controlled Carrier, Wash Station and iSwap. These components may ordered as an option, or later on as update kits, when there is a need to upgrade an existing ML STAR Instrument in the field.

1.1.4 Description of text icons for special notes

"Attention" notes are included in this manual to emphasize important and critical instructions. They are accompanied by an exclamation mark symbol above the notes and are printed in italics. Here is an example:

⚠️ Attention: All special problems, warnings or important text will be accompanied by this symbol at the appropriate point in the manual.

Items marked Note or Hint provide useful additional information. Carefully read these text items as you will find them important for understanding the topic or command in question.
1.2 Structure of this Manual

This Service Manual contains all that the Service Technician requires in order to carry out regular servicing of the Microlab® STAR instrument, and repairs as and when required.

It consists of 12 chapters:

Chapter 1 Introduction
Chapter 2 Microlab® STAR Instrument
Chapter 3 Service Software
Chapter 4 Installation of the instrument
Chapter 5 Disassembly
Chapter 6 Adjustment and Calibration
Chapter 7 Components
Chapter 8 Electronics
Chapter 9 Maintenance
Chapter 10 Troubleshooting and Error Handling
Chapter 11 ML STAR Extensions
Chapter 12 Appendices

- Chapter 1 serves as an introduction to the manual as a whole.
- Chapter 2 serves as an introduction to the Microlab® STAR instrument.
- Chapters 3-10 contain the servicing instructions.
- Chapter 11 contains the servicing instructions for the Temperature-Controlled Carrier, Wash Station and iSwap.
- Chapter 12 contains all appendices.
1.3 Service Manual Updates

As the instrument or parts of the instrument are constantly being improved, this Service Manual will be updated regularly. Each Service Technician will be sent update sets and is responsible for keeping his Service Manual up to date. Necessary instructions on how to do this will be included in the update set. On receipt of an update, follow the instructions on the cover page and then file the cover page in the appropriate section.

1.4 Service News

Service news are sent to inform the Service Technician of new developments without delay. File the service news in the appropriate section of the Service Manual.

1.4.1 Upgrades

Will be announced via Service News. Basically all information will be found in Service News. After replacing / upgrading of any component refer to section 6.9.3 Verification after replacement, or remounting on page 6-48.

1.4.1.1 Firmware upgrade

Refer to section 1.6.6 Updates on page 1-7.

1.4.1.2 Service Software upgrade

Refer to section 3.1.1 How to Install the Service Software on page 3-1 and section 3.4 Deinstallation of Service Software on page 3-7.

1.4.1.3 User Software upgrade

Refer to section 4.2.4.1 User Software Installation on page 4-14 and section 5.2.7 User Software Deinstallation on page 5-13.
1.5 Manuals Overview

1.5.1 User Manual P/N 610766
The basic reference for the user is the Microlab® STAR User Manual. It contains all the information required to operate the instrument, to carry out routine maintenance and to solve the more straightforward problems the user may encounter when operating the instrument.

The Microlab® STAR User Manual describes the software used to operate the Instrument. In the User Manual will also be found instructions on how to create and run methods.

1.5.2 Operators Manual P/N 610889
For ML STAR IVD Instruments only

1.5.3 Programmers Guide P/N 610888
For ML STAR IVD Instruments only

1.5.4 Service Manual P/N 610754
The basic reference for the Service Technician is the present volume, the Microlab® STAR Service Manual.

1.5.5 Firmware Reference Guides
The Firmware Reference Guide lists all the commands that can be sent to the firmware of the instrument and lists all the status messages that the firmware returns for a particular module. Firmware commands are used when sending a single instruction to the instrument rather than the series of instructions which constitutes a method. The knowledge of firmware commands is therefore very useful for the Service Technician when testing particular aspects of an instrument's performance.

Note: This documentation is not included as an appendix to the present volume. It will be distributed during ML STAR Service Training Courses. Service Technicians trained and / or authorized by HAMILTON Bonaduz AG may request it from Technical Support at Hamilton Bonaduz.

Copies of Firmware reference guides may be filed in Section 12.4.3 Firmware Reference Guides on page 12-19 ff.

1.5.6 Verification Reference Guide
This guide accompanies the Verification Kit, which provides the means to verify instrument function against specific acceptance criteria.
1.6 Software Overview

1.6.1 User Software P/N 911004
This is the software operated by the user when running methods on Microlab Star Instrument.

1.6.2 User Software for Microlab STAR IVD P/N 911039
This is the software operated by the user only when running methods on Microlab Star IVD Instrument.

1.6.3 Service Software P/N 911003
This is the software operated by the Service Technician when testing components of Microlab Star.

1.6.4 Firmware
This is the software stored on ML STAR’s Master, Pipetting Channel, Autoload and any Extensions PCB which executes commands sent by the User and Service Software.

Note: For example, Firmware Version 1.9 contains:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Module</th>
<th>Firmware Address</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUALS16.ACH</td>
<td>Autoload</td>
<td>AL</td>
<td>1.6S</td>
</tr>
<tr>
<td>GRUC0S18.ACH</td>
<td>Master</td>
<td>C0</td>
<td>1.8S</td>
</tr>
<tr>
<td>GRUPXS17.ACH</td>
<td>Pipetting Channel</td>
<td>PX</td>
<td>1.7S</td>
</tr>
<tr>
<td>GRUR0S10.ACH</td>
<td>iSwap</td>
<td>R0</td>
<td>1.0S</td>
</tr>
<tr>
<td>GRUTXS10.ACH</td>
<td>Temperature-controlled Carrier</td>
<td>TX</td>
<td>1.0S</td>
</tr>
<tr>
<td>GRUWXS13.ACH</td>
<td>Wash Station</td>
<td>WX</td>
<td>1.3S</td>
</tr>
</tbody>
</table>

1.6.5 Adjustment Macro Programs
These are software programs accompanying the Service Software which help you to adjust the ML STAR Instrument.
1.6.6 Updates

Firmware updates as well as new Adjustment Macro Programs will be sent to all Service Technicians registered with HAMILTON.

See the instructions accompanying the Firmware files.

1.7 Service Plan

The Microlab® STAR instrument is installed by the Service Technician according to the instructions in this Service Manual. The user is instructed to maintain the instrument on a regular basis; this maintenance consists largely of surface cleaning and does not require opening up the instrument (i.e., any unscrewing, removing deck, covers etc.).

The Microlab® STAR user is responsible for changing consumable parts (disposable tips, needles, waste bag etc.). Spare parts (PCBs, cables, channels etc.) are generally changed by the Service Technician.

The Service Technician will need to service the instrument in the field at least twice a year (every 6 months). In addition, the Service Technician may be called on by the user to repair a damaged component of the instrument or to resolve a functional problem which the user cannot resolve himself (such as adjusting and calibrating the pipetting channels).

1.8 Part Return Tag

The part return tag has the following functions:

- Page 1: part identification, reason for return and description of problem
- Page 2: decontamination declaration (where required).

1.8.1 Return Goods Authorization

Parts of instruments may only be returned to HAMILTON Bonaduz AG with a Return Goods Authorization (RGA).

Ask the Hamilton Order Processing Dept. (OPD) for an RGA number prior to sending any material. This number must be entered in the appropriate blank on the part return tag.

A completed part return tag must be attached to all parts or instruments which are returned to HAMILTON Bonaduz AG. Tags may be ordered free of charge from Hamilton: P/N 612554. See Appendix on page 12-16.

HAMILTON Bonaduz AG reserves the right to refuse any returned parts or instruments which may pose a health hazard due to contamination, and to charge the customer for any expenses incurred.

Please ensure that the tag is filled in correctly. Describe the problem as precisely as possible. Attach all information available such as trace files and technical data for investigation. Either a printout (hardcopy) or files on floppy disc are suitable.
1.9 Feedback

Information from the field is a determining factor for improving Hamilton products. Communicate your observations to Hamilton Bonaduz AG so that we may continue to provide a quality product and service.

Our Hotline will support you on any problems you may encounter.

1.10 Contacting Hamilton

Europe, Africa and Asia:

Hamilton Bonaduz AG
Technical Support
P.O. Box 26
CH-7402 Bonaduz / Switzerland

Phone +41 81 660 60 60
Fax +41 81 660 60 70
Hotline +41 81 660 60 50

E-mail itechsupport@hamilton.ch

Americas, Far East and Pacific Rim:

Hamilton Company
P.O. Box 10030
Reno, NV 89520-0012 USA

Toll Free +1 (800) 648-5950
Phone +1 (775) 858-3000
Fax +1 (775) 856-7259

E-mail tech@hamiltoncompany.com
2 Microlab® STAR Instrument

2.1 Overview

The Microlab® STAR is a Sequential Transfer and Aliquoting Robot and performs pipetting operations on liquids in containers on the work surface.

Movable carriers, holding reagent containers, e.g. tubes, microtiter plates, or any other kind of laboratory material are placed on the deck (work surface).

The work surface is divided into 54 tracks (T) of equal width for the purpose of loading carriers. This means the deck has partitions for a maximum of 54 specialized 1-T carriers for sample tubes, or a maximum of 9 6-T carriers for microtiter plates, or a mixture of both. An additional partition is provided for the tip waste station.

The Microlab® STAR is equipped with a pipetting arm containing typically 4, 8, 12 or 16 pipetting channels which work independently. The pipetting arm moves in X-direction, whereas each pipetting channel can move relatively independently both in a Y- and a Z-direction. The Microlab® STAR supports pipetting with disposable tips or with needles.
2.1.1 Key Features

Pipetting Channels

- Monitored air displacement
- (No tubing, no system liquid, no pumps)
- Independent pipetting heads with CO-RE (Compression-induced O-Ring Expansion) technology
- Independent Y, Z, volume, and LLD for each pipetting head

CO-RE Technology

- Tips and needles on the same pipetting head
- Flexible use of tips and needles during the same run
- 300 µl channel: low- and standard-volume tips or needles when volumes < 5 µl must pipetted.
- 1000 µl channel: standard- and high-volume tips or needles when volumes > 5 µl must pipetted.
- Soft tip drop-off (minimized aerosol)
Key Features (continued)

Pipetting Heads

- Pressure and capacitive Liquid Level Detection
- Totally accessible deck (each head → each well for an 8-channel ML STAR Instrument)
- Aspiration monitoring
- 2 types of pipetting heads are available:
 - 300 µl (0.5-300 µl)
 - 1000 µl (5-1000 µl)

Tips and Needles

The types of tips and needles currently available are:
10, 300 and 1000 µl disposable tips with or without filter
and
50, 300 and 1000 µl washable steel needles

For ordering refer to User Manual.

General Precautions:

The pipetting channels are the heart of the Microlab® STAR. The instrument will not function properly if these are damaged or are incorrectly adjusted. Therefore you should exercise great care whenever you have to touch the channels - when unpacking or repacking the instrument, dismantling or re-assembling the pipetting arm, replacing channels, etc.

The instrument is provided with a front window. This window is equipped with a sensor that stops any movement immediately and aborts the run when the window is opened.
2.1.2 ML STAR IVD

The Microlab STAR IVD is foreseen to be used in an *in vitro diagnostic* environment, e.g. for blood analyses and DNA analytics.

Typical applications are:

- Sample preparation for ELISA, LIA, RIA, FIA, agglutination and CLIA tests
- Preparation for amplification techniques for DNA detection
- Sample archiving and pooling.

2.1.2.1 Total Aspiration and Dispense Monitoring (TADM)

The Microlab STAR IVD is equipped with an additional safety feature, the pressure based Total Aspiration and Dispense Monitoring (TADM), allowing the in process control of aspiration and dispense steps. The principle works as follows: Before tip pickup, the environmental absolute pressure is measured and used as zero base line. When the liquid level is found, the relative pressure of the air volume within the tip is measured every 10 ms during the following aspiration and dispensing. The measurement values are checked on-line if they are lying within a liquid- and volume-specific, predefined tolerance band. If not, the step is stopped with an error message. The TADM enables the detection of leaky or clogged tips, blood clots and foam.
2.1.3 Product variants of Microlab® STAR Instruments

<table>
<thead>
<tr>
<th>Type of Instrument</th>
<th>Configurations</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual load</td>
<td>4 to 16 channels</td>
<td>iSwap</td>
</tr>
<tr>
<td>Auto load</td>
<td>300 µl, or 1000 µl</td>
<td>Wash station</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature-controlled carrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automated vacuum system</td>
</tr>
</tbody>
</table>

2.1.4 Pipetting Head and Tip / Needle Combinations

All pipetting heads mounted on channels are either of 300 or 1000 µl type. A mixture of these two types is not allowable - the user software will not support a configuration with both types of pipetting heads.

<table>
<thead>
<tr>
<th>300 µl Pipetting Head</th>
<th>1000 µl Pipetting Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Volume</td>
<td>Standard Volume</td>
</tr>
<tr>
<td>Tip</td>
<td>Tip or Needle</td>
</tr>
<tr>
<td>0.5 – 10 µl</td>
<td>1 - 300 µl</td>
</tr>
<tr>
<td>0.5 – 50 µl</td>
<td>10 - 1000 µl</td>
</tr>
</tbody>
</table>
2.2 Technical Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum weight of instrument with the Autoload option and trays installed</td>
<td></td>
</tr>
<tr>
<td>8 Channel Version:</td>
<td>145 kg</td>
</tr>
<tr>
<td>16 Channel Version:</td>
<td>155 kg</td>
</tr>
<tr>
<td>ML STAR Instrument packed for transportation – total weight including shipping crate:</td>
<td>< 200 kg</td>
</tr>
<tr>
<td>electrical requirements</td>
<td></td>
</tr>
<tr>
<td>maximum power consumption:</td>
<td>600W</td>
</tr>
<tr>
<td>Voltage:</td>
<td>115 / 230 V~ -15 % + 10 %</td>
</tr>
<tr>
<td>Frequency:</td>
<td>50 / 60 Hz ± 5 %</td>
</tr>
<tr>
<td>Delayed action fuse:</td>
<td></td>
</tr>
<tr>
<td>115 V~:</td>
<td>6.3 A</td>
</tr>
<tr>
<td>230 V~:</td>
<td>3.15 A</td>
</tr>
<tr>
<td>Operating temperature range:</td>
<td>15-35 °C</td>
</tr>
<tr>
<td>relative humidity 30 – 85 % with no condensation</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range:</td>
<td>0 - 55 °C</td>
</tr>
<tr>
<td>relative humidity at a maximum of 95 % with no condensation</td>
<td></td>
</tr>
</tbody>
</table>
Technical Specifications (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum outer dimensions</td>
<td></td>
</tr>
<tr>
<td>Instrument:</td>
<td>Width: 1670 mm</td>
</tr>
<tr>
<td></td>
<td>Height: 868 mm</td>
</tr>
<tr>
<td></td>
<td>Depth: 780 mm</td>
</tr>
<tr>
<td>Instrument: incl. attached Autoload tray</td>
<td>Depth: 780 +220 mm = 1000 mm</td>
</tr>
<tr>
<td>ML STAR Instrument packed for transportation – shipping crate dimensions</td>
<td>Width: 1820 mm</td>
</tr>
<tr>
<td></td>
<td>Height: 1000 mm</td>
</tr>
<tr>
<td></td>
<td>Depth: 900 mm</td>
</tr>
</tbody>
</table>
Technical Specifications (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work area</td>
<td>The Deck has space for 55 Tracks. Track Number 55 (the rightmost Track) is reserved for Waste Station. Therefore: 54 Sample carriers, 9 Plate Carriers, or a mixture of both may be loaded onto the ML STAR Instrument. A ML STAR Instrument with up to 8 Pipetting Channels has full sequential access. This means that every Pipetting Channel reaches any HAMILTON standard Labware. A ML STAR Instrument with up to 16 Pipetting Channels is limited in its Y-direction movements</td>
</tr>
<tr>
<td>Movement Increments for x, y, z drives</td>
<td>Refer to Firmware Reference Guides</td>
</tr>
</tbody>
</table>
Technical Specifications (continued)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode Types Specification:</td>
<td></td>
</tr>
<tr>
<td>The following types of bar code symbol can be recognized by the system:</td>
<td></td>
</tr>
<tr>
<td>See also user software Menu:</td>
<td></td>
</tr>
<tr>
<td>Tools ➔ ML STAR Configuration Editor ➔ Advanced ➔ Barcode settings</td>
<td></td>
</tr>
<tr>
<td>ISBT standard</td>
<td></td>
</tr>
<tr>
<td>Code 128 (subset B and C)</td>
<td></td>
</tr>
<tr>
<td>Code 39</td>
<td></td>
</tr>
<tr>
<td>Codabar</td>
<td></td>
</tr>
<tr>
<td>Code 2 of 5 Interleaved</td>
<td></td>
</tr>
<tr>
<td>UPC A/E</td>
<td></td>
</tr>
<tr>
<td>JAN/EAN 8</td>
<td></td>
</tr>
<tr>
<td>Bar Code Density and Resolution:</td>
<td>Up to 32 characters (excluding start, stop and check characters) can be read and decoded.</td>
</tr>
<tr>
<td>Code density, tolerances:</td>
<td>Minimum module width (including a print tolerance of 0.0005") * 0.0065 inches (= 0.1651 mm).</td>
</tr>
<tr>
<td>The minimum code densities depend on the bar code type and bar code length</td>
<td></td>
</tr>
<tr>
<td>Print Quality:</td>
<td>The bar code print must be of high quality according to USS (Uniform Symbol Specifications) defined by AIM U.S.A. Offset, typographic, intaglio and flexographic printing are suitable. Mechanical dot matrix and thermomatrix printing are not suitable. The label surface may be treated, sealed or plastic-covered.</td>
</tr>
<tr>
<td>Print Contrast Signal (PCS):</td>
<td>Minimum contrast between bars and spaces: PCS 80 % (PCS at 632.8 nm Wavelength)</td>
</tr>
<tr>
<td>Positioning of Barcode labels:</td>
<td>Range on Tubes: 30 – 110 mm Centerline on Plates: 118 mm</td>
</tr>
</tbody>
</table>
Technical Specifications (continued)

General Note on Drive Specifications¹:
The User Interface is the Master where all units are 0.1 mm in length and volumes are 0.1 \(\mu \)l.
The master transfers the User’s software commands to its slaves and therefore you do not have to know drive resolutions when calculating positions, volumes, etc.

2.2.1 Technical Status of ML STAR Instrument

Technical Status contains all technical data specific to each instrument. It must be updated by the Service Technician whenever any modifications are made.

Technical Status information is stored on the EEPROM of components of ML STAR Instrument and may viewed, changed and printed via service software only.

It is highly recommended that a copy of the current Technical Data Sheet be held by the Service Technician for his own reference.

¹ see in section 12.4.3 Firmware Reference Guides on page 12-19
2.2.2 Computer Requirements

Minimum requirements:
- CPU with at least 450 MHz Processor, approx. 1 GB HDD and minimum 64 MB of RAM.
- SVGA Monitor (resolution min. 600 * 800)
- Keyboard
- Mouse
- CD-ROM Drive
- 3.5” HD Floppy Drive
- Serial port(s) (at least 1 USB or RS232 for the ML STAR Instrument)

Optional requirement:
- Printer port

2.2.3 Software Requirements

These Operating Systems can be used for the User and Service Software:
- Windows NT™ Version 4.0 (or higher) and Service Pack 5 (or higher),
- Windows 2000™ or
- Windows XP™.

Ongoing updates of User and Service Software may also require Operating System updates.

The Microlab® STAR software installed on one PC controls one Microlab® STAR instrument.
2.3 Service Part Classifications

<table>
<thead>
<tr>
<th>Spare Part Class (SPC)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Instrument</td>
</tr>
<tr>
<td>A</td>
<td>Service Technician always has these parts with him.</td>
</tr>
<tr>
<td>B</td>
<td>Dealer has parts in stock.</td>
</tr>
<tr>
<td>C</td>
<td>Hamilton has parts in stock.</td>
</tr>
<tr>
<td>T</td>
<td>Service Tools</td>
</tr>
<tr>
<td>V</td>
<td>Consumables</td>
</tr>
<tr>
<td>Z</td>
<td>Accessories</td>
</tr>
<tr>
<td></td>
<td>Not a Spare Part</td>
</tr>
</tbody>
</table>

The Spare Part Class (SPC) appears as a column of each part list in this manual.

2.3.1 Service Assemblies

Parts labeled with framed part numbers on the 3D drawings are Service Assemblies and may not be disassembled by the Service Technician. If a part of the assembly is defective, the whole assembly must be replaced. See section 12.6 Appendix F on page 12-38 for a complete List of all available Spare Parts.

2.3.2 Exchange for Parts and Assemblies

Hamilton will exchange assemblies and replace defective Parts with repaired Parts for a reduced price, subject to the defective Part or Assembly being sent to Hamilton Bonaduz AG. To arrange this, contact Hamilton Technical Support (see section 1.10 Contacting Hamilton on page 1-8).
2.4 ML STAR Service Kit P/N 173970

Overview

The Service Case contains all tools required to maintain a Microlab STAR Instrument as well as spare parts, which may be required when servicing the instrument. For your comfort and convenience, the case is equipped with a set of wheels, which makes it easy to carry around at customer sites.

2 See also section 12.5 Appendix E on page 12-27 for a complete Part List
2.4.1 Service Tool Maintenance

In order to provide best service and maintenance to the components of the Microlab® STAR instrument, the following maintenance procedures should apply to these service tools at the specified intervals:

The torque wrench P/N 239646 must be subject to an annual check and calibration. Calibration may performed by any calibration authority; Hamilton Bonaduz AG offers a calibration service.

The Adjustment Tools, such as the Channel Adjustment Tool P/N 173952 may be returned periodically to Hamilton Bonaduz AG where a check service is offered.

Note: Adjustment Tools can not be calibrated. If an Adjustment Tool is found to be out of range it must be replaced with a new one.

⚠️

Attention: the Microlab® STAR Special Tools are precision tools and must be handled with due care to provide the best results in adjustment work on the Instrument.

2.5 Disposal of ML STAR Instruments

After the life cycle of the instrument has terminated, the Microlab STAR may be shipped back to Hamilton Bonaduz AG. Otherwise local disposal regulations are to be observed.
3 Service Software

3.1 Overview

The Service Software supports the identification and correction of malfunctions in the ML STAR instrument.

The Service Software
- Configures the Microlab STAR Instrument
- Downloads Firmware
- Updates the Technical Status
- Performs calibration and adjustments (Macro Programs)
- Controls all single movements of the instrument
- Checks Sensor status
- Gathers all Trace information
- Features both Single Commands and Macro Programs (refer to firmware reference guide)

3.1.1 How to Install the Service Software

⚠️ Attention: Do not install new software version over existing software. First Back up Macros, Firmware, etc. then remove current software. After removal of current software the new software version may be installed.

- Put Service Software CD into CD-ROM Drive
- start Setup.exe Program File from the CD-ROM and carefully follow the installation instructions.

⚠️ Attention: Do not leave the Service Software installed on a Customer's PC as this will enable any user of that PC to "play" with the system - with potentially damaging results!
3.1.2 Service Software Root Directory structure
3.2 Starting the Service Software

From Start Menu:

![Start Menu Screenshot]

Startup for Service Software:

Start ➔ Programs ➔ HAMILTON ➔ Microlab STAR Service ➔ Microlab STAR Service.
Starting the Service Software (continued):

From Desktop Shortcut:

Service Software may also started from the desktop, if you create a shortcut to the "STARSService.exe" program. This will be found in the STARSService Folder, e.g. C:\Program Files\HAMILTON\STARSService
Starting the Service Software (continued)

By default two windows appear:
COM Trace - and the Main menu window.

The COM trace window starts when “view trace” from the view menu is activated.
It reports all commands sent to and responses received from the ML STAR Instrument.

The arrows after the time format have the following meaning:
“->” identifies a command from PC to ML STAR Instrument
and
“<” identifies a response from ML STAR Instrument to PC after the command has been executed.
3.3 Help Menu

In this section, all Menu Choices of the Service Software are explained.
3.4 Deinstallation of Service Software

Select Start ➔ Programs ➔ HAMILTON ➔ Microlab STAR Service ➔ UnInstall Microlab STAR Service, then follow the Instructions given in the Program.
Deinstallation of Service Software (continued)

After deinstallation of Service Software ensure that no components are left on the PC.

Select START → SETTINGS → SYSTEM → ADD / REMOVE SOFTWARE and search for ML STAR Service Components, removing them if still present.
4 Installation of the instrument

4.1 Overview

The initial unpacking, installation and setup of the Microlab® STAR may only be carried out by Service Technicians trained and / or authorized by HAMILTON Bonaduz AG. For proper installation follow the order of instructions given in this section.

Deinstallation is described in section 5 Disassembly on page 5-1.

⚠️ Attention: Exercise great care if touching the Channels when unpacking the Instrument!

4.1.1 Installation Qualification

To ensure a fast and proper installation process, follow the Installation Qualification. For detailed descriptions see the subsequent chapters of this manual.

An Installation Qualification Form may be found in section:

- for ML STAR see section 12.2.1.1 IQ Microlab STAR on page 12-7
- respectively,
- for ML STAR IVD in section 12.2.1.2 IQ Microlab STAR IVD on page 12-9.

Note: depending if a Microlab STAR, or a Microlab STAR IVD is being installed, use the corresponding Installation Qualification Form.

⚠️ Attention: Do not skip any Chapter as this may lead to an unsuccessful installation!

Note: If any of the steps above can not executed successfully, refer to section 6 Adjustment and Calibration on page 6-1, and section 10 Troubleshooting and Error Handling on page 10-1.
4.1.1.1 Microlab STAR Installation Qualification

Microlab STAR Installation Qualification (IQ)

<table>
<thead>
<tr>
<th>Ref. Service Manual: P/N 610754</th>
<th>Installation Date:</th>
<th>Installation Report:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer:</td>
<td>Contact Person:</td>
<td>Phone:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fax:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e-Mail:</td>
</tr>
<tr>
<td>Service Organization:</td>
<td>Contact Person:</td>
<td>Phone:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fax:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e-Mail:</td>
</tr>
<tr>
<td>ML STAR Software Version:</td>
<td>Extensions Serial #:</td>
<td>AVS:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISWAP:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WS 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WS 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCC 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCC 2:</td>
</tr>
</tbody>
</table>

Always wear required personal protection equipment!

Work Place Environment
- Inspect workplace environment for accordance to technical specifications.
- Inspect table or workbench for supporting the weight of the Microlab STAR and providing the minimum space needed.

Unpacking the Instrument
- Inspect instrument and accessories for shipping damage or missing parts.
- Use packing list to verify contents. If any items are missing, contact Customer Service.

Hooking up the Instrument
- Set up the instrument.
- Connect communication and power cables. If included, inspect/install extensions.
 - ISWAP: Yes ☐ No ☐
 - AVS: Yes ☐ No ☐
 - TCC(s): Yes ☐ No ☐
 - WS(s): Yes ☐ No ☐
 - Recommended Uninterruptible Power Supply (UPS) installed?: Yes ☐ No ☐

Software Installation
- ML STAR software.
- Service software.
- Labware definitions of carriers.
 - Remote access?: Yes ☐ No ☐

Instrument Check Procedure
- Perform instrument check procedure.

Verification
- Volume.
- Print out verification reports.

Service Software
- Print out instrument configuration.
- Un-install service software.

Documentation
- Attach instrument configuration and verification reports to this IQ form.

Customer Summary
- Explain how to request technical and service assistance.
- Address any other concerns.

Comments

Customer Acceptance

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
</table>

Installed by

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
</table>
Microlab STAR IVD Installation Qualification (IQ)

<table>
<thead>
<tr>
<th>Ref. Service Manual: P/N 610734</th>
<th>Installation Date:</th>
<th>Installation Report:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Service Organization:</th>
<th>Contact Person:</th>
<th>Phone:</th>
<th>Fax:</th>
<th>e-Mail:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial #:</th>
<th>Instrument:</th>
<th>AVS:</th>
<th>ISWAP:</th>
<th>ML STAR Software Version:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Work Place Environment
- Inspect workplace environment for accordance to technical specifications.
- Inspect table or workbench for supporting the weight of the Microlab STAR IVD and providing the minimum space needed.

Unpacking the Instrument
- Inspect instrument and accessories for shipping damage or missing parts.
- Use packing list to verify contents. If any items are missing, contact Customer Service.

Hooking up the Instrument
- Set up the instrument.
- Connect communication and power cables.
 - If included, inspect/install extensions.
 - ISWAP: Yes □ No □
 - AVS: Yes □ No □
 - Install tip waste chute and container.
 - Recommended Uninterruptible Power Supply (UPS) installed? Yes □ No □

Software Installation
- ML STAR IVD software.
- Service software.
- Labware definitions of carriers.
- Set up user groups.
- Remote access? Yes □ No □

Instrument Check Procedure
- Perform instrument check procedure.

Always wear required personal protection equipment!

- Weekly Maintenance (Operator's Manual)
 - Perform Weekly Maintenance procedure.
- Verification
 - Volume.
 - Print out verification reports.
- Functional Test Run
- Service Software
 - Print out instrument configuration.
 - Un-install service software.
- Documentation
 - Attach instrument configuration and verification reports to this IQ form.

Customer Summary
- Explain how to request technical and service assistance.
- Address any other concerns.

Comments

Customer Acceptance

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Installed by

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
4.2 Installation

4.2.1 Workplace environment

The Microlab® STAR is a product which pipettes liquids and dilutions of liquids. Some of these latter may well be temperature-dependent. Therefore, it is important to choose a location in the laboratory where the Microlab® STAR will not be exposed to unusual temperature variations, such as near a window, heating duct or air-conditioning duct.

Depending on the Microlab® STAR configuration used, your Microlab® STAR may weigh up to 155 kg\(^3\). The Microlab® STAR must be placed on a table or workbench capable of supporting the weight of the Microlab® STAR and providing the minimum space needed. The table or workbench has to be strong enough to support the weight of the instrument, and stable enough to absorb the vibrations caused by the acceleration of the pipetting arm movement.

Note: ML STAR IVD uses a tip waste chute. Therefore ensure an appropriate work bench so that a waste container may be placed underneath the waste area of the ML STAR IVD when installing the Instrument.

For proper ventilation, leave at least 5 cm space between the Microlab® STAR and any wall. Ensure that there is collision-free movement of the Pipetting arm.

Access to the mains connector and the mains switch (located on the left hand side of the Microlab® STAR) should not be hindered.

The Microlab® STAR should be located within easy reach of a standard electrical outlet (1 socket for the Microlab® STAR, 1 for the computer, 1 for the monitor and 1 each for any other products daisy-chained to the main one, e.g. UPS).

Other considerations include operator comfort and easy access to needed supplies and equipment. Finally, the position of the Microlab® STAR must not hinder operation or accessibility of other equipment in the work area.

\(^3\) i.e. without extensions. If you are or will be using extensions with your ML-STAR instrument, we recommend a stronger table or workbench capable of supporting the additional weight.
4.2.2 Unpacking the instrument

The Microlab® STAR comes in a box on a wooden pallet. Examine the packaging for signs of damage. If there is any damage, contact the shipper or your Hamilton representative immediately.

Lift off the top and surrounding cover.

Note: the Form "Unpacking Instructions" will be found inside the ML STAR packaging on top of the Instrument. The Instructions will mainly guide through the unpacking procedure as described below. The Instructions form describes packing the ML STAR Instrument as well. For general packing Instructions see section 5 Disassembly on page 5-1.

Remove all Panels from top of accessories boxes, then remove accessory boxes and examine the Instrument and all parts against damage.

Leave the protective material in place until the Microlab® STAR has been placed in its permanent position.

⚠️

Attention: Do not turn Barcode Reader by hand as this may damage the DC Motor. If the Barcode Reader must be turned, use the Service Software, or remove the outer covering to access Gear, and turn on cogwheel or belt instead. See section 7.9 Auto Load drive on page 7-37.
Unpacking the instrument (continued)

Instrument on pallet without top and surrounding covering.

Note: Instrument Panels (such as side and back Panels\(^4\)) are placed on top of Accessories boxes.

To avoid any damage (such as scratches) remove Instrument Panels from top of accessories boxes and store them until they are to be assembled.

Remove the two Accessories Boxes and their supporting foam blocks (3 square blocks and 2 z-shaped blocks).

4.2.2.1 Accessory boxes

The contents of these two boxes can vary depending on what the customer ordered. Check the packing list.

The items from these boxes must mounted on the Microlab\(^\circledR\) STAR Instrument as a part of the installation.

\[\text{Attention: Items for ML STAR and ML STAR IVD may vary, therefore ensure correct parts are being used when setting up the Instrument.}\]

\(^4\) Back Panels only for ML STAR IVD Instruments available
4.2.2.2 Accessories

Accessories (i.e. carriers, needles) and Consumables (i.e. tips) must be ordered by the user. For ordering information, refer to the User Manual.

⚠️

Attention: Accessories for ML STAR and ML STAR IVD may vary, therefore refer to the according User Manual (ML STAR or ML STAR IVD).

4.2.2.3 Packing List

The Packing List will be found inside one of the Accessory boxes. Check the contents carefully against it.
Unpacking the instrument (continued)

- 3 Square Foams
- 2 Accessories Boxes
- 2 U shaped holding bars
- 2 Z-shaped blocks
Unpacking the instrument (continued)

Initial situation: the ML STAR Instrument is still sitting on the wooden pallet. Next action is to remove the Pipetting Arm's supporting and protective Foam blocks. Therefore untie cords around Pipetting arm housing, then remove Pipetting Arm’s Top and front housing.

1. Carefully remove all protective foam blocks from between channels
2. Remove pipetting arm supporting block from the front
3. Carefully remove channel supporting block from underneath pipetting arm
4. If iSwap is present, untie it from the back of Pipetting arm and carefully remove its protective block.
4.2.3 Hooking up the instrument

4.2.3.1 Putting the Instrument in place

Using the lift points in the Chassis, lift the Microlab® STAR off the pallet and put it on the desired table or workbench in the laboratory. (Refer to section 4.2.1 Workplace environment on page 4-4 when deciding where it should go.)

⚠️
Attention: Given the weight of the instrument it will take at least 4 people(!) to lift it.

After placing the Instrument in its final position on the workbench or table, check and (if necessary) adjust the feet of the Instrument so that it stands evenly.

It is recommended that you check the Channels’ cable connections.

With the Pipetting Arm uncovered (see section 7.4.3 Pipetting Arm on page 7-14), check the cable connections on the Pipetting Arm and Pipetting Channels visually and by hand in case they have become loose during shipment. Check the Y-Motor and communication Cable connection on each Channel for proper fit.

Cover the Pipetting Arm, mount Side Panels, place Spillage Trays, Tip-Waste station and Loading Trays\(^6\) onto the Instrument.

Attach protective front and side shields. ML STAR IVD Instruments have an additional shield to put in place at the back of the instrument.

⚠️
Attention: Side Panels must be flush with the outer edges of Instrument. After mounting, check to ensure there is collision-free Pipetting Arm movement. Carefully move the Pipetting Arm by Hand!

\(^6\) Microlab®-STAR Instrument with Autoload Option only
4.2.3.2 Power / Voltage

Using an Uninterruptible Power Supply (UPS) is highly recommended.

- The mains plug is on the left-hand side of the instrument towards the rear.
- The fuses for the instrument are situated under the mains power switch.
- Plug in the mains cables for the computer and the instrument into the same electrical outlet.

⚠️

Attention: Connect only to an earth-grounded outlet

⚠️

Attention: For safety reasons, ensure that the appropriate Fuse is placed into the mains power switch before switching on the instrument.

Fuses:

- P/N 363012 Delayed action FUSE 3.15 A for 230 V~
- P/N 363013 Delayed action FUSE 6.3 A for 115 V~

See section 2.2 Technical Specifications on page 2-6.
4.2.3.3 Communication

Two different types of serial Interfaces, RS 232 and USB, have been defined since the Microlab® STAR has been on the market.

Note: ML STAR IVD Instruments run only with the USB serial Interface.

- Connect the serial cable to the plug on the left-hand side of the instrument and to the corresponding serial interface on your personal computer.

Cables

- USB P/N 355130
- RS 232 P/N 173898

Connecting scheme of RS 232 cable

Note: older ML STAR Instruments have RS 232 interface only, if both serial interfaces are available, the USB serial interface should be selected.

Attention: Do not connect RS 232 and USB together - if both serial interfaces are available, select either one or the other!
4.2.3.4 Tip Waste station

There are two different types of tip waste station.

Regardless which one is being used, Tip waste station is always located on the right side of Instrument and uses the hole / cutout in the deck panel.

<table>
<thead>
<tr>
<th>Microlab Star</th>
<th>Microlab Star IVD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Microlab Star Tip waste is a container which is placed onto the deck.

It is positioned on the deck by placing it through the hole in the deck panel.

Plastic Bags (which come with the disposable tips) may be folded around upper rim and fixed with the tip waste lid.

The Microlab Star IVD Tip waste must be mounted with its clamps onto the deck.

It must lie flush with the outermost row of slide blocks on the right and with the carrier stops in the rear.

Plastic chute may folded around the metal frame and guided vertically through the instrument.

For a complete installation a tip waste container is provided with the instrument which must placed underneath the tip waste. Guide the Plastic chute into the tip waste container.
4.2.4 Software Installation

4.2.4.1 User Software Installation

⚠️

Attention: Do not install new software version over existing software. First back up Methods, User-defined Labware, Liquid classes etc. then remove current software. After removal of current software the new software version may be installed.

- Put CD into CD-ROM-Drive
- Start SETUP.EXE Program File from the CD-ROM and carefully follow the instructions during installation.

The User Software creates a Root Directory as follows:

Version Information

After a successfully installation of User Software a Version Info Program will be found on START ➔ Programs ➔ HAMILTON ➔ Version Info

This Tool will provide information about the User Software installed.
4.2.4.2 Check Access rights for C:\Barcodes

- Open Explorer
- Select Directory C:\Barcodes (if necessary create directory “Barcode” first) and right-click on Properties.

- select Security Tab

Check if 'Users' have Modify and Read & Execute rights as shown here.

If not, see next page…
Check Access rights for C:\Barcodes (continued)

- If ‘Users’ do not have the permissions needed, click ‘Add’
- Ensure current PC is selected in ‘Look in’
- Select ‘Users’, click ‘Add’ and then ‘OK’

Allow ‘Modify’ for Group ‘Users’

The ‘Permissions’ section of the window should then look like this.
Finally click ‘OK’
4.2.4.3 Accessories Installation (ML STAR IVD)

- Accessories CD comes together with Carrier
- Put CD into CD-ROM-Drive
- start Setup.exe Program File from the CD-ROM and carefully follow the instructions during installation.

4.2.4.4 Service Software Installation

Generally - see section 3 Service Software on page 3-1.

⚠️

Attention: Do not leave the Service Software permanently installed on a Customer's PC as this will enable any user of that PC to "play" with the system - with potentially damaging results!

4.2.5 Software Presettings

4.2.5.1 Overview

User and Service Software are completely independent of one another. Therefore, settings such as "Com Port settings" must be made for both.

Basically:

- Using the Service Software, you can set the Microlab® STAR Instrument Configurations on the Master Board located inside the Instrument.
- Using the User Software, you can set the Microlab® STAR Instrument Configurations necessary for programming Methods.

4.2.5.2 Instrument Configuration

Check the Instrument Configuration by using service software and print out summary.

Note: The Instrument and Software Configurations must match. The User Software, during Method parsing, compares the settings of Instrument and User Software.
4.2.5.3 User Software settings

- Select ML STAR
- Menu: Tools ➔ ML STAR Configuration Editor ➔ Advanced
4.2.5.4 User Software settings (ML STAR IVD)

- Select ML STAR
- Menu: Tools ➔ ML STAR Configuration Editor… ➔ Advanced

Differences from the ML STAR User Software are:

- Communication only via USB (not selectable)
- Channel Type only 1000 µl (not selectable)
- TADM settings Tab
4.2.5.5 Defining Access Rights (ML STAR IVD)

After Installation of ML STAR IVD Software, Users working with the System must be registered. This action can only be done by a PC Administrator.

1. Select 'My Computer' and right-click on 'Manage'.

2. Open 'Local Users and Groups'.
3. Click on 'Groups' and see the List of defined Groups. You will find groups such as ‘Lab Operator’, ‘Lab Operator2’, ‘Lab Method programmer’, ‘Lab Service’.

Here we want to enter all users who are engaged in routine laboratory work (members of the "Lab Operator" group).
Defining Access Rights (continued)

![Lab Operator Properties window]

Decide if the User is to be defined only locally or also to a domain (in that case the PC is in a network environment).

5. If so, select the domain out of ‘Look in’ (this step is not necessary for local Users.)

![Select Users or Groups window]
Defining Access Rights (continued)

6. Select ‘User’ from name column and click ‘Add’. The User will then be inserted into list. Repeat this Step for all ‘Lab Operator’ Users, then click ‘OK’.

7. When the ‘Lab Operator’ List is complete with all ‘Users’ then click ‘OK’ – otherwise click ‘Add’.
Defining Access Rights (continued)
Repeat Steps 4 to 7 for the Users of the following Groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Lab Method Programmer'</td>
<td>Method programmer</td>
</tr>
<tr>
<td></td>
<td>Laboratory Manager</td>
</tr>
<tr>
<td>'Lab Service'</td>
<td>Service Engineer</td>
</tr>
</tbody>
</table>

Check the successful installation by logging the specified Users on

⚠️ Attention: Users who have not been registered in this way cannot operate the ML STAR IVD Software – not even LAN-Administrators. The following error message is displayed in the case of unauthorized access attempts:
4.2.5.6 Remote Access

It is the Customer’s responsibility to prepare the operating PC for remote access. Ensure only read access is enabled.

- **Overview**

<table>
<thead>
<tr>
<th>Steps</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Provide Infrastructure for Remote Access (e.g. RAS-Server).</td>
<td>LAN manager at Customer site</td>
</tr>
<tr>
<td>2. Setup Account for Service engineer (e.g. HamService).</td>
<td>LAN manager at Customer site</td>
</tr>
<tr>
<td>3. Setup Share on ML STAR IVD PC.</td>
<td>LAN manager at Customer site, or PC Administrator</td>
</tr>
<tr>
<td>4. Setup Access rights for Service engineer on ML STAR IVD PC.</td>
<td>LAN manager at Customer site, or PC Administrator</td>
</tr>
<tr>
<td>5. Means of Connection (e.g. Telephone number), Account name and Password for Service engineer.</td>
<td>LAN manager at Customer site</td>
</tr>
</tbody>
</table>

- Steps 1 and 2 are not elsewhere specified, because they are dependent on Network infrastructure at Customer site.

- Step 3 is described below.

- Step 4 refer to section 4.2.5.5 Defining Access Rights (ML STAR IVD) on page 4-20 ff. Then Select 'Lab Remote Service' from 'Local Users and Groups.'

- Step 5 must be determined together with the LAN manager.
Defining Remote Access (continued)

- Step 3: Setup Share
 3.1. Select 'Hamilton' (e.g. 'C:\Program files\Hamilton') and right-click on 'Sharing...'

![Image of file explorer showing 'Hamilton' folder]

3.2. Activate 'Share this folder', define Share name and optional Comment, then click 'OK'

![Image of Hamilton Properties dialog box]
4.2.6 Adjustment and Calibration

For general information see section 6 Adjustment and Calibration on page 6-1.

It is particularly important and necessary to adjust and calibrate the Pipetting Arm, the Pipetting Channels and the Autoload\(^7\).

Adjustment and Calibration can only be done using the Microlab\(^\textregistered\) STAR Service Software and the special adjustment / calibration tools.

\(^7\) Microlab\(^\textregistered\)-STAR Instrument with Autoload Option only
4.2.6.1 Instrument Check Procedure

Before running any adjustment programs as described in chapter 6 Adjustment and Calibration on page 6-1, perform an Instrument check procedure with Macro Program “INSTRUMENT CHECK.MCR”.

![Diagram of Instrument Check Procedure]

- Setup / installation of ML STAR instrument
- 606867 Instrument Check.mcr
 - Passed?
 - Yes: Pass
 - No: 606827 PIP Autoadjustment.mcr
- 606867 Instrument Check.mcr
 - Passed?
 - Yes: Pass
 - No: 606858 PIP XY Manual Adjustment.mcr
- 606867 Instrument Check.mcr
 - Passed?
 - Yes: Pass
 - No: 606827 PIP Autoadjustment.mcr
- Passed?
 - Yes: Improves?
 - Yes: Pass
 - No: 606828 PIP XY Manual Adjustment.mcr
- 606867 Instrument Check.mcr
 - Passed?
 - Yes: Pass
 - No: 606827 PIP Autoadjustment.mcr
- Setup successful
 - Continue according to installation qualification
4.2.6.2 Automatic Adjustment

Only if results from instrument check procedure are out of range, perform an automatic Calibration by using the Channel Calibration Tool and Adjustment Program "PIP AUTOADJUSTMENT.MCR". All Calibration values will be newly defined according to the current state of the Instrument. If any corrective action must take place, refer to section 6 Adjustment and Calibration on page 6-1.

4.2.7 Weekly Maintenance (ML STAR IVD)

Run the Weekly Maintenance procedure from User Software.

4.2.8 Verification

Run the Volume verification (Verification Kit).

4.2.9 Performing a test run

For general information on how to create a Method, refer to the User Manual.

Create a Method for Tip Pickup, Aspirating, Dispensing and Tip Eject. Observe the precision of movements especially during Tip Pickup. Decide if the Instrument is ready to run or if any corrective action must take place.

For example, if Tips are not picked up, or only after several tries (Firmware error handling), adjust and calibrate the Pipetting Arm and Channels.

For Instruments with Autoload Option, extend your Method with a loading and unloading Step involving the Tip Rack Carrier.

If, during loading or unloading, the instrument reports any "Steps lost", calibration must take place.

4.2.10 Service Software Removal

After successful installation remove Service Software from Customers PC

Generally - see section 3.4 Deinstallation of Service Software on page 3-7.

⚠️ Attention: Do not leave the Service Software permanently installed on a Customer's PC as this will enable any user of that PC to "play" with the system - with potentially damaging results!
5 Disassembly

5.1 Overview

The initial deinstallation and packing of the Microlab® STAR may only be carried out by Service Technicians trained and / or authorized by HAMILTON Bonaduz AG. For proper deinstallation follow the order of instructions given in this section.

⚠️ Attention: Exercise great care if touching the Channels when packing the Instrument.

5.2 Checklist for Deinstallation

To ensure a fast and proper deinstallation process follow the checklist. For detailed descriptions see the subsequent chapters of this manual.

⚠️ Attention: Do not skip any of the items in the checklist below as this may lead to an unsuccessful deinstallation.

1. Decontaminate ML STAR Instrument and its components
2. Ensure no Tips or needles are left on Pipetting Channels
 - Remove any still present
 - Dispose of Tips
 - Decontaminate Needles
3. Disconnect ML STAR Instrument
4. Remove all Carriers, Spillage Trays, Loading Trays and the Waste Station from ML STAR Instrument
 - Remove from ML STAR Instrument and decontaminate them
5. Remove ML STAR Instruments Panels
7. Carry out Software deinstallation

⚠️ Attention: Good Laboratory Practices should be observed when disposing of consumable items such as used plates, disposable tips, steel needles, etc. Exercise care if touching the Channels when repacking the Instrument.
5.2.1 Decontamination

Wipe exposed surfaces with disinfectant liquid.

5.2.2 Removing Tips or Needles

- Before disassembling anything, ensure that there are no Tips or Needles remaining on the Pipetting Channels.
- Assuming the Instrument is working, Tips or Needles may be ejected by starting any Method which must have an initialization at the very beginning. The Method may be aborted after Tip ejection.

 or:

- By using the Service Software Menu Control ➔ Single command ➔ Send command P#MD (where # is the Pipetting Channel Number). A minimum initialization is provided by sending Single Commands P#YI and P#ZI prior to the P#MD Command.

 or:

- By using the Service Software Menu Control ➔ Movement/Sensors ➔ Pipetting Channel ➔ Initializing each squeezer drive.

 or:

- After Instrument has been switched off, turning the squeezer spindle by hand to release the O-Ring coupling.

⚠️ Attention: Tips or Needles must not pulled away from Channels by Hand as this may cause damage to the O-Ring and the squeezer mechanism of Pipetting head.

5.2.3 Disconnect ML STAR Instrument

Switch off and unplug the Microlab® STAR Instrument. Disconnect it from the PC.

5.2.4 Remove all items on ML STAR Instrument

All Carriers, Tip Waste, Spillage Trays and loading trays\(^8\). Pack the accessories in the accessory boxes.

5.2.5 Remove Panels

Remove ML STAR instrument’s side panels.

On ML STAR IVD Instruments back cover must be removed as well.

\(^8\) Microlab®-STAR Instrument with Autoload Option only
5.2.6 Packing the ML STAR Instrument

Use ML-STAR PACKAGING P/N 220308 to ensure adequate packing and shipping.

Item:

1 Pallet
10 & 11 Surrounding Cover with Top
12 Accessories Boxes (2 pieces)
Packing the ML STAR Instrument (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Square Foam</td>
<td>(1 piece)</td>
</tr>
<tr>
<td>3. Channel protection foam</td>
<td>blocks (between the Channels)</td>
</tr>
<tr>
<td></td>
<td>(25 pieces)</td>
</tr>
<tr>
<td>4. iSwap protection block</td>
<td>(1 piece)</td>
</tr>
<tr>
<td>5. Channel supporting block</td>
<td>(1 piece)</td>
</tr>
<tr>
<td>6. U-shaped holding bars</td>
<td>(2 pieces)</td>
</tr>
<tr>
<td>7. Pipetting Arm supporting Block</td>
<td>(1 piece)</td>
</tr>
<tr>
<td>8. Z Profiles block</td>
<td>(2 pieces)</td>
</tr>
<tr>
<td>9. Square Foam</td>
<td>(2 pieces)</td>
</tr>
</tbody>
</table>
ML-STAR packaging (continued):

⚠️
Attention: Prior to any transportation or movement, Instrument must be packed with its original supporting and protective foam, placed onto the original Pallet and finally packed into its protective box.

General notes:
The following Procedure is described for a ML STAR Instrument with Autoload option. Disregard these sections if a Manual Load Instrument is to be packed.

When the left or the right side of the ML STAR Instrument is mentioned in these instructions, the point of view is always from the front of the Instrument (the operator’s viewpoint).

1. Lift Instrument onto Pallet (shown here is Hamiltons ML STAR Fork Lift.

⚠️
Attention: Spillage Trays must be removed prior to placing onto pallet.

Auto Load must be placed / moved either onto the right or left side of the Instrument.

Pipetting arm – U-shaped protective foam bars go on X linear guide.

Microlab®-STAR Instrument with Autoload Option only
ML-STAR packaging (continued):

2. Uncover pipetting arm’s top housing and carefully place the protective foam blocks between the channels as shown in picture.

 To insert these protective foam blocks into place, you have to move the channels. Move them gently by hand to the appropriate position and insert the foam blocks between them.

 If an iSWAP is present push it gently towards the rear, protect it with the iSWAP protective block and tie it to the back.

⚠️

Attention: Do not use adhesive tape to attach iSWAP to the back as this may damage the paint on the pipetting arm housing.
3. Tie the remaining protective foam blocks for the channels together and place this package into the empty space of the pipetting arm housing. This will help to hold all the channels in place.
Packing the ML STAR Instrument (continued)

4. Put pipetting arm’s top housing in place.

5. With the pipetting arm’s front housing removed, push channel supporting block towards the rear into the pipetting arm housing. Then push it very carefully upwards to the channels.
Packing the ML STAR Instrument (continued)

6. Tie channel supporting block onto pipetting arm with a suitable piece of cord.

⚠️

Attention: Do not use adhesive tape as this may damage the paint on the pipetting arm housing.
ML-STAR packaging (continued):

7. Finally place pipetting arm supporting block as shown in picture into the pipetting arm, and re-assemble front housing to pipetting arm.
ML-STAR packaging (continued):

8. Place all accessories into the accessories boxes.
 Accessories include:
 - Wrapped loading trays and waste station.
 - Carriers in their boxes
 - Both spillage trays
 Ensure no movement inside accessories boxes. Fill up empty space with crumpled paper, protection foam etc.
 Then close accessories box (use adhesive tape).

9. Place accessories boxes onto the Z-shaped blocks
 Both Z-shaped blocks go onto instrument’s deck panel (left and right beside pipetting arm).

10. Square foam block placed above pipetting arm’s top cover serves as a buffer between the two accessory boxes.

11. Lower the packing surround from above onto instrument on pallet.

12. Place additional square foams between accessory boxes and cover of packing surround.

13. Place side panels left and right on top of both accessory boxes.

14. ML STAR IVD instrument’s back cover must also placed on top of the two accessory boxes.
 Avoid scratches on panels and cover.

15. Close instrument packing surround with its top cover and tie up the crate securely.
ML-STAR packaging (continued):

- 2 Square Foams blocks
- 2 Accessories Boxes
- 2 U shaped holding bars
- 2 Z profiles

Instrument on pallet without top and surrounding covering
5.2.7 User Software Deinstallation

When removing the ML STAR User Software, you will find that no data such as METHODS, LABWARE LOGFILES, etc. are removed. The Software root structure remains the same.

However, it is strongly recommended that you Back up Methods, User defined Labware, Liquid classes etc. before removing current software.
User Software Deinstallation (continued)

Select START ➔ SETTINGS ➔ SYSTEM ➔ ADD / REMOVE SOFTWARE and search for ML STAR - as well as for PHOENIX Components - and remove them if still present.

![Add/Remove Programs window]

After deinstallation of User Software ensure that no more components are left on the PC.

If PHOENIX and Microlab STAR Components are not able to be removed then select ‘run’ from ‘start menu’ and type in “regedit” to enter the registry section of the PC’s operating system.

Select HKEY_LOCAL_MACHINE ➔ SOFTWARE and delete remaining Phoenix and / or Microlab STAR Folder.
6 Adjustment and Calibration

6.1 Overview

Adjustment and calibration are an important part of the installation procedure, and may also be required following maintenance and repair work. The purpose of adjustment and calibration is to ensure that all pipetting channels are using the same set of coordinates and moving in the same space. It guarantees the best performance for tip pick-up and pipetting in very small wells.

Whenever a Pipetting Arm, Pipetting Channel, Pipetting Head, Autoload drive10 or the Master PCB is removed or replaced, run the appropriate Adjustment Macro Program from the Service Software and decide if any corrective action needs to be undertaken.

After delivery of the instrument, run the check program and only perform an adjustment if values are out of range.

Adjustment and calibration is also needed when problems occur (e.g. in running an application, Channel positioning, Tip pick-up and ejection, or when Steps are Lost) and corrective action is indicated.

After any adjustment and calibration, the functioning of the component concerned must be verified to ensure a properly working Microlab STAR Instrument.

\textbf{Attention:} before starting any Adjustment and Calibration Work empty and decontaminate deck panels (e.g. remove all Carriers and Labware from deck)

\textbf{Conditions:}

All Guides in X-, Y- and Z-Direction must be straight i.e. may not be bent and must ensure a parallel movement to the corresponding axis.

If pipetting heads are replaced, ensure a proper mounting onto channels.

The first three degrees of freedom of the Pipetting Channel must be perfectly adjusted before running any Adjustment Program. Typically when a Pipetting Channel is replaced, or when bad adjustment values indicate the requirement of any corrective actions.

10 Microlab®-STAR Instrument with Autoload Option only
6.1.1 The Art / Principle of Adjusting

To reach an optimum with adjustment the concept “Degrees of freedom” must be understood:

- Tilting around an axis means rotating or turning around a specific axis.
- Moving on an axis means parallel shift on that specific axis

It is absolutely necessary to follow the order of adjustment and iterate an adjustment procedure until the criteria are met. If iteration is not successful start adjustment again from the very beginning.

6.1.2 Interpretation of correction values

A correction Value of “–7” means a necessary shift of 7 Units away from the direction of the coordinates.

And a correction Value of “16” means a necessary shift of 16 Units in the direction of the coordinates.

For coordinates, refer to section 2.1 Overview on page 2-1.
6.1.3 Order of adjustment and calibration

1. Adjustment of Pipetting Channels and Heads
 - Before running any adjustment program Pipetting Channels with their heads must be properly mounted and adjusted with Channel Adjustment Tool P/N 173952 onto Pipetting Arm.

2. Adjustment of Pipetting Arm
 - Adjust Z alignment parallel to deck X- and Y-Axes by moving the front guide bar on the left and right side up or down as appropriate.
 - Adjust X alignment to deck perpendicular to Y-Axis by tilting Pipetting Arm (around Z-Axis) on its slides in the back.

3. Calibration of Pipetting Arm with Channels
 - After adjustment of Pipetting Channels and Pipetting Arm, all Pipetting Channels and Heads on Pipetting Arm must have the same orientation in X-, Y- and Z-Direction.

4. Adjustment of Autoload11:
 - Adjustment (synchronization) of Cogwheels

5. Calibration of Autoload12:
 - Calibration in X, Y and Z, independently from Pipetting Arm with Channels.

See section 6.2 Adjustment Tools and Macro Programs on page 6-5 for a complete list of Tools and Macro Programs.

Note: After adjustment and calibration have been completed, you should perform a Check Run and a verification.

General notes

Always follow the order of adjustment described above and summarized in section 6.2 Adjustment Tools and Macro Programs on page 6-5.

However, for installation and quick check procedures, the Instrument Check Macro Program (INSTRUMENT CHECK.MCR) should be performed to decide if the instrument is ready to operate.

If the values according to the Instrument Check Macro Program are out of range, then the automatic calibration Macro Program (PIP AUTOADJUSTMENT.MCR) must be started to generate new calibration values with the current state of the hardware.

In consequence it may necessary to start a complete adjustment and calibration procedure, following the order already described.

11 Microlab®-STAR Instrument with Autoload Option only
12 dito
Order of adjustment and calibration

1. Deadjusted Channel, or replaced Channel
2. Mechanical adjustment with adjustment tools

3. 606825 Arm Z-Difference .mcr
 until passed

4. 606826 Arm X-Difference .mcr
 until passed

5. 606828 PIP XY Manual Adjustment.mcr

6. Perform mechanical positioning adjustment according to result values

7. 606828 PIP XY Manual Adjustment.mcr

8. if values are far out of tolerance then mechanical adjustment with adjustment tools must be performed

 - yes
 - no

 - improved?
 - yes
 - passed?
 - yes
 - 606827 PIP Autoadjustment.mcr
 - no
 - 606825 Arm Z-Difference .mcr
 - 606826 Arm X-Difference .mcr

 - no
 - 606828 PIP XY Manual Adjustment.mcr

9. 606867 Instrument Check.mcr

10. if values are far out of tolerance then mechanical adjustment with adjustment tools must be performed

 - yes
 - passed?
 - yes
 - adjustment successful
 - no
 - 606828 PIP XY Manual Adjustment.mcr
6.2 Adjustment Tools and Macro Programs

6.2.1 Tools for Pipetting Arm and Channels

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
</table>
| Channel Adjustment Tool P/N 173952 | For mechanical Channel Adjustment on Pipetting Arm. Must be used for preadjustment whenever a Channel is replaced in Order to mount the new channel on the Pipetting Arm. Predefines:
 • Parallellity (alignment) in Z Direction in functional dependence on X- and Y-Axis.
 • Linearity (alignment) of all Channels in Y-Axis. |
| Channel Calibration Tool P/N 173960 | Reference for Pipetting Arm Alignment / Adjustment and Pipetting Channel Calibration
 Together with the Adjustment macro programs, ensures perfect alignment of Pipetting Arm and all Channels. All Pipetting Channels must be mounted and adjusted with Channel Adjustment Tool first, then calibration with Channel Calibration Tool can take place.
 A Pointer (Z Tool P/N 173968) is included with the Channel Calibration Tool.
 CO-RE Tips for Adjustment P/N 235920 can be used with Macro ‘PIP ALIGNMENT WITH LLD.MCR’. |
| Z- Tool P/N 173968 | |
Tools for Pipetting Arm and Channels (continued)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
</table>
| Channel Positioning Tool P/N 182960 | For mechanical Channel Adjustment on Pipetting Arm.
 According to the results from the PIP XY MANUAL ADJUSTMENT.MCR, this tool helps in adjusting (fine tuning) channels. |
Tools for Pipetting Arm and Channels (continued)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipetting Arm Alignment Tool P/N 173956</td>
<td>Together with Channel Calibration Tool this facilitates Pipetting Arm alignment in X Direction. Two Pipetting Arm Alignment Tools are placed on the X-Guide, on the left and right sides of the uncovered Pipetting Arm.</td>
</tr>
</tbody>
</table>
| Front window Magnet P/N 173950 | Bridges the Front window switch and enables the Microlab® STAR Instrument to be run with Front window open. It is mounted on the left vertical Post.

Hint: The front window may also deselected in the configuration settings (use Service Software).

⚠️ **Attention:** Beware of the Pipetting Arm when it is moving on the Instrument.

Do not forget Front window Magnet on the customer’s ML STAR Instrument. This item is intended for use by trained Service Technicians only.

Alternatively, if you deselected the front window in the configuration settings, be sure to re-select it now.
6.2.2 Tools for Autoload Adjustment

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoload Calibration Tool P/N 173981</td>
<td>Supports mechanical Cock wheel synchronization and automatically positioning in X, Y and Z Direction of Autoload drive.</td>
</tr>
<tr>
<td></td>
<td>Groove for automatic positioning in X, Y and Z Direction of Autoload drive</td>
</tr>
<tr>
<td></td>
<td>Cog rail only for mechanical Cog wheel synchronization.</td>
</tr>
<tr>
<td>Autoload Sensors Adjustment Tool P/N 173980</td>
<td>Checks Barcode reading, Cup Presence sensor adjustment and the quality of Carrier-loading and - unloading.</td>
</tr>
<tr>
<td>Reference Barcode Tube Set P/N 173986</td>
<td>Reading Height from Deck:</td>
</tr>
<tr>
<td></td>
<td>• for Plates 118 mm</td>
</tr>
<tr>
<td></td>
<td>• for Tubes 30 – 110 mm</td>
</tr>
<tr>
<td></td>
<td>Included with Autoload Sensors Adjustment Tool are:</td>
</tr>
<tr>
<td></td>
<td>• Label P/N 173985 for Barcode Reader alignment</td>
</tr>
<tr>
<td></td>
<td>• Reference Barcode Tube Set P/N 173986</td>
</tr>
</tbody>
</table>
6.2.3 Tools for Verification of ML STAR IVD

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode Carrier P/N 185270</td>
<td>Supports verification of Barcode reading of Autoload drive.</td>
</tr>
<tr>
<td></td>
<td>This item is part of the ML STAR IVD shipment and the barcode verification may performed by the customer.</td>
</tr>
<tr>
<td></td>
<td>See the maintenance menu of ML STAR IVD User Software.</td>
</tr>
<tr>
<td>Waste Block P/N 185281</td>
<td>The waste block is a ML STAR IVD Instrument part and besides its main “tip waste” function it is needed for checking tightness and positioning</td>
</tr>
<tr>
<td></td>
<td>of pipetting heads. These verifications may be performed by the customer as well.</td>
</tr>
<tr>
<td></td>
<td>Furthermore, for the check and adjustment of Pressure Sensors (of pipetting heads) a coupling section is implemented into the waste block.</td>
</tr>
<tr>
<td></td>
<td>Toghether with the pressure transmitter and the macro programs:</td>
</tr>
<tr>
<td></td>
<td>PIP_PRESSURE SIGNALS CHECK.MCR</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>PIP_PRESSURE SIGNALS AUTOADJUSTMENT.MCR</td>
</tr>
<tr>
<td></td>
<td>the Pressure Sensors may be checked and adjusted (necessary for TADM)</td>
</tr>
</tbody>
</table>
Tools for Verification of ML STAR IVD (continued)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Transmitter P/N 185380</td>
<td>The Pressure Transmitter comes together with an RS 232 serial interface and a 0.3 m long silicon tube (P/N 7249057, SILICON TUB. 4X7 TRANSP.)</td>
</tr>
</tbody>
</table>
6.2.4 Adjustment Macro Programs

Ensure all Adjustment macro programs are stored on the same path, i.e. C:\ program files \ HAMILTON \ ML STAR \ services \ macros \.

There are two types of Adjustment Macro Programs:
- Measurement and Calibration Macros.

- Measurement Macro Programs do not change any Calibration values. The Software Program provides values which may not exceed the given tolerance.
- Calibration Macro Programs define new calibration values - current values are first deleted by the execute program.

Note: Adjustment Macro Programs must finish completely without errors to confirm that the Instrument is adjusted (Adjustment state 1), initialized and ready to operate.

General notes:

In case of a program interruption (if the program cannot be completed successfully) e.g. due to power failure or user interaction, switch the instrument off and then on again, to reset the macro program action automatically. This action is necessary to avoid the complete loss of calibration values.

If it is not then possible to start or complete any program, ensure that the CO-RE O-Rings do not remain squeezed, as this may reduce their life-time significantly.

⚠️

Attention: Ensure all Macro Programs once started are correctly completed. Only this will leave the Microlab STAR Instrument within a defined status.

Note: All files from the Adjustment Disk / CD must be installed. The following files are necessary, however must not be started independently (e.g. by the Service Technician):

- ABORT.MCR
- NIX.MCR
- START.MCR

⚠️

Attention: Pipetting Channels (complete with Pipetting Heads) must be mounted and adjusted properly before running any Adjustment Macro Program.
Adjustment Macro Programs (continued)

This List follows the order of Adjustment and Calibration

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| INSTRUMENT CHECK.MCR | With Channel Calibration Tool 173960.
checks all calibration values of Pipetting Arm, Channels and Heads.
Measurement Macro Program. |
| ARM Z-DIFFERENCE.MCR | With Channel Calibration Tool 173960.
checks Z parallelity of Pipetting Arm to Deck in functional dependence on X- and Y-Axis.
Measurement Macro Program. |
| ARM X-DIFFERENCE.MCR | With Channel Calibration Tool 173960.
checks X parallelity of Pipetting Arm to Deck in functional dependence on Y-Axis.
Measurement Macro Program. |
| PIP XY MANUAL ADJUSTMENT.MCR | With Channel Calibration Tool 173960.
Shows the linearity and relative positioning of all channels after preadjustment, shipping, etc.
Measurement Macro Program. |
| PIP AUTOADJUSTMENT.MCR | With Channel Calibration Tool 173960.
Performs an initial Adjustment and calibrates the pipetting Arm in X Axis and its Channels in Y and Z Axis.
Calibration Macro Program. |
Adjustment Macro Programs (continued)

This List follows the order of Adjustment and Calibration

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIP ALIGNMENT WITH LLD.MCR</td>
<td>With Channel Calibration Tool 173960 and Low Volume Tips. Final visual Pipetting Channel check. Checks alignment of all channels with Low Volume Tips picked up. Measurement Macro Program.</td>
</tr>
</tbody>
</table>

Additionally for ML STAR IVD

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tightness check procedure</td>
<td>With waste block 185281 and user Software ML STAR IVD Especially after replacement of CORE O-Rings the tightness of seal on each Pipetting Head may be checked.</td>
</tr>
<tr>
<td>PIP_PRESSURE_SIGNALS_CHECK.MCR</td>
<td>With waste block 185281 and pressure Transmitter the values for TADM may be checked and adjusted.</td>
</tr>
</tbody>
</table>
6.3 Adjusting Pipetting Channel

This is to ensure all Channels are aligned towards Y-Axis and are parallel to each other towards Z-Axis. Using the Channel Adjustment-Tool, you can adjust all Channels after replacement of any parts belonging to Channels (pipetting heads etc.). The Adjustment is of a mechanical nature.

When: a Pipetting Channel is replaced, or due to bad adjustment values Adjustment is required.

The Pipetting Channel with its Pipetting Head has a number of degrees of freedom:

<table>
<thead>
<tr>
<th>Degree of freedom</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tilting around X-Axis</td>
<td>Channel to Y Slide Fixing Screws</td>
<td>Channel Adjustment Tool</td>
</tr>
<tr>
<td>2. Moving in X-Axis</td>
<td>Channel Fixing Screws</td>
<td>Channel Adjustment Tool</td>
</tr>
<tr>
<td>3. Tilting around Y-Axis</td>
<td>Channel Fixing Screws</td>
<td>Channel Adjustment Tool</td>
</tr>
<tr>
<td>4. Moving in Y-Axis</td>
<td>Position will defined by calibration value which will be determined by automatic adjustment program.</td>
<td>Channel Calibration Tool with Macro Program</td>
</tr>
<tr>
<td>5. Tilting around Z-Axis</td>
<td>Adjustment not possible, Position is given through Y-Slide guide.</td>
<td>Pipetting Arm with its Y-Slide and -guide.</td>
</tr>
<tr>
<td>6. Moving in Z-Axis</td>
<td>Position will defined by calibration value which will be determined by automatic adjustment program.</td>
<td>Channel Calibration Tool with Macro Program</td>
</tr>
</tbody>
</table>
6.3.1 Pipetting Channels degrees of freedom

Attention: Exercise great care when loosening or tightening the Channel Fixing screws, as excessive torque tension has a direct effect on the ball bearings of the slides and in fact may damage them - then proper positioning is no longer possible.

Channel Fixing Screws:
First loosen both locking set screws which are located just above the upper and underneath the lower fixing screw.
Then slightly loosen the 2 fixing screws for a moving in X-Axis and tilting around Y-Axis.

Torque Tension:
fixing screws M4: 300 cNm, or fixing screws M3: 110 cNm
locking set screws M2: 50 cNm

Channel to Y Slide Fixing Screws:
By slightly loosening the 4 fixing screws, tilting around X-Axis is enabled.

Torque Tension fixing screws:
M3 x 8 P/N 420013: 110 cNm, or M2 x 8 P/N 400604: 50 cNm
6.3.2 Pipetting Channel Adjustment Tool

- Remove Y-Spindles first
- Gently drive Pipetting Head all the way down, then gently push Channels Z-Guide Shaft into Adjustment Tool. If not possible release locking and fixing screws.
- Check visually, there may be no gaps between Z-Guide and reference grooves of Adjustment Tool.
- Freeze Adjustment Position by carefully tightening the fixing screws.

For a better understanding only two Channels with the adjustment Tool are shown here.
6.3.3 Pipetting Channel Alignment

By placing the adjustment Tool once, two channels at a time may be adjusted. For providing best adjustment results, the Design of the Adjustment Tool is to avoid the need to turn it around which may cause a shift from the theoretical Y-Axis between Channels from the left and the right side of pipetting Arm.

Note: During adjustment use always the same orientation with the adjustment Tool, i.e. left side of adjustment Tool always to left Pipetting Arm’s left upper Y-Guide shaft.

Fix the channel adjustment tool in-between the Pipetting Arm’s upper Y-Guide shafts with the knurled screw and ensure play-free positioning.

Do not forget to check adjustment tool alignment onto Pipetting Arm’s upper Y-Guide shaft

Preliminary actions:

⚠️ Attention: Exercise care when moving the Pipetting Arm and / or the Pipetting Channels. Move them gently to the desired position.

- To gain access to the Pipetting Channels uncover the Pipetting Arm see section 7.4.3 Pipetting Arm on page 7-14.
 - The 2 Panels in the back may remain on the Pipetting Arm.
- Carefully unscrew and remove Y-Spindles P/N 173446 (complete with Washer P/N 173499 and Nut 408006) from Pipetting Arm.
 - Refer to section 7.4.3 Pipetting Arm on page 7-14.

Note: The Y-Spindles must be removed due to the fact that too much friction from the Y drive mechanism hinders a proper alignment between the Channel’s Z Guide and the Channel Adjustment Tool reference grooves
Pipetting Channel Alignment (continued)

Mechanical Adjustment procedure:
1. Carefully move the Pipetting Arm to a desired position on the deck
2. Uncover Pipetting Arm and remove both Y-Spindles.
3. Place Pipetting Channel Adjustment Tool P/N 173952 as shown onto Pipetting Arm's upper Y-Guide shafts (approximately in the middle of Pipetting Arm).
 If necessary loosen first Pipetting Channels locking set screws and then slightly loosen fixing screws to make it fit.
6. Check for absolute parallelity between Z-Guide shaft and reference grooves. No gap should be visible.
7. Freeze adjustment positioning by tightening all loose fixing screws.
9. Finally tighten Pipetting Channels locking set screws.
6.4 Adjusting Pipetting Arm

This is to ensure the Pipetting Arm is aligned parallel to Deck surface and towards Y-Axis. The Y-Axis is aligned when the rear and the Front of the Pipetting Arm is on the same X Coordinate.
Using the Channel Calibration Tool, the Pipetting Arm Alignment Tool and the appropriate Macro Programs, you can adjust the Pipetting Arm. The Adjustment is of a mechanical nature, The Adjustment Macro Programs provide measurement values.

When: due to bad adjustment values Adjustment is required.

The Pipetting Arm has a number of degrees of freedom:

<table>
<thead>
<tr>
<th>Degree of freedom</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tilting around X-Axis</td>
<td>is accomplished by raising and lowering the Front Guide Bar of Microlab® STAR Instrument in Z-Axis on the left and the right side.</td>
<td>Channel Calibration Tool with Macro Program</td>
</tr>
<tr>
<td>2. Moving on X-Axis</td>
<td>Is the movement Axis of Pipetting Arm</td>
<td>Channel Calibration Tool with Macro Program</td>
</tr>
<tr>
<td>3. Tilting around Y-Axis</td>
<td>Adjustment is generally not possible.</td>
<td></td>
</tr>
<tr>
<td>4. Moving on Y-Axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Tilting around Z-Axis</td>
<td>Movement on the two X slides in the back. is accomplished by turning adjustment screws from Pipetting Arm Alignment Tool.</td>
<td>Channel Calibration Tool and Pipetting Arm Alignment Tool with Macro Program</td>
</tr>
<tr>
<td>6. Moving on Z-Axis</td>
<td>is accomplished by moving the Front Guide Bar of Microlab® STAR Instrument along Z-Axis.</td>
<td>Channel Calibration Tool with Macro Program</td>
</tr>
</tbody>
</table>
Adjusting Pipetting Arm (continued)

⚠️
Attention: Guides in X and Y Direction must not be bent and must ensure a parallel movement to the corresponding axis.

The two box section frames of Pipetting Arm, which are the reference to the guides in Y-Direction, must also be straight and parallel together.

Ensure a proper mounting onto its X slides.
6.4.1 Pipetting Arm degrees of freedom

Pipetting Arm Fixing Screws:
When both Pipetting Arm Alignment Tools are in place, loosen 8 fixing screws in the rear for tilting around Z-Axis.

Note: The Z Axis to tilt around will then be in the rear.

This aligns the Pipetting Arm parallel to Y-Axis (the X Coordinate will then be the same for the front and the rear of Pipetting Arm.

Front Guide Bar:
Not displayed here. By slightly lifting and lowering, tilting around X-Axis is enabled.

Note: The X Axis to tilt around will then be in the rear.

Note: the above-mentioned Fixing screws may occur as setscrews with hex nuts and washers.
6.4.2 Pipetting Arm Z Alignment

Overview:
The Pipetting Arm with its channels can be adjusted using the Channel Adjustment Tool with its Steel Needle as Pointer and the Macro Program (Service Software). Adjustment has do be done by hand; the Pipetting Arm Adjustment Program only provides measuring values and helps you to align the Pipetting arm.

Note: The Adjustment may be performed where the Pipetting Channels have been preadjusted.

Preliminary actions:

Hint: Run the Adjustment macro Program before removing all Panels of the Instrument. After the first run check the result window. If the values are out of range corrective Action must take place.

- To gain better access to Front guide bar, remove side Panels from Instrument. Refer to section 7 Components on page 7-1.
- Loosen two middle screws front panels, as they are attached to the Front guide bar.

Run the following macro program together with Channel Calibration Tool P/N 173960:

- ARM Z-DIFFERENCE.MCR

Slightly loosen all 4 fixing screws P/N 420564, but do not allow play between vertical post and Front guide bar.

In accordance with Adjustment values, move Front guide bar up or down by turning adjustment screw P/N 420074.

Note: make very small movements (i.e. 1/8 turns) with the adjustment screw, tighten the fixing screws, and check by running adjustment program again.
Pipetting Arm Z Alignment (continued)

⚠️
Attention: Ensure a completely empty deck before starting macro program. Therefore remove any carriers beforehand.

- Start Adjustment Macro Program "ARM Z-DIFFERENCE.MCR" from Service Software and carefully follow the instructions given in that program.

- Adjustment must be performed if difference criteria are not met.

Interpretation of Result of Adjustment procedure:
Adjusting Pipetting Arm in Z-Direction (which would not be necessary in the result window shown above).

Corrective Actions
The Front guide bar may only be lifted or lowered on the left and right side of the Microlab STAR Instrument. In this example, the corrective action would be lowering the Front guide bar on the left side.

- Just loosen 2 fixing screws on each side and lower Front guide bar with adjustment screw according to the values provided by the program, then tighten the fixing screws again (see Picture on previous page).
- Verify the current position by running the Adjustment Program again and iterate if necessary.
6.4.3 Pipetting Arm X-Alignment

Overview:
The Pipetting Arm and Channels can be adjusted using Channel Adjustment Tool as Reference and Adjustment Macro Program (Service Software). Adjustment has to be done by hand - the Adjustment Macro Program only provides measurement values and helps you to align the Pipetting arm.

Note: The Adjustment may be performed once the Pipetting Channels are preadjusted and the Pipetting Arm Z-Alignment is performed.

Preliminary actions:

Hint: Run the Adjustment Program before uncovering the Pipetting Arm. After the first run decide if any corrective Action must take place.

- Uncover the Pipetting Arm completely (see section 7.4.3 Pipetting Arm on page 7-14) to access the 8 fixing screws P/N 400047 in the back.
- First remove side Panels, then both buffers from the ML STAR Instrument Chassis.

Run the following macro program together with Channel Calibration Tool P/N 173960:

- ARM X-DIFFERENCE.MCR

Note: the above-mentioned Fixing screws may occur as setscrews with hex nuts and washers.
Pipetting Arm X-Alignment (continued)

Slide on two Pipetting Arm Alignment Tools P/N 173956 to both sides of Pipetting Arm and gently attach with the adjustment screws. The Pipetting Arm may be slightly tilted around Z-Axis to align in X-Axis. Fixing screws of Pipetting Arm should be slightly loosened beforehand.

Uncovered Pipetting Arm, view from the front left with Pipetting Arm Alignment Tools P/N 173956 attached.

The Stop Bars on both sides of ML STAR Instrument are turned out of their original Positions to enable the Pipetting Arm Alignment Tools P/N 173956 to be slid on the X-Guide.

Uncovered Pipetting Arm, view from the front right.

A Pipetting Arm Alignment Tool P/N 173956 attached to the right side of Pipetting Arm.
Pipetting Arm X-Alignment (continued)

Adjustment:
- Before starting the Adjustment Program relieve any stress on the Pipetting Arm by moving it several times in X-Direction.
 Use Service Software and let it perform approximately 10 full-length strokes in X-direction to ensure a neutral positioning of Pipetting Arm.

Attention: since any stress on the Pipetting Arm is now relieved do not move it by pushing or pulling it in the front. If the Pipetting Arm must be moved hold it by the rear!
Pipetting Arm X-Alignment (continued)

- Then start "ARM X-DIFFERENCE.MCR" Adjustment Macro Program from Service Software and carefully follow the instructions given in the program.

- Adjustment must performed if difference criteria are not met.

Interpretation of Result of Adjustment procedure:

Adjusting Pipetting Arm in X-Direction (which would be necessary in the result window shown above).
Corrective Actions

Seeing as the back of the Pipetting Arm connected onto the slides as pivot point in Z-Axis, the Pipetting Arm may only turn in X-Direction (counterclockwise). In this example, the corrective action would be turning the Pipetting Arm in positive X-Direction (counterclockwise).

![Diagram showing corrective action for Pipetting Arm]
Corrective Actions (continued)

- Just untighten the 8 fixing screws and push or pull the arm by the back to its appropriate position and tighten the 8 fixing screws.

Note: Do not push or pull the Pipetting Arm from the Front to align in X-Direction so as to avoid a shift which could prevent proper adjustment (Hysteresis).

- Verify the current position by running the Adjustment Program again and iterate if necessary.
- After completion of Alignment, check distance between Pipetting Arm Positioning Reader and the Magnetic Tape underneath the deck. Refer to section 7.6 Pipetting Arm X-Drive on page 7-23.

⚠️
Attention: Ensure Reader is not touching Magnetic Tape. On the other hand, the gap should not be too great.
6.5 Adjusting Pipetting Arm with Channels

Overview:

After readjustment with the Channel Adjustment Tool and Macro programs, only a slight tilting around Y-Axis should be necessary. By using the upper Fixing screw as a pivot point (open it up just a very little bit), untighten the lower Fixing screw and push or pull the Channel by its Pipetting head around the upper Fixing screw axis.

Now the Pipetting Arm with its channels can be adjusted using the Channel Adjustment Tool and the Macro Program (Service Software). Adjustment has to be done by hand as described above; the Pipetting Arm Adjustment Program only provides measurements and helps you to align the Pipetting Channels on the Pipetting arm.

Note: The Adjustment may be performed where the Pipetting Channels have been preadjusted and the X- and Z-Difference Macro Procedures are completed successfully.

Preliminary actions:

Hint: Run the Adjustment macro Program before removing any Panels of the Instrument. After the first run check the result window. If the values are out of range corrective Action must take place.

Run the following macro program together with Channel Calibration Tool P/N 173960:

- PIP XY MANUAL ADJUSTMENT.MCR

Adjustment:

- Start Adjustment Macro Program "PIP XY MANUAL ADJUSTMENT.MCR" from Service Software and carefully follow the instructions given in that program.
Adjustment: (Pipetting Arm with Channels XY Manual)

- Adjustment must be performed if difference criteria are not met.

Interpretation of Results from Adjustment procedure:

Adjusting Pipetting Channels 3, 11 and 12 in X-Direction (which would be necessary in the result window shown above).

The Y Deviation is given by the straightness of the Channel and by the quality of adjustment with the Channel Adjustment Tool P/N 173952, therefore no action can be taken here to improve these values - they are for recognition only.

If the Y Deviation Values are bad or out of Range, start adjusting according to section 6.3 Adjusting Pipetting Channel on page 6-14

Corrective Actions

Focus only on the Channel with the most deviation, resp. the Channel which is out of range in X-Axis. In this example, this would be Channel 12.

Turn the Channel counterclockwise around its Y Axis to improve the alignment and lower the deviation and run the Adjustment Program again.

⚠️ **Attention:** corrective actions take place within the macro adjustment procedure. Therefore focus on Pipetting channel to be corrected. Do not switch off instrument, do not shift Pipetting Arm, etc. The macro will continue after you have corrected the Pipetting channel.
Corrective Actions (continued)

Attention: Do not loosen fixing screws too much, as this would lead to an uncontrolled shift or move. A restart with the Channel Adjustment procedure is then inevitably!

If no Channel positioning Tool P/N 182960 is available then use upper Fixing screw as pivot point and tilt Channel counterclockwise.
Corrective Actions (continued)

Using the Channel positioning Tool P/N 182960:

Note: Y-Spindle may remain in place.

Place the Channel positioning Tool onto Pipetting Arm and move it in Y Direction towards the channel to be corrected.

The goal is to take over the current position of the channel in question and freeze its position with the Channel positioning Tool.

After the Channel positioning Tool is attached to the channel, start tightening it.

The clamps of the Channel positioning Tool should hold the channel tight, then fix the Channel positioning Tool with the two knurled fixing screws onto the rail.

Clamps -
and
Knurled fixing screws of positioning Tool.
Corrective Actions (continued)

<table>
<thead>
<tr>
<th>Stabilize Channel positioning Tool by attaching the bracket onto the opposite side of the pipetting arm. Fix Bracket with the knurled screw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finally tighten the two shift stops on the rod, and use the corresponding adjustment screws to ensure a play-free system ready to tilt and shift the pipetting channel. The two stops on the rod can be fixed by tightening the knurled screws.</td>
</tr>
</tbody>
</table>

Since the current position of corresponding pipetting Channel is now “frozen” by the Channel positioning tool, the position of the channel may now be corrected. The 2 locking and the 2 fixing screws of the Pipetting Channel must loosened first.
Corrective Actions (continued)

<table>
<thead>
<tr>
<th>For tilting the Pipetting Channel around Y Axis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release lever of channel positioning tool by unscrewing knurled screw, then tilt channel.</td>
</tr>
<tr>
<td>After the Pipetting Channel is corrected, tighten the lever of channel positioning tool first and then retighten the 2 fixing and the 2 locking screws of the Pipetting Channel.</td>
</tr>
<tr>
<td>Remove channel positioning tool and continue running the PIP XY MANUAL ADJUSTMENT.MCR to verify improvement of alignment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For shifting the Pipetting Channel in X Direction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose the appropriate shift stop to shift the pipetting channel, then loosen the opposite shift stop completely.</td>
</tr>
<tr>
<td>By turning the adjustment screw clockwise, the channel positioning tool will move together with the pipetting channel towards adjustment screw.</td>
</tr>
<tr>
<td>After the Pipetting Channel is corrected, retighten the 2 fixing and the 2 locking screws of the Pipetting Channel.</td>
</tr>
<tr>
<td>Remove channel positioning tool and continue running the PIP XY MANUAL ADJUSTMENT.MCR to verify improvement of alignment.</td>
</tr>
</tbody>
</table>
Corrective Actions (continued)

The macro PIP XY MANUAL ADJUSTMENT.MCR continues as follows:
All Pipetting Channels will be placed above calibration Tool and allow a visual check which is prompted with the dialog box below.
6.6 Calibrating Pipetting Arm with Channels

Run the following macro program together with Channel Calibration Tool P/N 173960:

- PIP AUTOADJUSTMENT.MCR

Automatic Adjustment procedure:

Channel Calibration Tool P/N 173960 placed onto deck as asked for by the program. (Appropriate Adjustment Program has been started.)

After the successful Adjustment ensure all screws on Pipetting Arm and Pipetting Channels are tight.

Perform a Check Run.

Cover pipetting arm and Instrument.
6.6.1 Pipetting Channel Positioning Check (LLD Check):

Run the following macro program together with Channel Calibration Tool P/N 173960:

- PIP ALIGNMENT WITH LLD.MCR

ATTENTION!!

THE INSTRUMENT MUST BE ADJUSTED

Calibration Tool filled with Low Volume Tips.

All Low Volume Tips are picked up and positioned inside the small holes of Calibration Tool.
Pipetting Channel Positioning Check (continued):

The goal is to have all LLD sensor statuses at 0. This means all Low Volume Tips are absolutely concentrically positioned and have therefore no electronic contact with the calibration tool. Here in the example only Channel 2 actually passed the check procedure.

6.7 Pressure adjustment values of TADM (ML STAR IVD)

Connect the tubing of the pressure transmitter as shown to the ML STAR IVD tip waste.

Connect the RS 232 Cable to the Computer (any Port) where the Service software is installed.

PIP_PRESSURE_SIGNALS_CHECK.M CR
6.8 Adjusting Autoload drive13

For proper loading and unloading of Carriers and Barcode reading.

By using the Autoload Adjustment-Tool and the Service Program Autoload Calibration.

Loading Tray adjustment, Cog wheel synchronization, Barcode reader and Tube presence Sensor adjustment are of a mechanical nature - adjustment and calibration are totally automatic.

The cogwheel synchronization is of a pure mechanical procedure, therefore no macro program is available for it.

\textit{Note: the cogwheels are synchronized with the cog-rail of the tool (P/N 173981)}

When using the Autoload Adjustment Program the Cog-rail of this Tool is not used; however, the grooves of the tool must face the Cog Wheels.

The Program asks you during the procedure to put this Tool twice in Track one, both times exactly the same way. The first time the center axis of Track one to the center of the cogwheels is determined; the second time the cog’s uppermost position is defined (relative to the cogwheel home sensor).

The Autoload Drive has a number of degrees of freedom:

<table>
<thead>
<tr>
<th>Degree of freedom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tilting around X-Axis</td>
<td>Adjustment is generally not possible.</td>
</tr>
<tr>
<td>2. Moving in X-Axis</td>
<td>Is a movement Axis of Autoload drive and is automatically adjusted / calibrated with the corresponding reference Tool and Macro Program.</td>
</tr>
<tr>
<td>3. Tilting around Y-Axis</td>
<td>Adjustment is generally not possible.</td>
</tr>
<tr>
<td>4. Moving in Y-Axis</td>
<td>Is a movement Axis of Autoload drive and is automatically adjusted / calibrated with the corresponding reference Tool and Macro Program.</td>
</tr>
<tr>
<td>5. Tilting around Z-Axis</td>
<td>Adjustment is generally not possible.</td>
</tr>
<tr>
<td>6. Moving in Z-Axis</td>
<td>Is a movement Axis of Autoload drive and is automatically adjusted / calibrated with the corresponding reference Tool and Macro Program.</td>
</tr>
</tbody>
</table>

13 Microlab®-STAR Instrument with Autoload Option only
Conditions:
Guides in X-Direction must be straight i.e. may not be bent and must ensure a parallel movement to the corresponding axis.
Bad loading and unloading of carriers (Steps lost), or faulty Barcode reading indicates a need for corrective action. Adjustment may solve the problem. If not, the Autoload Drive may need to be replaced.

Order of Adjustment

Follow strictly the order of adjustment
1. Cog wheel synchronization
2. Loading tray adjustment
3. Automatic Autoload Adjustment Procedure

6.8.1 Autoload drive degrees of freedom
6.8.2 Cog wheel synchronization

To enable loading and unloading, cog wheels must be synchronized.

<table>
<thead>
<tr>
<th>Flag wheel</th>
<th>Remove Ribbon from Autoload Drive to gain access to Flag wheel. Move Autoload drive to an arbitrary Track Position.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Then place Autoload Calibration Tool cog bar onto the same Track and turn Flag wheel by hand to raise cogwheels up.</td>
<td>Note: If both cogwheels fit perfectly in Autoload Calibration Tool cog bar, no corrective action need take place.</td>
</tr>
</tbody>
</table>
Cog wheel synchronization (continued)

With the Autoload Calibration Tool in place, loosen both Set screws from front cogwheel and make cogwheels properly fit into Autoload Calibration Tool cog bar by raising cogwheels up until the Autoload Calibration Tool is just raised.

Then Tighten both Set screws from front cogwheel before removing Autoload Calibration Tool. Cogwheels are now synchronized.
6.8.3 Loading tray adjustment

For a proper loading and unloading of Carriers.

Adjustment

By using a Sample Carrier (or any other carrier) check for height and parallelity to deck.

Procedure:

Place the Carrier onto the deck and mount only one loading tray (say, the left one) onto the Instrument.

Pull the carrier out to the loading tray and check for height and parallelity between carrier and tray. A parallel gap indicates an ideal adjusted loading tray.
Loading tray adjustment (continued)

Adjust loading trays in height and angle to deck underneath.
Height Adjustment: remove loading tray and raise or lower black table adapter
Angle Adjustment: with the loading tray mounted and the Carrier placed as shown in picture, turn screw underneath loading tray in or out and fix it then with the hex nut.

Perform this procedure at least on the outer edges of the loading tray to ensure proper loading and unloading of carriers.

Replace the loading tray by the other one and follow the instructions above.
Finally with both Loading trays mounted, ensure both are adjusted onto the same height. Especially check for Track 28 (in the Middle of the Instrument) and perform an automatic loading and unloading step, using the Software.
6.8.4 Automatic Autoload Adjustment Procedure

Positioning of Cog wheels in X, Y and Z Direction and Sensors Adjustment:
Start Macro Program “AUTOLOAD AUTOADJUSTMENT.MCR” from Service Software and carefully follow the instructions given in the program.

Follow exactly the instructions given in the adjustment program.

When the program asks for the Autoload Calibration Tool to be placed from the back onto Track position 1, Ensure the cog rail is facing upwards and push the Tool gently from inside the ML STAR Instrument outwards until the pin from the Tool attaches to the slide block.

At the end of adjustment procedure, after the Autoload Sensors Adjustment Tool is unloaded, ensure a gap of approx. 1 mm between Stop Hook and the Carrier.
6.9 Verification

6.9.1 Volume Verification

The Verification Kit provides the means to verify instrument functions against specific acceptance criteria. The gravimetric verification procedure consists of an easy-to-follow program called from the user Software.

The Pipetter’s Accuracy and Precision will be verified.

6.9.2 Verification Kit’s

The Verification Kit consists of 3 parts:

- A Basekit which may be used for several Hamilton Instruments next to the ML STAR Instrument, however it is current depending for Countries with either 115 VAC or 230 VAC.
- An Instrument specific “SUPPLEMENT” Kit which contains ML STAR Instrument specific items.
- A “CONSUMABLE KIT” which contains verification fluid, disposables Tips, etc.

Countries with 230 VAC

- P/N 182501
 VFV BASEKIT 230V/50Hz

Countries with 115 VAC

- P/N 182502
 VFV BASEKIT 115V/60Hz

- P/N 182503
 VFV SUPPLEMENT ML-STAR

- P/N 182506
 VFV CONSUMABLE KIT ML-STAR
6.9.3 Verification after replacement, or remounting

Described below are the necessary actions (such as adjustments, verification and functional check), which have to be undertaken after replacement, or remounting for each component.

“x” indicates a necessary adjustment, volume verification and/or functional check. Components which are not listed below do not need any action to be undertaken.

<table>
<thead>
<tr>
<th>Instrument Components</th>
<th>Adjustment</th>
<th>Volume Verification</th>
<th>Functional check</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instrument Check</td>
<td>Auto adjustment</td>
<td>Autoload adjustment</td>
</tr>
<tr>
<td>Side Panels of ML STAR Instrument</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Front window</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cover Switch</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier Stops</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deck Panels</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Docking Station</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste station</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Verification after replacement, or remounting (continued)

<table>
<thead>
<tr>
<th>Pipetting Arm Components</th>
<th>Adjustment</th>
<th>Volume Verification</th>
<th>Functional check</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instrument Check</td>
<td>Auto adjustment</td>
<td>Autoload adjustment</td>
</tr>
<tr>
<td>Covers of Pipetting Arm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipetting Arm</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Pipetting Arm X-Drive</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>EC Pipetting Arm X-Position</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>P-Arm Flag</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Channel</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Pipetting Head</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Stop Disk</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>CO-RE O-Ring</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>
Verification after replacement, or remounting (continued)

<table>
<thead>
<tr>
<th>Autoload Components</th>
<th>Adjustment</th>
<th>Volume Verification</th>
<th>Functional check</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instrument Check</td>
<td>Auto adjustment</td>
<td>Autoload adjustment</td>
</tr>
<tr>
<td>Autoload drive</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Incl. all of its components</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Autoload X-drive</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Insertion Guides</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Loading Trays</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Verification after replacement, or remounting (continued)

<table>
<thead>
<tr>
<th>Electronically Components</th>
<th>Adjustment</th>
<th>Volume Verification</th>
<th>Functional check</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instrument Check</td>
<td>Auto adjustment</td>
<td>Autoload adjustment</td>
</tr>
<tr>
<td>Master PCB</td>
<td>✗</td>
<td>✗</td>
<td>-</td>
</tr>
<tr>
<td>Autoload PCB</td>
<td>-</td>
<td>-</td>
<td>✗</td>
</tr>
<tr>
<td>Main Switch</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Power distribution Board</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extension Board</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Power supply</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cables</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
7 Components

7.1 Overview

All mainly mechanical Components of the Microlab® STAR are listed below. In this section will be found a description of functions, how to replace Assemblies or single parts, and a list of part numbers.

Before starting the replacement of assemblies the instrument has to be uncovered. Disconnect the instrument first from the main power. Then follow the instructions below.

This section has the character of a top down structure and starts with uncovering of panels.

⚠️

Attention: Never switch on an ML STAR Instrument while any electrical cables are not plugged in (e.g. a pipetting head not mounted onto its channel) as this may destroy an electronic component such as a complete Channel.

7.2 Replacement of Components

Update Data with service Software, when one or more of the following Assemblies / Components are being replaced:

- 300 and 1000 µl Pipetting Head
- A & B Channel
- Autoload Drive
- Extensions such as iSwap, washing station, temperature-controlled carrier.

For Data input, refer to section 3 Service Software on page 3-1 ff

After replacement, update or upgrade run an installation qualification according to section 4 Installation of the instrument on page 4-1 to verify the functionality of the ML STAR Instrument.

Note: file / store technical data with Service Software before replacing any part. When sending a defective part for repair to Hamilton Bonaduz AG attach a copy of its technical data for investigation.
7.3 Components overview

7.3.1 ML STAR

- Docking station or Brush strip
- Carrier Stop
- Side Panel
- Mains switch
- Interfaces; RS 232, USB Teaching Box
- Autoload Drive
- Spillage Trays
- Insertion Guide with integrated loading display
- loading trays left and right
- Monitored Front window
- Deck panels
- Pipetting Arm
- Waste Station
7.3.2 ML STAR IVD

Front Window with integrated loading display and monitored locking function.

Loading Trays with extended side guards.
7.4 Covers of the Microlab® STAR

- Front window
- Panels left and right side
- Deck Panels
- Pipetting Arm housing

- for the Autoload Drive Ribbon refer to section 7.9 Auto Load drive on page 7-37.

7.4.1 Front Window and Panels left & right side

7.4.1.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173712</td>
<td>SIDE PANEL LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173713</td>
<td>SIDE PANEL RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>173774</td>
<td>FRONT WINDOW</td>
<td>C</td>
</tr>
<tr>
<td>173860</td>
<td>HS COVER CONTROL</td>
<td>A</td>
</tr>
<tr>
<td>281401</td>
<td>COVERING CAP D=25.5 PA</td>
<td>A</td>
</tr>
<tr>
<td>400047</td>
<td>CYL-SCR M5X16 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400619</td>
<td>CYL-SCR M2.5X8 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>420560</td>
<td>SCREW M4x10 A2 ISO7380</td>
<td>A</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5x12</td>
<td>A</td>
</tr>
</tbody>
</table>
7.4.1.2 Function

The Front window and side Panels left & right protect the user from the moving Pipetting Arm and from any contamination inside the instrument.

A Cover Control switch located inside the left vertical post controls the closed Front window and will stop any movement of the instrument and also will abort a started Method if the Front window is opened during a Run. However, it is still possible to access all Carriers, loading and unloading, with the Front window closed. Opening is necessary for maintenance Tasks i.e. deck surface cleaning, access to waste station etc.

The Microlab® STAR Instrument can be run without side Panels when the optional ML STAR Plate Handler and / or the ML SWAP require access to the deck.

7.4.1.3 Replacement

this section describes the replacement of:

- Front window
- Cover Switch
- Panels left & right side

⚠️

Attention: Handle with care to avoid scratches on cover and panels.

- Front window

Remove 6 screws P/N 420561:
First remove outer screws, then, holding the Front window by hand, the two remaining screws in middle. Carefully lift Front window away and store on appropriate surface.
A black sheet metal to protect the front guide bar from dust is located behind the Front window, fixed with screws P/N 400047.
Replacement (continued)

- **Cover Switch**

 Remove Covering Cap P/N 281401 by hand on left vertical post to access HS Cover Control.

 To replace Cover Control it is necessary to remove left Deck Panel and Autoload ribbon14. See section 7.4.2 Deck Panels on page 7-7 and section 7.9 Auto Load drive on page 7-37.

- **Side Panels**

 Simply loosen 6 screws P/N 420560 per Panel and gently move them out of their sockets. It is not necessary to remove any screw at all.

 \textbf{Attention: To avoid any damage to Panels do not use extensive force during removing or mounting them. Handle with care!}

- **Covering:**

 Instructions are the reverse of uncovering. Take care to avoid scratches.

14 Microlab®-STAR Instrument with Autoload Option only
7.4.2 Deck Panels

7.4.2.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173378</td>
<td>CAP</td>
<td>C</td>
</tr>
<tr>
<td>173288</td>
<td>CONTACT PLATE</td>
<td>C</td>
</tr>
<tr>
<td>173600</td>
<td>SLIDE BLOCK</td>
<td>A</td>
</tr>
<tr>
<td>173602</td>
<td>SLIDE BLOCK WEDGE</td>
<td>A</td>
</tr>
<tr>
<td>173833</td>
<td>CARRIER SENSOR BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173858</td>
<td>CABLE SSC</td>
<td>A</td>
</tr>
<tr>
<td>182114</td>
<td>REPLACE. DECK AL RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>182115</td>
<td>REPLACE. DECK AL LEFT</td>
<td>C</td>
</tr>
<tr>
<td>182118</td>
<td>REPLACE. CARRIER STOP</td>
<td>C</td>
</tr>
<tr>
<td>182283</td>
<td>DOCKING STATION FOR ML STAR</td>
<td>C</td>
</tr>
<tr>
<td>400302</td>
<td>CYL-SCR M4X8 DIN912 A2</td>
<td>A</td>
</tr>
<tr>
<td>403491</td>
<td>C-SUNK SCR M 4X8 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>420010</td>
<td>CYL-SCR M2,5X8 DIN912 A4</td>
<td>A</td>
</tr>
<tr>
<td>420074</td>
<td>CYL-SCR M4X16 DIN912 A2</td>
<td>A</td>
</tr>
</tbody>
</table>
7.4.2.2 Function

The Deck Panels provide the reference grid for Carriers as well as Pipetting Channels. Using Slide Blocks and Carrier Stops, the Working area is divided into 55 Tracks. These components are responsible for correct and precise positioning, and smooth transport of all Carriers.

The Carrier Stops in the rear detect presence of carriers and that they have snapped into place. The stops also ground Carrier to Instrument.

The Docking Station (in place of the Brush Strip) enables customers to extend the ML STAR Instrument with options such as Wash Station, temperature-controlled Carriers, Automated Vacuum System etc.

A Brush Strip located between the Carrier Stops and the X Guide Shaft covers over the trough and prevents dust and e.g. disposable Tips from falling into ML STAR Instrument.

7.4.2.3 Replacement

Described in this section is the replacement of:

- Docking Station, or Brush Strip
- Carrier Stops
- Deck Panels
- Slide Blocks

⚠️ Attention: All Carrier Stops and Docking Station / Brush Strip must removed before Deck Panels can be removed.

- Docking Station / Brush Strip

Remove either Docking Sation P/N 182283 or Brush Strip P/N 173194 with its sheet-metal (whatever the configuration of the ML STAR Instrument is) by removing 4 screws P/N 400302 from Deck Panels.
Replacement (continued)

- Carrier Stops

Unscrew and remove Plug Cap P/N 173354 (Screw P/N 420074) on the left hand side of Carrier Stops, disconnect Cable P/N 173858 from Carrier Sensor Board and push Cable with Plug through the hole in the deck.

- Then completely unscrew and carefully remove all Carrier Stops in the rear (Screws P/N 420074).

⚠️

Attention: Do not break any plugs from Carrier Sensor Board located on Carrier Stops while removing Carrier Stops from Deck Panel.

Start removing Carrier Stops from left to right!
<table>
<thead>
<tr>
<th>Replacement (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Do not bend any parts of Contact Plate (sheet metal).</td>
</tr>
<tr>
<td>• "Tongues" of Contact Plate must be as close as possible to Replace. Carrier Stop (solid piece).</td>
</tr>
<tr>
<td>• Replace. Carrier Stop P/N 182118 (solid piece)</td>
</tr>
<tr>
<td>• Contact Plate P/N 173288 (sheet metal)</td>
</tr>
<tr>
<td>• Carrier Sensor board P/N 173833</td>
</tr>
<tr>
<td>• 3 Screws P/N 420010 holding Carrier Sensor board on Replace. Carrier Stop.</td>
</tr>
</tbody>
</table>
Replacement (continued)

- Deck Panels

Note: only Deck Panels for ML STAR Instruments with Autoload Option may be ordered as replacement parts.
Replacement (continued)

Unscrew Deck Panels (4 screws P/N 403491 each panel) and remove them.

⚠️

Attention: Before removing Left deck Panel, note presence of Carrier Sensor Board Cable.

Note: Store Deck Panels on appropriate surface and prevent from damage, i.e. protect slide blocks.

- **Slide Blocks**

Note: Deck Panels must be removed before Slide Blocks can be replaced. First it must be ensured that no broken parts have fallen inside instrument and second, proper remounting is only possible when Deck Panels are placed onto appropriate supports.

Remove damaged or broken Slide blocks and replace with new ones. Connect two Slide Blocks together, push them into square hole in deck and finally push a Slide Blocks Wedge to wedge the replaced parts into position. A rubber Hammer may be used to gently tap the Slide blocks into place.

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slide Blocks P/N 173600</td>
</tr>
<tr>
<td></td>
<td>Slide Block wedge P/N 173602</td>
</tr>
<tr>
<td></td>
<td>Preassembled Slide blocks with wedge.</td>
</tr>
</tbody>
</table>

⚠️

Attention: Deck Panels may damaged (warped) if they are not placed onto appropriate supports when remounting slide blocks. Avoid bending during mounting slide blocks - e.g. by using a rubber hammer.
Covering of deck panels:

Instructions are the reverse of those for uncovering. Remember to guide Carrier Sensor Board Cable through left deck panel first.

Guide deck panels as well as Carrier Stops into their positioning pins or holes as required.

⚠️
Attention: Do not bend sheet metal tongues of the Carrier Stops in the rear - otherwise Carriers won’t snap in correctly. See section 7.4.2.3 Replacement on page 7-8.

Note: Start put Carrier Stops in place on Deck Panels, working from right to left. Carefully connect them together so as to preserve them from any damage.

Plug in and fold Cable, remount cable cap and brush strip or docking station as the case may be.

⚠️
Attention: Do not push cable into whole of deck panel, due to avoid damage through X-Arm drive.
7.4.3 Pipetting Arm housing
7.4.3.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173555</td>
<td>PANEL</td>
<td>C</td>
</tr>
<tr>
<td>173557</td>
<td>SIDE PANEL LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173559</td>
<td>SIDE PANEL RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>173568</td>
<td>TOP COVER</td>
<td>C</td>
</tr>
<tr>
<td>173607</td>
<td>H PROFILE</td>
<td>C</td>
</tr>
<tr>
<td>173609</td>
<td>BACK PANEL</td>
<td>C</td>
</tr>
<tr>
<td>173615</td>
<td>FRONT PANEL</td>
<td>C</td>
</tr>
<tr>
<td>420560</td>
<td>SCREW M4X10 A2 ISO7380</td>
<td>A</td>
</tr>
</tbody>
</table>

7.4.3.2 Function

The function of the Pipetting Arm:

- Pipettes Liquids
- Accommodates the Channels with the Pipetting Heads
 - from 4 up to 12 Channels
- Enables Y-Movement for the Channels
- Carries a Cover which:
 - Protects the Channels, guide shafts and spindles from dust.
 - Security for the user prevents physical contact with the channels
 - Moves in X-Direction driven by the Pipetting Arm X-Drive
7.4.3.3 Replacement

- Lift Top Cover P/N 173568 off Side panels (P/N 173557 & 173559). Top Cover, Side panels and H-bars P/N 173607 fit snugly into place together. H-bars may remain on Side panels or on Top Cover.

- Remove Front panel P/N 173615 by unscrewing 4 Screws P/N 420560.

 Hint: Front panel may be used as screw holding place for further actions.

- Side panels are removed by unscrewing 8 Screws P/N 420560 (currently 2 screws per panel, front and rear).

 Hint: If no more uncovering is needed, do not remove side panel’s lower screw at the back since there are matching indents to join the side panel with the back panel.

- Unscrew the 2 remaining screws and remove Back panel P/N 173609 and Panel P/N 173555 in the rear.

 Hint: If it is all right for the Back panel to remain on the Pipetting Arm, do not remove lowest screws since there are indents in Panel to join it with back panel.

Covering:

- Instructions are the reverse of those for uncovering. Ensure shadow gaps and collision-free mounting for Pipetting Channels and X-Movement of Pipetting Arm.

- Join Panel and Back panel at the rear and place screws loosely in Back panel - do not tighten them yet.

- Join Side panels to Back panel and fix them with screws.

- Reassemble Front Panel with 4 screws.

- Tighten all screws.

- Snap Top Cover onto H-bars and Side panels.
7.5 Pipetting Arm

Torque tension of the M4 Hex Nut 60 cNm. (P/N 408006)
7.5.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173206</td>
<td>CLAMP AT5</td>
<td>C</td>
</tr>
<tr>
<td>173366</td>
<td>CABLE GUIDE PLATE LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173367</td>
<td>CABLE GUIDE PLATE RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>173371</td>
<td>HOLDING PLATE LEFT</td>
<td>B</td>
</tr>
<tr>
<td>173372</td>
<td>HOLDING PLATE RIGHT</td>
<td>B</td>
</tr>
<tr>
<td>173392</td>
<td>HOLDING BAR</td>
<td>C</td>
</tr>
<tr>
<td>173446</td>
<td>Y-SPINDLE</td>
<td>C</td>
</tr>
<tr>
<td>173499</td>
<td>Y-SPINDLE BEARING</td>
<td>C</td>
</tr>
<tr>
<td>173569</td>
<td>BRIDE FLAT CABLE</td>
<td>C</td>
</tr>
<tr>
<td>173581</td>
<td>STEEL BAND</td>
<td>C</td>
</tr>
<tr>
<td>173605</td>
<td>CLAMPING BRACKET</td>
<td>C</td>
</tr>
<tr>
<td>173606</td>
<td>P-ARM LINK</td>
<td>C</td>
</tr>
<tr>
<td>173608</td>
<td>P-ARM FLAG</td>
<td>C</td>
</tr>
<tr>
<td>173817</td>
<td>CABLE X-ARM –P-CHANNEL BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173849</td>
<td>X-MOVEMENT CABLE</td>
<td>A</td>
</tr>
<tr>
<td>173895</td>
<td>EC PIPETTING ARM X-POSITION</td>
<td>A</td>
</tr>
<tr>
<td>173900</td>
<td>X-ARM CONNECTOR</td>
<td>A</td>
</tr>
<tr>
<td>173905</td>
<td>CABLE X-ARM CONNECTOR 8C</td>
<td>A</td>
</tr>
<tr>
<td>173906</td>
<td>CABLE X-ARM CONNECTOR 16C</td>
<td>A</td>
</tr>
<tr>
<td>182103</td>
<td>REPLACEMENT CHANNEL A</td>
<td>A</td>
</tr>
<tr>
<td>182104</td>
<td>REPLACEMENT CHANNEL B</td>
<td>A</td>
</tr>
<tr>
<td>182105</td>
<td>REPLACE. PIPETTING HEAD 300ul 15</td>
<td>A</td>
</tr>
<tr>
<td>182106</td>
<td>REPLACE. PIPETTING HEAD 1000ul 16</td>
<td>A</td>
</tr>
<tr>
<td>182108</td>
<td>REPL. FRAME PIP. ARM 8-CHANNEL</td>
<td>C</td>
</tr>
<tr>
<td>361025</td>
<td>FCC-2A CABLE GUIDE</td>
<td>A</td>
</tr>
<tr>
<td>400002</td>
<td>CYL-SCR M3X6 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400005</td>
<td>CYL-SCR M3X12 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400012</td>
<td>CYL-SCR M3X30 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400024</td>
<td>CYL-SCR M4X8</td>
<td>A</td>
</tr>
<tr>
<td>400047</td>
<td>CYL-SCR M5X16 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400064</td>
<td>CYL-SCR M2x8 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400617</td>
<td>CYL-SCR M2.5X5 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400621</td>
<td>CYL-SCR M2.5X12</td>
<td>A</td>
</tr>
<tr>
<td>403491</td>
<td>SUNK SCREW M4X8</td>
<td>A</td>
</tr>
<tr>
<td>408006</td>
<td>HEX SCREW M 4 D IN934</td>
<td>A</td>
</tr>
<tr>
<td>420013</td>
<td>CYL-SCR M3X8 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>511071</td>
<td>OMNI FIT 15M</td>
<td>A</td>
</tr>
<tr>
<td>7279372</td>
<td>ADHESIVE TAPE 1-SIDED D=2 B=12</td>
<td>A</td>
</tr>
</tbody>
</table>

¹⁵ Depending on instrument configuration
¹⁶ ditto
7.5.2 Main Components

- Pipetting Arm Replacement Frame P/N 182108
- A & B Channels
- Pipetting Heads 300 µl
- Pipetting Heads 1000 µl
- iSwap

7.5.3 Replacement

Preliminary tasks:

- Uncover Pipetting Arm and remove all Pipetting Channels and iSwap (if installed). Refer to section 7.7 Pipetting Channels on page 7-26.

⚠️ Attention: store and handle Pipetting Channels and iSwap (if available) with care.

Remove left deck panel - see section 7.4.2 Deck Panels on page 7-7.

For the following removals Refer to section 7.6 Pipetting Arm X-Drive on page 7-23.

- X-Drive Flag P/N 173608
- Pipetting Arm belt claw P/N 173606
- Pipetting Arm measurement carrier P/N 173605. Disconnect Cable first.

⚠️ Attention: Do not bend or kink X-Movement Cable.

- Unscrew 8 fixing screws (P/N 400047) from carriage main guide in the back, and then carefully remove Pipetting Arm from instrument.

Note: the 8 fixing screws may occur as setscrews with hex nuts and washers.
Setscrew P/N 405092, hex nut P/N 173459, washer P/N 173458.

17 Extension
Remounting:
- Instructions are the reverse of those for disassembly.
- Lead caster onto front guide bar and mount Pipetting Arm with 8 fixing screws to rail slides.
- Remount Pipetting Channels, iSwap (if available)
- Adjust Pipetting Arm according to section 6.4 Adjusting Pipetting Arm on page 6-19.
- Adjust Pipetting Channels according to section 6.3 Adjusting Pipetting Channel on page 6-14.
- Cover Pipetting Arm
7.5.4 Pipetting Arm Replacement Frame P/N 182108
7.5.4.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173239</td>
<td>CABLE GUIDE COMPLETE</td>
<td>C</td>
</tr>
<tr>
<td>173357</td>
<td>Y-FLAG</td>
<td>C</td>
</tr>
<tr>
<td>173490</td>
<td>ROLL HOLDER</td>
<td>C</td>
</tr>
<tr>
<td>173491</td>
<td>GUIDE</td>
<td>C</td>
</tr>
<tr>
<td>173536</td>
<td>REINFORCING ANGLE BRACKET</td>
<td>C</td>
</tr>
<tr>
<td>173537</td>
<td>PAWL</td>
<td>C</td>
</tr>
<tr>
<td>173538</td>
<td>PROTECTIVE RING</td>
<td>C</td>
</tr>
<tr>
<td>173549</td>
<td>GAP DISC</td>
<td>C</td>
</tr>
<tr>
<td>173823</td>
<td>PIPETTING ARM CONNECTOR</td>
<td>A</td>
</tr>
<tr>
<td>254087</td>
<td>O-RING ID8.00X2.00 NIT 70SH</td>
<td>C</td>
</tr>
<tr>
<td>256141</td>
<td>PRESSURE SPRING</td>
<td>A</td>
</tr>
<tr>
<td>281281</td>
<td>TRACK ROLLER D=16</td>
<td>B</td>
</tr>
<tr>
<td>281457</td>
<td>BUTTON BUFFER D=12 F=4 d=8</td>
<td>C</td>
</tr>
<tr>
<td>361004</td>
<td>CABLE GUIDE CFCC-4 ½"</td>
<td>A</td>
</tr>
<tr>
<td>400002</td>
<td>CYL-SCR M3X6 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400026</td>
<td>CYL-SCR M4X12</td>
<td>A</td>
</tr>
<tr>
<td>400028</td>
<td>CYL-SCR M4X16 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5x12</td>
<td>A</td>
</tr>
<tr>
<td>511006</td>
<td>LOCTITE 222</td>
<td>A</td>
</tr>
</tbody>
</table>

Attention: Remove or replace only those Parts which are labeled as Spare Parts.

The Pipetting Arm Replacement Assembly is an adjusted assembly which is not intended to be serviced in the field, so do not loosen any screws or parts which are not labeled on the drawing.
7.6 Pipetting Arm X-Drive

Primary Drive

Optical Switch for initialization Position:
Sheet metal P/N 173380 with Screws P/N 400025
OS PIPETTING ARM - X-INIT P/N 173864 with Screws P/N 400262

Secondary drive belt tension unit.

Belt tension:
Tighten Belts, however do not over-tighten them (do not use excessive force).

Optical Switch for initialization Position:

Fixing screws P/N 400640

Tighten Belts, however do not over-tighten them (do not use excessive force).

Optical Switch for initialization Position:
Sheet metal P/N 173380 with Screws P/N 400025
OS PIPETTING ARM - X-INIT P/N 173864 with Screws P/N 400262
Pipetting Arm X-Drive (continued):

Measurement system.
Gap between Reader P/N 173895 and magnetic band P/N 396011 must be at least 0.3 ± 0.2 mm.
Magnetic band is self-adhesive and is positioned on the shoulder in the chassis.

7.6.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173380</td>
<td>OS-HOLDER</td>
<td>C</td>
</tr>
<tr>
<td>173864</td>
<td>OS PIPETTING ARM – X-INIT</td>
<td>A</td>
</tr>
<tr>
<td>182111</td>
<td>REPLACEMENT X-MOTOR</td>
<td>B</td>
</tr>
<tr>
<td>250007</td>
<td>BALL BEARING ID= 8 AD=16/18 B=6</td>
<td>A</td>
</tr>
<tr>
<td>250045</td>
<td>BALL BEARING ID=15 AD=35 B=11</td>
<td>A</td>
</tr>
<tr>
<td>257056</td>
<td>SPACER PINS M5x20 I/O</td>
<td>A</td>
</tr>
<tr>
<td>258129</td>
<td>COG BELT 10AT5/2875</td>
<td>A</td>
</tr>
<tr>
<td>258130</td>
<td>COG BELT 10T2.5/480</td>
<td>A</td>
</tr>
<tr>
<td>396011</td>
<td>MAGN. MEASURING TAPE</td>
<td>B</td>
</tr>
<tr>
<td>400025</td>
<td>CYL-SCR M4X10 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400026</td>
<td>CYL-SCR M4X12 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400077</td>
<td>CYL-SCR M6X60 DIN912</td>
<td>C</td>
</tr>
<tr>
<td>400262</td>
<td>CYL-SCR M3X6 DIN912 A2</td>
<td>A</td>
</tr>
<tr>
<td>400302</td>
<td>CYL-SCR M4X8 DIN912 A2</td>
<td>A</td>
</tr>
<tr>
<td>405082</td>
<td>SET SCR M5X5 DIN913</td>
<td>A</td>
</tr>
<tr>
<td>413008</td>
<td>LOCK DISC 7 DIN6799</td>
<td>A</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5x12</td>
<td>A</td>
</tr>
</tbody>
</table>

7.6.2 Function

- Moves Pipetting Arm in X-Direction.
- Driven by a DC Motor and controlled by a magnetic measurement system and an optical switch.
7.6.3 Replacement

Preliminary actions:

Remove deck panels - see section 7.4.2 Deck Panels on page 7-7.

Hint: remove left deck panel first and right side deck panel only if necessary.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace X-Motor</td>
<td>Loosen Belt Tension of secondary drive, disconnect DC Motor cable from Master PCB and then remove Primary Drive Assembly (2 screws M4 x 8, P/N 400025). Loosen Belt Tension of primary drive (2 screws M3 x 6, P/N 400262), remove security washer from DC Motor axis and then remove DC Motor from sheet metal (3 screws I6R M5x12, P/N 420561).</td>
</tr>
<tr>
<td>P/N 182111</td>
<td></td>
</tr>
<tr>
<td>Primary drive belt</td>
<td>See DC-Motor</td>
</tr>
<tr>
<td>Cog belt SYN-FLEX 10T2.5/480</td>
<td>Additionally loosen 2 set screws (P/N 405082) from large cogwheel, remove axle and large cogwheel.</td>
</tr>
<tr>
<td>P/N 258130</td>
<td></td>
</tr>
<tr>
<td>Secondary drive belt</td>
<td>Loosen Belt Tension of secondary drive, and remove belt from Pipetting arm claw</td>
</tr>
<tr>
<td>Cog belt Breco</td>
<td></td>
</tr>
<tr>
<td>P/N 258129</td>
<td></td>
</tr>
<tr>
<td>Magnetic Band</td>
<td>See picture on previous side.</td>
</tr>
</tbody>
</table>
7.7 Pipetting Channels

Location of Dip switches. (opposite side as shown here)

Pipetting Channel A
P/N 182101

Pipetting Channel B
P/N 182102

Basically, the difference of the Channels may only be found in the lower section of each channel due to their mounting order onto the Pipetting Arm. Shown here (circled) are the brackets which connect the Channels to their corresponding Slides (these run either on upper or lower guides), and therefore the mounting of the Y-Motor to ensure enough spacing between the channels.
7.7.1 Part List

Pipetting Channels

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>182103</td>
<td>Replacement Channel A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Package containing:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 Channel A P/N 182101 (without Pip. Head)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mounting accessories</td>
<td></td>
</tr>
<tr>
<td>182104</td>
<td>Replacement Channel B</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Package containing:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 Channel B P/N 182102 (without Pip. Head)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mounting accessories</td>
<td></td>
</tr>
</tbody>
</table>

Note: Replacement Channels come without Pipetting Heads. These must be ordered separately.

The mounting accessories are 2 types of screws and washers for both types of slides available on ML STAR Instruments. For slides with small threads, the small screws CYL-SCR M2X8 P/N 400604 must be mounted with washers, otherwise use CYL-SCR M3X8 (P/N 420013).

Nothing may be replaced or repaired on Channels - if any drive or function is defective replace the Channel.
7.7.2 Function

To reach a grid pattern of 9 mm, two different Channels A & B are used in the Microlab® STAR.

All A Channels use the upper guide shafts and therefore all B Channels use the lower guide shafts on the pipetting arm.

Note: The left and the right side of the Pipetting Arm have each upper and lower Y-guides for the Pipetting Channels to travel on.

The Pipetting Channel carries the pipetting head which performs all Pipetting Steps. The following features are implemented in the channel:

- Independent Z and Y movements
 The limitations in Y direction are due to the neighbouring Channel
- Carries both types of Pipetting heads (300 and 1000 µl)
- All A- and all B Pipetting Channels are universal and may be individually addressed with dip switches (see section 8.1.6 Node settings on page 8-5). Each channel has its own µController and its own CAN Address, which may individually set.

Note: This means every A Pipetting Channel may be placed onto every A-, and every B Pipetting Channel may be placed onto every B Position.

⚠️

Attention: As mentioned before and after:
Handle with care when servicing (touching, handling) the pipetting Channels! Avoid applying any direct or indirect force to any guides.

Special attention must be given to when the channel fixing screws must be loosened, or tightened for adjustment reasons, as this may damage the Y slide of Pipetting Arm.

When the channels are stored temporarily e.g. into the Microlab STAR Service Kit. Unsecured storage may bend the Z guide irreparably out of shape.

(The same could happen during crashes, where movements of the Pipetting Arm in X and / or Movements of the Channels in Y collide with an obstacle, eg.due to imprudent use of Service Software.)
7.7.3 Replacement

Before a Pipetting Channel is replaced all data from the channel should be printed out, or saved to a file. Use the Service Software for this printout (see section 3 Service Software on page 3-1).

- Uncover Pipetting Arm (see section 7.4.3 Pipetting Arm on page 7-14).
- Remove Y-Spindle P/N 173446.

- Uncover Pipetting Arm (see section 7.4.3 Pipetting Arm on page 7-14).
- Remove Y-Spindle P/N 173446.

• Uncover Pipetting Arm (see section 7.4.3 Pipetting Arm on page 7-14).
• Remove Y-Spindle P/N 173446.

- Remove M4 Hex nut.
- Turn Y-Spindle out by Hand. If it is too tight use an adjustable wrench to get it loose. Cross flats will be found on the front of the Spindle.
- Carefully remove Y-Spindle from Pipetting Arm. Take care not to scratch coated thread.

- Remove Cable holders on desired Channel, since these will be used again.
- Disconnect and remove 2 Cables (Y-motor and communication cable) on desired Channel.
- Loosen the 4 screws which connect channel with Y-Slide
- Carefully remove Channel from Pipetting Arm.

⚠️
Attention: Whenever it is necessary to move Channels on Pipetting Arm, move them gently by pushing close to their Y-Slide. Never force them as this may lead to damage.

Hint: If Possible switch on Instrument as this will result in a smoother motion when Channels have to be moved on Pipetting Arm.
However, do this only if all cables are plugged in correctly and no short circuit is possible.
Remounting:

- Instructions are basically the reverse of disassembly instructions.
- Turn Y-Spindle completely in by hand not using much force.
- Using a Torque wrench, tighten the M4 Hex Nut with 60 cNm.

⚠️ **Attention:** Check for correct Dip Switch setting on new channels. Refer to section 8.1.6 Node settings on page 8-5. Also, check for correct Firmware Version, because all Pipetting Channels must using the same Firmware Version.

- If necessary, download the latest firmware onto the new Pipetting Channel.
- Adjust Channel according to section 6 Adjustment and Calibration on page 6-1.

Order of Pipetting Channel placement

![Diagram showing the location of all Channels and their numbering.](image)

Shown above are the location of all Channels and their numbering.
7.7.4 Part Numbers for original and replacement Parts

Note: Microlab® STAR instruments when shipped carry Channels with the following Part Numbers (Label on Channels):

P/N 173301 = CHANNEL A with 300ul PIPETTING Head
P/N 173302 = CHANNEL B with 300ul PIPETTING Head
P/N 173305 = CHANNEL A with 1000ul PIPETTING Head
P/N 173306 = CHANNEL B with 1000ul PIPETTING Head

Ordering:
The replacement Channels must ordered with Part Numbers as follows:
P/N 182103 is a Channel A without Pipetting Head
P/N 182104 is a Channel B without Pipetting Head

The Label on replacement Channels will show:
Part Number 182101 for Channel A
Part Number 182102 for Channel B.
7.8 Pipetting Heads

Two different Pipetting heads of 300 & 1000 µl are available for the Microlab® STAR. Due to their absolutely identical outer geometry you need to refer to the Label to identify them as a 300 or 1000 µl Pipetting Head.
7.8.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173330</td>
<td>TIP EJECTOR</td>
<td>A</td>
</tr>
<tr>
<td>173332</td>
<td>STOP DISK</td>
<td>A</td>
</tr>
<tr>
<td>173520</td>
<td>DISC 2</td>
<td>A</td>
</tr>
<tr>
<td>182105</td>
<td>REPLACE. PIPETTING HEAD 300ul</td>
<td>A</td>
</tr>
<tr>
<td>182106</td>
<td>REPLACE. PIPETTING HEAD 1000ul</td>
<td>A</td>
</tr>
<tr>
<td>254167</td>
<td>O-Ring ID3.6x1.45</td>
<td>A</td>
</tr>
<tr>
<td>400602</td>
<td>CYL-SCR M2x5 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400621</td>
<td>CYL-SCR M2.5x12 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>409103</td>
<td>DISC M2 DIN125A</td>
<td>A</td>
</tr>
<tr>
<td>511071</td>
<td>OMNI FIT 15M</td>
<td>A</td>
</tr>
<tr>
<td>173310</td>
<td>GREASE 100 GR TOPAS AK50</td>
<td>A</td>
</tr>
</tbody>
</table>

7.8.2 Function

The following features are implemented in the Pipetting Head:

- Tip coupling with CO-RE technology.
- Tip presence is registered.
- Capacitive Liquid Level Detection (for Aspiration and Dispensing).
- Pressure Liquid Level Detection (for Aspiration only, by using a new disposable Tip for each aspiration step).
- MAD (Monitored Air Displacement), which monitors aspiration.
- Aspiration and dispensing of liquid
- Tip ejection with CO-RE technology

ML STAR IVD additionally features

- TADM (Total Aspiration and Dispense Monitoring), where aspiration and dispensing are monitored.
7.8.3 Replacement

Preliminary actions:

Uncover Pipetting Arm see section 7.4.3 Pipetting Arm on page 7-14.

Channels should remain on Pipetting Arm. Otherwise refer to section 7.7 Pipetting Channels on page 7-26.

Hint: Remove Y-Spindles for better access to channels and Pipetting Heads.

⚠️

Attention: Never switch on ML STAR Instrument while cables such as those between Channel and Pipetting Head are not plugged in when replacing Pipetting Heads as short circuits are possible.
Removal:

Removal of Pipetting Head:
(see Drawing above)

Carefully push Pipetting Head on Channel's Z-Drive all the way down. Then unscrew and remove the 4 screws of Pipetting Head and carefully draw it out of the Channel to access the 2 cables and disconnect them.

The items listed below may removed with Pipetting Head installed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop Disk</td>
<td>Loosen and remove Stop Disk.</td>
</tr>
<tr>
<td>P/N 173332</td>
<td>Use Stop Disk Mounting Tool P/N 173953</td>
</tr>
<tr>
<td></td>
<td>If Pliers are used to unscrew Stop Disk, ensure no damage (e.g. scratches) during removal</td>
</tr>
<tr>
<td></td>
<td>Check for any scratches or blocked bore hole on Stop Disk, replace if any damage is visible.</td>
</tr>
<tr>
<td>CO-RE O-Ring</td>
<td>See above, loosen and remove Stop Disk.</td>
</tr>
<tr>
<td>P/N 254167</td>
<td>Replace CO-RE O-Ring</td>
</tr>
</tbody>
</table>

Tool for Stop disk removal

STOP DISC MOUNTING TOOL
P/N 173953

⚠️

Attention: Use this tool only for loosening the stop disk. Tighten stop disks always by hand!

⚠️

Attention: Do not mistakenly tighten Stop Disk when loosening is intended. This may damage the Pipetting Head.

Note: Replace Stop disk, rather than reusing it, if pliers were used to unscrew it. Even if only small scratches are visible, replace Stop disk
Removal (continued):
A disposable tip gripped with a pair of pliers may also be used to open the stop disk. The disposable tip prevents any scratches to the stop disk. After removal of the Stop disk throw used disposable tip away.

Nothing more than the above mentioned items may be replaced or repaired. If any drive or other function are defective replace the Pipetting Head.

Reassembly:
Instructions are basically the reverse of disassembly instructions.

- Carefully tighten the Stop Disk by hand. Do not use any Tool e.g. Pliers and do not use excessive force, just turn it into place.
- As per Drawing above, tighten 3 screws with 30 cNm and one screw with 20 cNm (the second from above).

⚠ Attention: Check for appropriate Dip Switch setting on channels (300, or 1000 µl Pipetting Heads). Refer to section 8.1.6 Node settings on page 8-5.

Adjustment:
After replacement run the necessary Adjustment procedures as described in section 6 Adjustment and Calibration on page 6-1.

7.8.4 Part Numbers for original and replacement Parts

Note: Original equipped Microlab® STAR instruments carry Pipetting Heads with the following Part Numbers (Label on Pipetting Heads):

P/N 173303 = 300 µl PIPETTING Head
P/N 173304 = 1000 µl PIPETTING Head

Ordering:
The replacement Pipetting Heads must be ordered by Part Number as follows:
P/N 182105 is a 300 µl Pipetting Head
P/N 182106 is a 1000 µl Pipetting Head

The Label on replacement Channels will show:
Part Number 173303 for 300 µl Pipetting Head
Part Number 173304 for 1000 µl Pipetting Head
7.9 Auto Load drive18

Drives:
- X Drive: positions the Autoload drive to the Track
- Y Drive: The two Cogwheels load and unload Carriers.
- Z-Drive: couples the two cogwheels into Carriers for y-movement.

Barcode Reader:
- Vertical position for Carrier recognition and Tube Barcode Reading
- Horizontal position for Plate Barcode Reading

18 Microlab® STAR Instrument with Autoload Option only
Auto Load drive (continued):
7.9.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173297</td>
<td>PINION MXL Z=32</td>
<td>C</td>
</tr>
<tr>
<td>173845</td>
<td>LOAD X – CONNECTOR</td>
<td>A</td>
</tr>
<tr>
<td>173849</td>
<td>CABLE X-MOVEMENTS</td>
<td>A</td>
</tr>
<tr>
<td>173874</td>
<td>DM ROTATOR DRIVE</td>
<td>A</td>
</tr>
<tr>
<td>173875</td>
<td>HS H/V POSITION</td>
<td>A</td>
</tr>
<tr>
<td>173877</td>
<td>HS LOAD DETECT</td>
<td>A</td>
</tr>
<tr>
<td>173878</td>
<td>OS TUBE DETECT</td>
<td>A</td>
</tr>
<tr>
<td>173879</td>
<td>SCANNER</td>
<td>B</td>
</tr>
<tr>
<td>182107</td>
<td>REPL. AUTO LOAD DRIVE</td>
<td>C</td>
</tr>
<tr>
<td>182119</td>
<td>REPL. GUIDE ROLLER</td>
<td>C</td>
</tr>
<tr>
<td>182120</td>
<td>REPL. RIBBON</td>
<td>C</td>
</tr>
<tr>
<td>182263</td>
<td>BLACK COVER RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>182264</td>
<td>BLACK COVER LEFT</td>
<td>C</td>
</tr>
<tr>
<td>182266</td>
<td>COVER LEFT</td>
<td>C</td>
</tr>
<tr>
<td>182274</td>
<td>COVER RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>250016</td>
<td>BALL BEARING ID=6 OD=13/15</td>
<td>C</td>
</tr>
<tr>
<td>258140</td>
<td>COG BELT MXL Z= 90X3/16"</td>
<td>A</td>
</tr>
<tr>
<td>281401</td>
<td>COVERING CAP</td>
<td>A</td>
</tr>
<tr>
<td>400262</td>
<td>SCREW M3X6</td>
<td>A</td>
</tr>
<tr>
<td>403452</td>
<td>SUNK SCREW M3X6 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>403453</td>
<td>SUNK SCREW M3X8</td>
<td>A</td>
</tr>
<tr>
<td>403499</td>
<td>SUNK SCREW M4x30</td>
<td>A</td>
</tr>
<tr>
<td>409200</td>
<td>DISC M3</td>
<td>A</td>
</tr>
</tbody>
</table>

7.9.2 Function

The Autoload component

- loads and unloads all Types of Carriers automatically
- Recognizes the presence of carriers ready to load
- While loading:
 - Recognizes Carrier Type
 - Reads Carrier Barcodes
 - Recognizes Plate or Tube Barcodes
 - Recognizes the presence (or absence) of Tubes.
Removal

⚠️ Attention: Never switch on ML STAR Instrument while cables such as those to Autoload drive are not plugged in when replacing Autoload drive as short circuits are possible.

Unscrew and remove:

182264 BLACK COVER LEFT
(Screws 2 x 403453)
and
182266 COVER LEFT
(Screws 4 x 403453).

Unscrew and remove:

182263 BLACK COVER RIGHT
(Screws 2 x 403453)
and
182274 COVER RIGHT
(Screws 4 x 403453).
Removal (continued)

Detach:
ribbon P/N 182120
(Screws 2 x 400262)
on the left side of Autoload Drive

Detach:
Ribbon
(Screws 2 x 403453)
on the right side of Autoload Drive

Remove Covering Cap 281401
Removal (continued)

<table>
<thead>
<tr>
<th>Image</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unscrew and remove the first two Insertion Guides on the left side and disconnect cable (screws P/N 403499).</td>
</tr>
<tr>
<td></td>
<td>View from above: Removed Insertion Guides and disconnected cable to gain access to Autoload drive.</td>
</tr>
</tbody>
</table>
Removal (continued)

View from above:
The Autoload drive is connected with a total of 6 screws P/N 400632 onto 2 sliding carriages. 4 screws onto the right, and 2 screws onto the left sliding carriage.

The belt clamp is mounted with 2 screws P/N 400010 onto the autoload drive and must be disconnected as well. 3 screws are involved, however the middle screw is to remain in place.

Through the hole unscrew:
two screws P/N 400653 holding sheet metal and removing it, then unscrew four slide screws P/N 400632 underneath sheet metal.

Sheet metal away from aluminum block

2 of the 4 slide screws
Removal (continued)

Finally unplug:
cable P/N 173874 from Autoload drive
and carefully lift assembly out of
instrument.
View from right to left, underneath
Autoload drive.

Hint: carefully lift Autoload drive
assembly a little bit in the rear to gain
better access to the cable plug.
Reassembly
Instructions are basically the reverse of those for disassembly.

Hint: for easier removal of covering caps, modify them.

Cut away two spring catches (1 per side) as shown here on the left covering cap. The cap when mounted, will then fit snugly on the Autoload drive.

The covering cap shown here on the right is before modification.

| The ribbon on the right side of Autoload drive is to be mounted as shown above. |
| Note: the aluminum thread bar is wrapped by the ribbon. |
| Tighten and align the ribbon by turning in set crews P/N 400262. |
| Carefully move the Autoload drive by hand from side to side and adjust ribbon for a proper movement. |
| Service Software for Autoload drive movement may also be used. |

⚠️ *Attention: Do not overtighten the ribbon as this may lead to autoload x-movement steps lost.*

Adjustment:
After replacement run the necessary Adjustment procedures as described in section 6 Adjustment and Calibration on page 6-1.
7.9.3 Part Numbers for original and replacement Parts

Note: Original equipped Microlab® STAR instruments Autoload drive comes with the following Part Number (Label on Autoload drive):
P/N 173309

Ordering:
The replacement Autoload drive must ordered by Part Number:
P/N 182107

The Label on replacement Autoload drive will show:
Part Number 173309

7.10 Auto Load X-Drive¹⁹

¹⁹ Microlab® STAR Instrument with Autoload Option only
Auto Load X-Drive (continued)

Viewpoint is here from inside ML STAR Instrument to the back of the vertical posts.

Primary drive

Secondary drive with belt tension screw P/N 420580.

Belt tension:

Tighten Belts, however do not over-tighten them (do not use excessive force).

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173855</td>
<td>SM Auto Load X-Drive</td>
<td>C</td>
</tr>
<tr>
<td>173856</td>
<td>OS Auto Load X-Init</td>
<td>C</td>
</tr>
<tr>
<td>250016</td>
<td>BALL BEARING ID=6 OD=13/15</td>
<td>C</td>
</tr>
<tr>
<td>250045</td>
<td>BALL BEARING ID=15 OD=35</td>
<td>C</td>
</tr>
<tr>
<td>258053</td>
<td>COG BELT MXL Z= 83 X 3/16"</td>
<td>A</td>
</tr>
<tr>
<td>258134</td>
<td>COG BELT 10T2.5 3065</td>
<td>A</td>
</tr>
<tr>
<td>400640</td>
<td>CYL-SCR M4x10 DIN912 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>400653</td>
<td>CYL-SCR M3X6 DIN912 A2 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>405445</td>
<td>SET SCR M3x8 DIN916</td>
<td>A</td>
</tr>
<tr>
<td>413005</td>
<td>LOCK DISC 4 DIN6799</td>
<td>A</td>
</tr>
<tr>
<td>420580</td>
<td>CYL-SCR M4X50 DIN912 TUFLOK</td>
<td>C</td>
</tr>
</tbody>
</table>

7.10.2 Function
- Carriers the Autoload and moves it in X-Direction
7.10.3 Replacement

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| DC Motor
P/N 173855 | Loosen Belt of secondary drive, disconnect DC Motor cable from Autoload PCB and then remove Primary Drive Assembly (3 screws M4 x 10, P/N 400640).
Loosen Belt of primary drive (2 screws M3 x 6, P/N 400653) and remove DC Motor from sheet metal |
| Primary drive belt
Cog belt MXL Z= 83 x 3/16"
P/N 258053 | See DC Motor |
| | Additionally loosen 2 set screws (P/N 405445) from big cock wheel, remove lock disc P/N 413005, then remove axle and large cog wheel. |
| Secondary drive belt
Cog belt SYN-FLEX 10 T2.5 3065
P/N 258134 | Loosen Belt secondary, and remove belt from Autoload drive claw. |
7.11 Insertion Guides

7 Segments of Insertion Guides are connected together. LEDs in the front display user where to load carrier.

2 Types of Insertion Guides are applicable:
- The one outermost right: Insertion Guide End P/N 173729 and
- 6 to the left: Insertion Guide P/N 173292

Both types of segments including:
- P/N 173300 disk (7x)
- Screw P/N 403452 (3x)

20 Microlab® STAR Instrument with Autoload Option only
7.11.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173292</td>
<td>INSERTION GUIDE</td>
<td>C</td>
</tr>
<tr>
<td>173293</td>
<td>STOP HOOK</td>
<td>A</td>
</tr>
<tr>
<td>173299</td>
<td>SHEET METAL</td>
<td>C</td>
</tr>
<tr>
<td>173300</td>
<td>DISK</td>
<td>A</td>
</tr>
<tr>
<td>173729</td>
<td>INSERTION GUIDE - END</td>
<td>C</td>
</tr>
<tr>
<td>173747</td>
<td>SPRING STRIP</td>
<td>C</td>
</tr>
<tr>
<td>173843</td>
<td>LOAD DISPLAY BOARD</td>
<td>B</td>
</tr>
<tr>
<td>400617</td>
<td>CYL-SCR M2.5X5 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>403452</td>
<td>SUNK SCREW M3X6 DIN7991</td>
<td>A</td>
</tr>
</tbody>
</table>

7.11.2 Function

- LEDs guide the user as to where to load carriers.
- Entry and exit positioning for carriers to be loaded and unloaded.

Bottom view:
- Load display board P/N 173843 (1x) is mounted with 3 screws P/N 400617.
- Sheet Metal P/N 173299 (1x)
- Stop Hook P/N 173293 (8x)

Not shown here is Spring Strip P/N 173747 which is mounted on Chassis and pushes the Stop Hooks up.

7.11.3 Replacement

- See section 7.10 Auto Load X-Drive on page 7-46. Due to its plug design, start removing from left to right.
- Replace Stop Hook by removing Load display board and sheet metal.
- Remove Load display board by loosening three screws and replace with a new one.
 Disk is located between Insertion Guides and Load display board.

Reassembly

Instructions are basically the reverse of those for disassembly.
7.12 Loading tray

Microlab® STAR Instrument with Autoload Option only

21 Microlab® STAR Instrument with Autoload Option only
7.12.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173600</td>
<td>SLIDE BLOCK</td>
<td>A</td>
</tr>
<tr>
<td>173602</td>
<td>SLIDE BLOCK WEDGE</td>
<td>A</td>
</tr>
<tr>
<td>173700</td>
<td>HOLDER W OVAL BORE</td>
<td>C</td>
</tr>
<tr>
<td>173701</td>
<td>HOLDER W ROUND BORE</td>
<td>C</td>
</tr>
<tr>
<td>182112</td>
<td>REPLACEMENT TABLE RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>182113</td>
<td>REPLACEMENT TABLE LEFT</td>
<td>C</td>
</tr>
<tr>
<td>400026</td>
<td>CYL-SCR M4X12 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>403453</td>
<td>C-SUNK SCR M3X8 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>403453</td>
<td>SUNK SCR M3X8 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>408006</td>
<td>HEX NUT M4 DIN934</td>
<td>A</td>
</tr>
</tbody>
</table>

7.12.2 Function

- holds carriers ready for transfer to Autoload.
- Positions carriers in relation to deck.

7.12.3 Replacement

Slide Blocks with Slide Blocks Wedges. See section 7.4.2 Deck Panels on page 7-7.
7.13 Additional Instrument Components

7.13.1 Tip Waste

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173736</td>
<td>TIP WASTE CONTAINER</td>
<td>C</td>
</tr>
<tr>
<td>173737</td>
<td>TIP WASTE LID</td>
<td>C</td>
</tr>
<tr>
<td>173738</td>
<td>TIP WASTE HANDLE</td>
<td>C</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5x12</td>
<td>A</td>
</tr>
</tbody>
</table>

7.13.2 Spillage Trays

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173195</td>
<td>SPILLAGE TRAY LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173196</td>
<td>SPILLAGE TRAY RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>147683</td>
<td>FAME AIR FILTER</td>
<td>B</td>
</tr>
<tr>
<td>148248</td>
<td>FAME VELCRO</td>
<td>B</td>
</tr>
</tbody>
</table>

7.13.3 Instrument Parts

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>281111</td>
<td>FOOT M10x50 W CAP</td>
<td>C</td>
</tr>
<tr>
<td>173508</td>
<td>STOP BAR</td>
<td>C</td>
</tr>
<tr>
<td>173509</td>
<td>FENDER BAR</td>
<td>C</td>
</tr>
</tbody>
</table>

7.13.4 Teaching Box

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173861</td>
<td>TEACHING BOX</td>
<td>C</td>
</tr>
</tbody>
</table>
Additional Instrument Components (continued)

7.13.5 Teaching Station

![Teaching Station Image]

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>182174</td>
<td>TEACHING STATION</td>
<td>C</td>
</tr>
<tr>
<td>182176</td>
<td>TEACHING NEEDLE</td>
<td>C</td>
</tr>
</tbody>
</table>

7.14 Accessories

Accessories such as Carriers, Disposables, Needles, etc. are described in User Manual.
8 Electronics

8.1 Overview

This section describes the electronics architecture and electrical Components such as PCBs and cables.

General note:
When removing PCBs such as Master-, Autoload, or Pipetting Channels, perform automatic adjustment according to section 6 Adjustment and Calibration on page 6-1.
8.1.1 Functional Overview
8.1.2 Functional Description

8.1.2.1 Interfaces:

- PC is User Interface. Either a RS 232 or an USB Interface connects PC to the Master PCB of ML STAR Instrument.
- Optionally, a teaching Box connected to the ML STAR Instrument may used as an additional User interface, when recognized by the User software (PC).
- Mains is connected to Power supply of ML STAR Instrument.

8.1.2.2 ML STAR Instrument communication architecture:

The Master-Slave architecture is designed as follows:

- The Master PCB controls its slaves which are Pipetting Arm X Movement (physically located on the Master PCB), Pipetting channels, Autoload PCB and ML STAR extensions.
- The Power supply provides power to connected modules such as Master PCB, Pipetting Arm, Pipetting channels, Autoload PCB and ML STAR extensions.

8.1.2.3 Firmware and Data

The following PCBs carry Flash Memory which contain the necessary Firmware.

- Master C0 Module on Master PCB
- The Pipetting Arm’s X Drive is the X0 Module which is a virtual slave on the Master PCB
 (Note: It does not have its own Flash Memory - it is controlled by the Master and therefore has no Firmware of its own).
- Pipetting Channel PX Module on Pipetting Channel PCB (X stands for the channel number)
 (Note: Pipetting Channel Board carries Flash Memory; Pipetting heads do not have Flash Memorys but are controlled by their associated Channel).
- Pipetting Heads are passive elements and have therefore no memory of their own.
- Autoload I0 Module on Autoload PCB.
- For Extensions, see chapter 11 ML STAR Extensions.
8.1.3 Boards Overview
8.1.4 Location of electronically components
8.1.4.1 Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>146242</td>
<td>FAME ELECTRONIC RACK FAN</td>
<td>C</td>
</tr>
<tr>
<td>173614</td>
<td>INTERFACE METAL PLATE</td>
<td>C</td>
</tr>
<tr>
<td>173835</td>
<td>POWER DISTRIBUTION BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173881</td>
<td>MASTER BOARD PROG</td>
<td>A</td>
</tr>
<tr>
<td>173882</td>
<td>AUTO LOAD BOARD PROG.</td>
<td>A</td>
</tr>
<tr>
<td>395023</td>
<td>LINE FILTER</td>
<td>B</td>
</tr>
<tr>
<td>396155</td>
<td>POWER SUPPLY 41V 600W</td>
<td>B</td>
</tr>
<tr>
<td>400640</td>
<td>CYL-SCR M4x10 DIN912 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>403606</td>
<td>C-SUNK SCR M3X8 DIN7991 A2 TUFLOK</td>
<td>A</td>
</tr>
</tbody>
</table>

Attention: when replacing a Master Board without an USB Interface, the Interface metal plate P/N 173614 must be ordered as well. This is because all Master PCBs contain RS 232 as well as USB COM Ports.

8.1.5 Covers over electronics

There are three covers, which protect the electronic components against any liquid which may drop from the deck if liquids are spilled.

The covers are over the Line filter, Master and Power compartment.

To stabilize them the self-adhesive gasket P/N 7369085 must be placed as shown over the covers (6 items, each 3 cm long).
Covers over electronics (continued)

To prevent any vibration of the covers, the bottom line of the Master and the power compartment cover must equipped with rubber edge protective strips (6 items, each 2 cm long).

3 rubber edge protective strips

3 rubber edge protective strips

Covers over electronics to prevent against liquid falling onto components.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173743</td>
<td>EL-COVER LINE FILTER</td>
<td>C</td>
</tr>
<tr>
<td>173748</td>
<td>EL-COVER MASTER</td>
<td>C</td>
</tr>
<tr>
<td>173750</td>
<td>EL-COVER POWER</td>
<td>C</td>
</tr>
<tr>
<td>7279443</td>
<td>EDGE PROTECTION SECTION</td>
<td>C</td>
</tr>
<tr>
<td>7369085</td>
<td>SELF ADHESIVE GASKIT</td>
<td>C</td>
</tr>
</tbody>
</table>
8.1.6 Node settings / Dip Switches

The node settings address multiple components / modules via the CAN Bus system.

<table>
<thead>
<tr>
<th>Node</th>
<th>Abbrev.</th>
<th>Name</th>
<th>Type</th>
<th>switch 1</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C0</td>
<td>Master</td>
<td>(b)</td>
<td>Off</td>
<td>Off Off Off Off Off</td>
</tr>
<tr>
<td>1</td>
<td>X0</td>
<td>X- Motor</td>
<td>(b)</td>
<td>Off</td>
<td>Off Off Off Off ON</td>
</tr>
<tr>
<td>2</td>
<td>I0</td>
<td>Auto Load</td>
<td>(b)</td>
<td>Off</td>
<td>Off Off ON Off Off</td>
</tr>
<tr>
<td>3</td>
<td>W1</td>
<td>Wash station 1-3</td>
<td>(b)</td>
<td>Off</td>
<td>Off Off ON ON Off</td>
</tr>
<tr>
<td>4</td>
<td>W2</td>
<td>Wash station 4-6</td>
<td>(b)</td>
<td>Off</td>
<td>Off ON Off Off Off</td>
</tr>
<tr>
<td>5</td>
<td>T1</td>
<td>Temperature carrier 1</td>
<td>(b)</td>
<td>Off</td>
<td>Off Off ON ON Off</td>
</tr>
<tr>
<td>6</td>
<td>T2</td>
<td>Temperature carrier 2</td>
<td>(b)</td>
<td>Off</td>
<td>Off ON ON Off Off</td>
</tr>
<tr>
<td>7</td>
<td>R0</td>
<td>iSwap</td>
<td>(b)</td>
<td>Off</td>
<td>Off Off ON ON ON</td>
</tr>
<tr>
<td>8</td>
<td>P1</td>
<td>Pipetting channel 1</td>
<td>(a)</td>
<td>Off</td>
<td>ON Off Off Off Off</td>
</tr>
<tr>
<td>9</td>
<td>P2</td>
<td>Pipetting channel 2</td>
<td>(a)</td>
<td>Off</td>
<td>ON Off Off Off ON</td>
</tr>
<tr>
<td>10</td>
<td>P3</td>
<td>Pipetting channel 3</td>
<td>(a)</td>
<td>Off</td>
<td>ON Off ON Off Off</td>
</tr>
<tr>
<td>11</td>
<td>P4</td>
<td>Pipetting channel 4</td>
<td>(a)</td>
<td>Off</td>
<td>ON Off ON ON Off</td>
</tr>
<tr>
<td>12</td>
<td>P5</td>
<td>Pipetting channel 5</td>
<td>(a)</td>
<td>Off</td>
<td>ON ON ON Off Off</td>
</tr>
<tr>
<td>13</td>
<td>P6</td>
<td>Pipetting channel 6</td>
<td>(a)</td>
<td>Off</td>
<td>ON ON ON Off ON</td>
</tr>
<tr>
<td>14</td>
<td>P7</td>
<td>Pipetting channel 7</td>
<td>(a)</td>
<td>Off</td>
<td>ON ON ON Off Off</td>
</tr>
<tr>
<td>15</td>
<td>P8</td>
<td>Pipetting channel 8</td>
<td>(a)</td>
<td>Off</td>
<td>ON ON ON ON ON</td>
</tr>
<tr>
<td>16</td>
<td>P9</td>
<td>Pipetting channel 9</td>
<td>(a)</td>
<td>ON</td>
<td>Off Off Off Off Off</td>
</tr>
<tr>
<td>17</td>
<td>PA</td>
<td>Pipetting channel 10</td>
<td>(a)</td>
<td>ON</td>
<td>Off Off Off Off ON</td>
</tr>
<tr>
<td>18</td>
<td>PB</td>
<td>Pipetting channel 11</td>
<td>(a)</td>
<td>ON</td>
<td>Off Off OFF ON Off</td>
</tr>
<tr>
<td>19</td>
<td>PC</td>
<td>Pipetting channel 12</td>
<td>(a)</td>
<td>ON</td>
<td>Off Off OFF ON ON</td>
</tr>
<tr>
<td>20</td>
<td>PD</td>
<td>Pipetting channel 13</td>
<td>(a)</td>
<td>ON</td>
<td>Off ON ON Off Off</td>
</tr>
<tr>
<td>21</td>
<td>PE</td>
<td>Pipetting channel 14</td>
<td>(a)</td>
<td>ON</td>
<td>Off ON ON Off Off</td>
</tr>
<tr>
<td>22</td>
<td>PF</td>
<td>Pipetting channel 15</td>
<td>(a)</td>
<td>ON</td>
<td>Off ON ON ON Off</td>
</tr>
<tr>
<td>23</td>
<td>PG</td>
<td>Pipetting channel 16</td>
<td>(a)</td>
<td>ON</td>
<td>Off ON ON ON ON</td>
</tr>
</tbody>
</table>

(a) The Pipetting channel is defined with Dip switch 6 where OFF = 300ul and ON = 1000ul.

(b) Not currently used.
8.2 Power

8.2.1 Function

- Provides the power needed to run the Microlab® STAR Instrument with all its applications.
- Through operation of the Net filter / Mains power switch the current is distributed to the Power Supply (Primary circle). On the secondary circle 41 V= are available.
- Feeds Current through the Power distribution board to all Modules
- Each Module has its own self-resetting Fuses (multi Fuses).
- The Master Board additionally generates 24V=. This is also distributed to specific Modules.
- Each Module then generates locally its own voltages depending on their necessary digital and analog circuits.

8.2.2 Power Components

- Line Filter P/N 395023
 - Function: Mains Cable Interface and Fuse
- Power supply P/N 396155
 - Function: transforms Alternating voltage 230 / 115 VAC to 41 VDC
- Power Distribution Board P/N 173835
 - Function: Distributes Power between Power Supply, Master Board, Pipetting Arm, and Autoload Board\(^\text{22}\).
- Extension PCB P/N 182805
 - Function: Cable Interface between Master PCB and Extensions such as Wash station and Temperature Controlled Carrier

\(^{22}\) Microlab®-STAR Instrument with Autoload Option only
8.2.3 Replacement

- Remove Left Deck Panel for access. See section 7.4.2 Deck Panels on page 7-7.

- Line Filter
 - Disconnect all cables, then unscrew Line Filter and replace.
 - Screw P/N 400301 3 x
 - Screw P/N 257062 2 x
 - Screw P/N 400301 2 x
 - Lock Disc P/N 411002 2 x

- Power supply:
 - Disconnect all cables, unscrew sheet metal from chassis, then unscrew Power supply from sheet metal and replace Power supply.
 - Screw P/N 400656 4 x
 - The sheet metal is mounted with Screw P/N 400301 4 x to Power supply

- Power Distribution Board
 - Disconnect all cables, then unscrew Power Distribution Board and replace Power Distribution Board.
 - Screw P/N 400656 6 x

- Extension PCB
 - Disconnect all cables, then unscrew Extension PCB and replace.
 - Screw P/N 403606 2 x

8.2.4 Reassembly

- Instructions are basically the reverse of those for disassembly.
8.2.5 Wiring Diagram Power / Master
8.3 Master

8.3.1 Function

- Controls such actions as:
 - Communication with PC
 - Communication with teaching box
 - Controlling Pipetting-Arm X-Movement
 - Controlling pipetting channels
 - Controlling Autoload Function
 - Controlling all extensions (e.g. iSwap, Wash station, Temperature-controlled carrier)
 - Storing Technical Status, Adjustment Values, Download Status, Cycle Counting and Firmware.

The Master ensures coordination and synchronization of all commands between Service and User software and the ML STAR Instrument.
8.3.2 Master Block Diagram
8.3.3 Replacement

- Remove Left Deck Panel to access Master Board, see section 7.4.2 Deck Panels on page 7-7.
- Before the Master Board is replaced, print a hard copy of all Data from the Board by using Service Software, and keep on file.
- Disconnect all cables and unscrew Master Board.
 Screw P/N 400656 5 x
 Screw P/N 400632 1 x
 INTERFACE METAL PLATE P/N 173614 1 x
 WASHER P/N 369026 1 x
 ISOLATING TAPE P/N 369061 1 x

8.3.4 Remounting:

- Instructions are basically the reverse of those for disassembly.
- By using Service Software
 - Data may restored (if copied from replaced Master PCB).
 - Check Master settings
 - Check for correct Firmware

8.3.5 Adjustment

- It is highly recommended that you run the autoadjustment (PIP AUTOADJUSTMENT.MCR) to generate new calibration values for X-Drive Pipetting Arm.
8.4 Pipetting Channel

8.4.1 Pipetting Channel Block Diagram
8.4.2 Pipetting Channel Wiring Diagram
8.4.3 Replacement

See section 7.7 Pipetting Channels on page 7-26.

- Before a Pipetting Channel is replaced, print a hardcopy of all Data from the Channel by using Service Software.

8.4.4 Remounting:

- Instructions are basically the reverse of those for replacement. See section 7.7 Pipetting Channels on page 7-26.
- With Service Software:
 - Check Pipetting Channel settings
 - Check for accurate Firmware

8.4.5 Adjustment

- It is absolutely necessary to run the PIP AUTOADJUSTMENT.MCR to generate new calibration values for the Pipetting Channel.

⚠️

Attention: Do not restore any Data to Pipetting Channel (if previously copied from replaced Pipetting Channel). The Calibration values are no longer valid since the Pipetting Channel is physically replaced by another one.
8.5 Autoload

8.5.1 Function

- Controls Autoload Function
- Stores Technical Status, Adjustment Values, Download Status, Cycle Counting and Firmware.

23 Microlab®-STAR Instrument with Autoload Option only
8.5.2 Autoload Block Diagram
8.5.3 Autoload Wiring Diagram
8.5.4 Replacement

- Remove Left Deck Panel to access Autoload Board, see section 7.4.2 Deck Panels on page 7-7.
- Before the Autoload Board is replaced, print a hardcopy of all Data from the Board by using Service Software.
- Disconnect all cables and unscrew Autoload Board. Screw P/N 400656 5 x

8.5.5 Remounting:

- Instructions are basically the reverse of those for disassembly.
- Data may restored (if copied from replaced Autoload PCB).
- With Service Software:
 - Check Autoload settings
 - Check for correct Firmware

8.5.6 Adjustment

- It is highly recommended that you run the AUTOLOAD AUTOADJUSTMENT.MCR to generate new calibration values for Autoload drive.
8.6 Cables
Cables are generally replaced in their previous position. If necessary fold the new cable to fit.

8.6.1 Location of cables
Refer to the block diagrams in this chapter.

8.6.2 Cables Part list

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>146355</td>
<td>CABLE W65</td>
<td>A</td>
</tr>
<tr>
<td>173817</td>
<td>CABLE X-ARM - PCHN BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173849</td>
<td>CABLE X-MOVEMENTS</td>
<td>A</td>
</tr>
<tr>
<td>173850</td>
<td>CABLE FILTER-POWER SUPPLY</td>
<td>A</td>
</tr>
<tr>
<td>173851</td>
<td>CABLE POWER SUPPLY-40VDC</td>
<td>A</td>
</tr>
<tr>
<td>173852</td>
<td>CABLE POWER SUPPLY-GND</td>
<td>A</td>
</tr>
<tr>
<td>173853</td>
<td>CABLE POWER-MASTER</td>
<td>A</td>
</tr>
<tr>
<td>173854</td>
<td>CABLE POWER-AUTO LOAD</td>
<td>A</td>
</tr>
<tr>
<td>173858</td>
<td>CABLE SSC</td>
<td>A</td>
</tr>
<tr>
<td>173863</td>
<td>CABLE DM X-DRIVE PIPETTING ARM</td>
<td>A</td>
</tr>
<tr>
<td>173890</td>
<td>CABLE POWER SUPPLY-EARTH</td>
<td>A</td>
</tr>
<tr>
<td>173891</td>
<td>CABLE EC AUTO LOAD X-POSITION</td>
<td>A</td>
</tr>
<tr>
<td>173898</td>
<td>CABLE RS232</td>
<td>A</td>
</tr>
<tr>
<td>173905</td>
<td>CABLE X-ARM CONNECTOR 8C</td>
<td>A</td>
</tr>
<tr>
<td>173906</td>
<td>CABLE X-ARM CONNECTOR 16C</td>
<td>A</td>
</tr>
<tr>
<td>173911</td>
<td>CABLE FILTER-EARTH</td>
<td>A</td>
</tr>
<tr>
<td>182820</td>
<td>CABLE MASTER-EXTENSIONS</td>
<td>A</td>
</tr>
<tr>
<td>355130</td>
<td>CABLE USB TYPE A-B 3M</td>
<td>A</td>
</tr>
</tbody>
</table>

Mains cables for different countries:

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>235062</td>
<td>POWER CABLE GB</td>
<td>C</td>
</tr>
<tr>
<td>355008</td>
<td>POWER CABLE SWISS</td>
<td>C</td>
</tr>
<tr>
<td>355009</td>
<td>POWER CABLE US</td>
<td>C</td>
</tr>
<tr>
<td>355010</td>
<td>POWER CABLE GERMANY, FRANCE</td>
<td>C</td>
</tr>
</tbody>
</table>
9 Maintenance

9.1 Overview

As well as the routine maintenance by the user (described in the User Manual), the Service Technician carries out an in-depth maintenance at least twice a year. This chapter provides a checklist of things to do as part of that in-depth maintenance.

Note: The preventive Maintenance for Microlab Star IVD Instruments must carried out every 6 months!

In order to ensure error-free operation of the instrument, the content of the maintenance and verification procedures, and the intervals at which these are to be carried out, must be adhered to, and the work must be documented.

⚠️

Attention: The preventive maintenance must only be done by an authorized Service Technician.

Service Technicians as well as laboratory personnel should be aware of the danger of infection where instruments are used to sample biohazardous materials. In such cases the instrument or parts of it are said to be contaminated. As Service Technician you should be aware if an instrument you are servicing has been contaminated in this way. Contaminated parts to be touched while repairing should be cleaned and sterilized – a precautionary measure of the greatest importance. Only after cleaning and disinfecting should repairs be carried out.

⚠️

Attention: Wear Gloves before repairing the Instrument and decontaminate Microlab® STAR prior to taking any action.

⚠️

Attention: before executing any preventive Maintenance empty and decontaminate deck panels.

⚠️

Attention: The following Parts may have sharp edges where infringements are possible when not enough attention is paid:

- Decks under side ➔ where slide Blocks are pushed through deck
- Electronic covers Cutaways ➔ above PCB’s, Fan, etc.
- Magnet Band edges ➔ Position Reader Pipetting Arm X-Drive
9.2 Items Needed

<table>
<thead>
<tr>
<th>Description</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microlab™ Detergent & Disinfectant Kit</td>
<td>281242</td>
</tr>
<tr>
<td>Microlab™ Disinfectant Spray Kit</td>
<td>281243</td>
</tr>
<tr>
<td>Microlab™ Disinfectant Starter Kit</td>
<td>281245</td>
</tr>
<tr>
<td>Service Kit Microlab® STAR:</td>
<td>173970</td>
</tr>
<tr>
<td>• Tools, e.g. Adjustment Tools</td>
<td></td>
</tr>
<tr>
<td>• Grease</td>
<td></td>
</tr>
<tr>
<td>• Cleaning Paper / Towels</td>
<td></td>
</tr>
<tr>
<td>Microlab™ STAR Verification Kit</td>
<td>182501 or 182502 with 182503 and 182506</td>
</tr>
</tbody>
</table>

9.2.1 Duration

For an 8-channel Microlab® STAR it will take approximately 4 to 6 hours to perform a complete maintenance as described below.

Refer to section 12.2.2 Maintenance Checklist on page 12-11 for a list of items which the Service Technician has to check on the instrument being serviced.

9.2.2 Tasks

Refer to section 9.5 Half-yearly Maintenance on page 9-5 for each Task that should be carried out.
9.3 Decontamination

Spray Carriers and Waste Station with Microlab™ Disinfectant and wipe them off. Clean Deck and loading trays24 the same way. Carefully clean Pipetting Heads (Tip Coupling, Ejection Tubes) with a cloth soaked with Microlab™ Disinfectant.

\textbf{Attention: Do not spray directly onto the Channels or inside the Pipetting Arm Cover as this may damage the Instrument.}

The Covers of the Microlab® STAR may by cleaned either by spraying MicrolabTM Disinfectant directly onto surfaces, or by wiping them with a cloth soaked with MicrolabTM Disinfectant.

\textbf{Attention: Transparent Covers will become stained and clouded if they come into contact with Liquids containing propyl alcohol.}

24 Microlab®-STAR Instrument with Autoload Option only
9.4 Lubrication

Generally: lubricate as sparingly as possible. Avoid the possibility of grease falling from the spindles as this can badly affect the samples.

Of Pipetting Heads:

- Dispensing Spindle
- Squeezer Spindle

However, only if squeezer nut is brass, otherwise do not lubricate!

Procedure is as follows: set the spindle moving up and down (using Service Software), then use a paper or cloth to wipe off old grease.

⚠️

Attention: Do not use any liquids such as Acetone or alcohols, as these may damage the Pipetting Head Housing.

⚠️

Attention: Touch Spindles gently!

Ensure spindles are completely dry, and then apply a thin layer of Topas Grease.
9.5 Half-yearly Maintenance

<table>
<thead>
<tr>
<th>Action</th>
<th>Available Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Decontaminate and clean exposed Surfaces</td>
<td>N/A</td>
</tr>
<tr>
<td>• Deck</td>
<td></td>
</tr>
<tr>
<td>• Docking Station</td>
<td></td>
</tr>
<tr>
<td>• Loading trays(^{25})</td>
<td></td>
</tr>
<tr>
<td>• Instrument Covers</td>
<td></td>
</tr>
<tr>
<td>• Pipetting Arm housing</td>
<td></td>
</tr>
<tr>
<td>• Autoload ribbon(^{26})</td>
<td></td>
</tr>
<tr>
<td>• Spillage Trays</td>
<td></td>
</tr>
<tr>
<td>• Air filter, replace if necessary.</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **Attention:**
- *Do not grease Y-Spindles Pipetting Arm*
- *Do not use any Cleaning liquids other than on Spindles to remove old grease. Avoid any contact with the CO-RE O-Ring as this may shorten its life span.*

2. Uncover Pipetting Arm	N/A
• Check Cable connections onto Pipetting Channels.	
• Check and clean Y- Spindle on Pipetting Arm. Spindle must not be greased at all. If needed, e.g. when step losses in Y occurs, Silicon oil may used to apply a thin layer onto the Y-Spindle.	

• Replace CO-RE O-Rings	
• Check Stop Disk(s)	
check for any scratches, blocked bore, or visible damage, and replace if such is the case.	
• Check Tip ejection Tube(s)	
check against contamination and damage. Ensure it glides smoothly.	

\(^{25}\) Microlab®-STAR Instrument with Autoload Option only

\(^{26}\) dito
Half-yearly Maintenance (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Available Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. On Pipetting Heads clean and only slightly grease:</td>
<td>Service Software: Single Commands or Movements Sensors</td>
</tr>
<tr>
<td>• Squeezer Spindle only with brass nuts</td>
<td></td>
</tr>
<tr>
<td>• Dispensing Spindle</td>
<td></td>
</tr>
<tr>
<td>5. Clean and slightly grease guide shafts:</td>
<td>Service Software: Single Commands or Movements Sensors</td>
</tr>
<tr>
<td>• X-Guide Pipetting Arm front and rear</td>
<td></td>
</tr>
<tr>
<td>• X-Guide Autoload(^{27})</td>
<td></td>
</tr>
<tr>
<td>6. Remove Deck Panels and check:</td>
<td>N/A</td>
</tr>
<tr>
<td>• For signs of liquid spillage underneath deck and inside electronic chamber.</td>
<td></td>
</tr>
<tr>
<td>• If necessary: decontaminate and clean surfaces of deck underneath and electronic chamber cover.</td>
<td></td>
</tr>
<tr>
<td>• Clean Flat Band Cables Groove and ensure collision free movement of Flat Band Cables.</td>
<td></td>
</tr>
<tr>
<td>• All belts, drives and cables for any damage - or loose screws</td>
<td></td>
</tr>
<tr>
<td>• Distance of X-measurement Reader on Pipetting Arm to magnetic Band</td>
<td></td>
</tr>
<tr>
<td>7. Remove Autoload ribbon(^{28}) and check:</td>
<td>N/A</td>
</tr>
<tr>
<td>• For signs of liquid spillage underneath.</td>
<td></td>
</tr>
<tr>
<td>• If necessary: decontaminate and clean surfaces of Autoload ribbon underneath.</td>
<td></td>
</tr>
<tr>
<td>• Clean Flat Band Cables Groove and ensure collision free movement of Flat Band Cables.</td>
<td></td>
</tr>
<tr>
<td>• All belts, drives and cables for any damage, or loose screws.</td>
<td></td>
</tr>
</tbody>
</table>

\(^{27}\) Microlab®-STAR Instrument with Autoload Option only
\(^{28}\) dito
Half-yearly Maintenance (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Available Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Recover:</td>
<td>N/A</td>
</tr>
<tr>
<td>• Autoload ribbon(^{29})</td>
<td></td>
</tr>
<tr>
<td>• Deck Panels</td>
<td></td>
</tr>
<tr>
<td>• Pipetting Arm</td>
<td></td>
</tr>
<tr>
<td>9. Check and Adjust:</td>
<td>N/A</td>
</tr>
<tr>
<td>• Pipetting Arm</td>
<td>Adjustment is done in accordance with section 6 Adjustment and Calibration on page 6-1.</td>
</tr>
<tr>
<td>• Pipetting Channels</td>
<td>Verification Program</td>
</tr>
<tr>
<td>• Autoload(^{30})</td>
<td></td>
</tr>
<tr>
<td>• Verify instrument with verification kit</td>
<td></td>
</tr>
<tr>
<td>• Perform a test run</td>
<td></td>
</tr>
<tr>
<td>10. Check all available Carriers:</td>
<td>N/A</td>
</tr>
<tr>
<td>• For signs of liquid spillage and damage</td>
<td></td>
</tr>
<tr>
<td>• If necessary: decontaminate and clean Carriers.</td>
<td></td>
</tr>
<tr>
<td>• Ensure smooth gliding on Deck Panels and Loading Trays.</td>
<td></td>
</tr>
<tr>
<td>• Replace damaged carriers.</td>
<td></td>
</tr>
<tr>
<td>11. Check Needles if available:</td>
<td>N/A</td>
</tr>
<tr>
<td>• For signs of damage.</td>
<td></td>
</tr>
<tr>
<td>• If necessary: decontaminate and clean Needles</td>
<td></td>
</tr>
<tr>
<td>• Replace damaged Needles</td>
<td></td>
</tr>
</tbody>
</table>

Attention: Items for ML STAR and ML STAR IVD may vary, therefore ensure correct parts are being used on the Instrument.

\(^{29}\) Microlab\(^{®}\)-STAR Instrument with Autoload Option only
\(^{30}\) dito
Half-yearly Maintenance (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Available Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Removal of old files</td>
<td>N/A</td>
</tr>
<tr>
<td>• Together with the Laboratory Supervisor check for trace files which may deleted from the Operating PC.</td>
<td></td>
</tr>
<tr>
<td>• Check for Traces files such as method / system trace files communication trace files</td>
<td></td>
</tr>
<tr>
<td>• Check for old methods which may be removed from PC</td>
<td></td>
</tr>
<tr>
<td>• Back them up if necessary, else delete</td>
<td></td>
</tr>
<tr>
<td>• Check for available disk space onto hard drive, 500 MB minimum are needed</td>
<td></td>
</tr>
</tbody>
</table>

ML STAR IVD additionally:

<table>
<thead>
<tr>
<th></th>
<th>Maintenance Procedure according to ML STAR IVD Operators Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>Test tightness of seal for all Pipetting Heads.</td>
</tr>
<tr>
<td>14.</td>
<td>Check the pressure adjustment values of TADM.</td>
</tr>
</tbody>
</table>
10 Troubleshooting and Error Handling

10.1 Overview

This chapter is about how to respond to problems and errors identified by the software which the user himself cannot resolve. The solution of the problem may require the Service Technician to open up a component of the instrument.

This chapter takes the form of a list of such errors, and instructions how to handle them.

Problems reported by the User Software

See User Manual. It contains all software-reported problems that the user himself cannot solve. In the User Manual, the user is instructed to make a service call whenever one of these problems occurs and there is not an obvious solution he can implement himself. The last column, recommended action, is the action to be taken by the Service Technician when called in by the user.

10.1.1 Version Information

For User Software a Version Info Program will be found on START ➔ Programs ➔ HAMILTON ➔ Version Info

For Service Software see section 3.3 Help Menu on page 3-6.

10.2 Trace Files

Trace Files can be of great help to the Service Technician with error investigation. Typically when an undetected error occurs on the customer site - e.g. a damaged or contaminated tip ejection tube which hinders a proper functioning of the Tip presence sensor - checking these Files first for possible Hardware errors may help to solve the problem very quickly. 2 Types of trace files are available:

10.2.1 Communication Trace files

A record of every single Firmware command sent to - and acknowledged by - the ML Star Instrument.

Every Day when any method is started, a new Trace File is created and named for the current day; it will be found in C:\ Program Files \ HAMILTON \ Logfiles \.

E.g. 20010112.trc which is the date format JJJJMMDD, 12th of January 2001
10.2.2 System Trace files

A record of every step in the method executed, from information supplied by the run editor.

Each Method started creates a Trace File which is named with the name of the Method plus the extension "trc". It will be found in C:\Program Files \ HAMILTON \ Methods \ *.trc

Example: If Method name is "DNASEC", Trace File will appear as "DNASEC.trc"

Every time the Method is started, an already existing Trace file will be opened (otherwise it will be created) and information will be appended to the last entries. Accordingly, it may be helpful to delete Trace files from time to time simply to avoid large files on the hard drive.

10.2.3 Investigation of Errors with Trace files

When an Error with the instrument has occurred Open the COM Trace - e.g. ComTrace20010612.trc (a file from the 12th June 2001) - with an Editor e.g. NotePad.

Due to the Master-Slave Architecture always search for "er99" which indicates an SLAVE error. However, every possible Error reported by the Firmware may be found this way.

Refer also to section 12.4.3.2 X0 Module Command Specification on page 12-21 for further information.
Investigation of Errors with Trace files (continued):

Focusing on the highlighted section of the above window, we can see the following:

<table>
<thead>
<tr>
<th>As seen from the editor</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 16:36:28.976 8AF#8000#00: C0DIid0046xp13400&yp4050 3925 3800 3675 3550 3425 3300 3175 3050 2925 2800 2675 2550 2425 2300 2175tp1970tz1870te2450tm1&</td>
<td>Command from PC to Instrument: C0DI a typical Initialize command</td>
</tr>
<tr>
<td>< 16:36:35.395 8AF#8000#00: C0HDid0047</td>
<td>Command from PC to Instrument: C0HD</td>
</tr>
<tr>
<td>> 16:36:35.405 8AF#8000#00: C0HDid0047er00/00</td>
<td>Return Message from Instrument to PC: C0HDid0047er00/00</td>
</tr>
<tr>
<td>> 16:36:44.638 8AF#8000#00: C0DIid0046er99/00 X003/00</td>
<td>Return Message from Instrument to PC: C0DIid0046er99/00 X003/00</td>
</tr>
</tbody>
</table>

Note: Always check for the complete command, which may include several lines in the Trace File Editor, to gather all information.

In this case the Master (C0) has sent a general Initialize Command (DI) for his Slaves (refer to Firmware reference Guide "Command Specifications Master Module").

Disregard any Identification Number e.g. id0081

While initializing a Halt command has been sent, which interrupted the initialize command.

The Slave is Pipetting Arm X Drive (X0) with Error 03 which is "Command not completed" (refer to Firmware reference Guide "Command Specifications X0 Module").

In this case the method could have been aborted by the user e.g. by selecting the ABORT Button in the Run Screen, or by opening the front window while running the method, which has the same effect.

This Information could be found in the System Trace File, by checking the same time, when the Error occurred.
10.3 Error Handling

The following listing of activities will help you to locate defective parts. It is recommended that Service Technicians make an in-depth examination of the assemblies before replacing any parts.

Also, check the Versions of Firmware, Adjustment Macro Programs, Service – and User Software. Ensure the latest / current Versions are being used!

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No communication</td>
<td>1. Check if Power switch is on</td>
</tr>
<tr>
<td></td>
<td>Listen for the Fan working inside Microlab® STAR instrument.</td>
</tr>
<tr>
<td></td>
<td>2. Check Power - and Interface Cables, Fuses (e.g. does the PC work on the same electrical outlet?). Are all cables plugged in correctly? Cables may not be damaged (e.g. broken lines)!</td>
</tr>
<tr>
<td></td>
<td>3. Check the COM Port in the Configuration Settings in Service and User Software and physically on the PC. Is USB being used or the RS 232 Interface?</td>
</tr>
<tr>
<td></td>
<td>4. If RS 2323 Interface is being used:</td>
</tr>
<tr>
<td></td>
<td>Is the original Microlab® STAR Interface Cable being used (RS 232)? Check the Lines according to section 4.2.3 Hooking up the instrument on page 4-10.</td>
</tr>
<tr>
<td></td>
<td>5. If USB Interface is being used:</td>
</tr>
<tr>
<td></td>
<td>Check USB Controller in the Add / Remove Hardware Wizard (start settings control panel) You may delete the ML STAR USB driver, switch then off and on again the ML STAR Instrument. The System is then looking automatically for the appropriate driver.</td>
</tr>
<tr>
<td>Incident</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| No communication | 6. Compare physical Configuration with settings first in Service and then in user Software.
7. Switch off ML STAR Instrument and shut down Service Software. Then restart service software and switch on Instrument.
8. Replace Master PCB P/N 173881 After replacement, remember to check Firmware Versions and perform Auto-adjustments. |
| Flash Memory errors | 1. Switch ML STAR Instrument off and on.
2. Check for correct node settings (dip switches)
3. Start Download again if need be.
4. Check all cables are plugged in properly
5. Perform Auto Adjustment, then switch off ML STAR Instrument, shut down Service Software and wait at least 10 sec. Then switch on ML STAR Instrument and start up Service Software.
6. Start Download again if need be.
7. Switch off ML STAR Instrument, shut down Service Software and wait at least 10 sec. Then switch on ML STAR Instrument and start up Service Software.
8. The EPROM is defective. Assembly (e.g. PCB, or Channel) where Flash Eprom is built in must be replaced. |
| E²EPROM errors | 1. Ensure all Parameters are defined such as cycles, adjustment status, technical status, etc |
| Flash EPROM, E²EPROM errors (typically after download of new firmware) | 1. Run Macro “SET_EEPROM_PX_DATA.MCR”. |
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash EPROM, E²EPROM errors (typically after download of new firmware)</td>
<td>1. Run Macro “SET_EEPROM_I0_DATA.MCR”.</td>
</tr>
<tr>
<td>Autoload Drive:</td>
<td></td>
</tr>
<tr>
<td>Flash EPROM, E²EPROM errors</td>
<td>After running of the above mentioned Macros switch ML STAR Instrument OFF and then ON!</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>Method on PC runs without any action on instrument</td>
<td>1. Check Configuration Settings in user Software and switch from simulation to instrument mode</td>
</tr>
<tr>
<td>Configuration mismatch on starting any method</td>
<td>1. Check the physical Configuration of Microlab® STAR instrument: Autoload, number of channels, channel type, etc.</td>
</tr>
<tr>
<td></td>
<td>2. Compare physical Configuration with settings first in Service and then in user Software.</td>
</tr>
</tbody>
</table>
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipetting Arm Step Loss</td>
<td>1. Ensure no crash has caused the Pipetting Arm to lose steps, e.g. a crash involving Pipetting Channels and Carriers.</td>
</tr>
<tr>
<td></td>
<td>2. Ensure the Pipetting Arm Cover is not touching the Front guide Bar anywhere.</td>
</tr>
<tr>
<td></td>
<td>3. Uncover Deck Panels see section 7.4.2 Deck Panels on page 7-7.</td>
</tr>
<tr>
<td></td>
<td>4. Check X-Motor and Belt Tensions.</td>
</tr>
<tr>
<td></td>
<td>5. Especially the Belt from the primary Drive must not be damaged. Check for signs of anything worn out, broken inlays, teeth, etc.</td>
</tr>
<tr>
<td></td>
<td>6. Ensure proper collision-free movement by carefully pushing the Pipetting Arm by hand all the way from the left to the right.</td>
</tr>
<tr>
<td></td>
<td>7. Ensure the X-Position Reader is not touching the Magnetic band anywhere, see section 7.6 Pipetting Arm X-Drive on page 7-23.</td>
</tr>
<tr>
<td></td>
<td>8. Check the gap between Reader and Magnetic Band.</td>
</tr>
<tr>
<td></td>
<td>9. Ensure the X-Flag (black sheet-metal cover) is not loose; tighten the screws if necessary.</td>
</tr>
<tr>
<td></td>
<td>10. Check tightness of fit between X drive belt and Pipetting Arm (check for loose screws).</td>
</tr>
<tr>
<td></td>
<td>11. Check Cables to pipetting Arm for any signs of damage or disconnection.</td>
</tr>
<tr>
<td></td>
<td>12. By using Service Software; Check Init Sensor movement, check voltage, check Hardware positioning counter.</td>
</tr>
<tr>
<td></td>
<td>13. Perform a Pipetting Arm Auto-adjustment</td>
</tr>
</tbody>
</table>
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipetting Channels Step loss.</td>
<td>In General, try to run the specific drive with service software to determine the degree of malfunction.</td>
</tr>
<tr>
<td>Dispensing Drive:</td>
<td>1. Ensure the Pipetting Head fixing screws are mounted with the exact torque tension defined in section 7.8 Pipetting Heads on page 7-32.</td>
</tr>
<tr>
<td></td>
<td>2. Clean Dispensing Spindle by removing all old grease, and slightly grease it with new grease.</td>
</tr>
<tr>
<td></td>
<td>3. By using Movement Sensors / Pipetting Channel Menu from Service Software, perform a whole stroke run-in (approx. 10 times).</td>
</tr>
<tr>
<td></td>
<td>Use Service Software CONTROL ==> MOVEMENTS/SENSORS ==> PIPETTING CHANNEL and RUN in Dispensing Drive from corresponding Channel</td>
</tr>
<tr>
<td></td>
<td>4. If dispensing Drive is blocked at its lower end: Dispensing Spindle is not visible, the spindle is down - then send single command: P#DSds00500dv05000dr200dw7dt0</td>
</tr>
<tr>
<td></td>
<td>The Spindle must come up, otherwise no recovery is possible.</td>
</tr>
<tr>
<td></td>
<td>Note: when the Spindle is down, not visible, then parameter “dt0” must be used.</td>
</tr>
<tr>
<td></td>
<td>5. If dispensing Drive is blocked on its upper end: Dispensing Spindle is visible, the spindle is up - then send single command: P#DSds00500dt1dv05000dr200dw7</td>
</tr>
<tr>
<td></td>
<td>The Spindle must go down, otherwise no recovery is possible.</td>
</tr>
<tr>
<td></td>
<td>Note: when the Spindle is up, visible, then parameter “dt1” must be used.</td>
</tr>
<tr>
<td></td>
<td>6. After sending these commands use P#AI which resets the Firmware to its default values - this is absolutely necessary.</td>
</tr>
<tr>
<td></td>
<td>7. If no improvement, replace Pipetting Head.</td>
</tr>
</tbody>
</table>
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipetting Channels Step loss.</td>
<td>Squeezer Drive: 1. Clean Dispensing Spindle by removing all old grease and slightly grease it with new grease. Using Movement Sensors Menu from Service Software, perform a whole stroke run-in (approx. 10 times). Perform an Auto-adjustment. If no improvement, replace Pipetting Head</td>
</tr>
<tr>
<td>Z-movement:</td>
<td>1. Ensure no crash has caused the Pipetting Channel to lose steps, e.g. a crash involving Pipetting Channels and Carriers / Labware.</td>
</tr>
<tr>
<td></td>
<td>2. Check if the Spring is still in place (e.g. after transportation).</td>
</tr>
<tr>
<td></td>
<td>3. Check if the Belt is still in place.</td>
</tr>
<tr>
<td></td>
<td>4. Check all the cable connections of the channel, focussing on z-motor cable.</td>
</tr>
<tr>
<td></td>
<td>5. Check the z movement manually by gently pushing or pulling the Channel up or down. Do not forget to switch off current to z motor beforehand.</td>
</tr>
<tr>
<td></td>
<td>6. In the absence of visible Hardware collision with other components, no corrective action is possible and the Channel must be replaced.</td>
</tr>
</tbody>
</table>
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-Movement:</td>
<td>1. Check visually the elastic sheet metal holding the Y-Motor Drive. The Y-Nut Bore must be rectangular to the Channel (no signs of bending). A bent sheet metal indicates too much friction between Y-Spindle and nut which may lead to steps lost.</td>
</tr>
<tr>
<td></td>
<td>2. The Y-Motor metal plate nose must fit into the groove. If not, too much friction between Y-Spindle and Nut which may lead to step lost.</td>
</tr>
<tr>
<td></td>
<td>3. Check if the Belt is still in place.</td>
</tr>
<tr>
<td></td>
<td>4. Check all the cable connections of the channel, focussing on y-motor cable.</td>
</tr>
<tr>
<td></td>
<td>5. Perform an Auto-adjustment and check visually the linearity of all Channels. Turning the Y-Motor by hand, no hardware-based friction is recognized e.g. signs of damaged bearing, broken parts inside etc. (except the electromechanical resistant).</td>
</tr>
<tr>
<td></td>
<td>If no improvement, check Y-Spindle for possible damage and replace Channel. Decide if Y-Spindle should be replaced as well</td>
</tr>
<tr>
<td>Pipetting Head loss of seal</td>
<td>1. Ensure Stop Disk has no scratches - the smallest scratches may lead to an loss of seal. If there are scratches, replace Stop Disk.</td>
</tr>
<tr>
<td></td>
<td>2. Check CO-RE O-Ring for signs of wear and tear. Black abrasions may be found around O-Ring and Stop disk - if so replace O-Ring.</td>
</tr>
</tbody>
</table>
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
</table>
| Pipetting Head cLLD problems | 1. Ensure conductive liquid is used.
2. Run the PIP AUTOADJUSTMENT.MCR
3. Check if the O-Ring is squeezed when the program is started.
4. Using Service Software
 1. squeeze CO-RE O-Ring: menu ➔ movements sensors ➔ pipetting channels ➔ squeezer drive.
 2. perform a cLLD measurement: menu ➔ control ➔ single commands, send PXALal1lc0, then connect stop disk of Pipetting Channel X with ground for a short moment (e.g. use a conductive cable between stop disk and deck). Then send command PXRN, the response should then be PXRNid####rn1 ==> LLD detected.
 3. If it is PXRNid####rn0 then the Squeezer does not squeeze enough, or the O-ring may be worn out, or else the pipetting head or Channel is defective.
 4. Switch Pipetting Heads and repeat procedure. If this eliminates the problem on that specific position, replace the Pipetting Head. If no Improvement, it may indicate that the Channel is defective and must be replaced. |
| Pipetting Head pLLD problems | 1. Ensure disposables Tips are not being reused.
2. Run a method with a Tip pickup, an aspirating step and Tip eject. Check then the LLD Trace files from Service Software.
3. Switch Pipetting Heads and repeat procedure. If this eliminates the problem on that specific position, replace the Pipetting Head. If no Improvement, it may indicate that the Channel is defective and must be replaced. |
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipetting outside volume specifications</td>
<td>1. Run Volume Verification</td>
</tr>
<tr>
<td>Autoload Step loss</td>
<td>In General, try to run the specific drive with service software to determine the degree of malfunction.</td>
</tr>
<tr>
<td></td>
<td>1. Ensure Deck, Carriers and Slide Blocks are not contaminated. Clean them if necessary</td>
</tr>
<tr>
<td></td>
<td>2. Check for damaged Slide Blocks on Deck and loading trays and replace them if necessary</td>
</tr>
<tr>
<td></td>
<td>3. Load and unload Carriers (move them by Hand). Check that they glide smoothly. Clean the guides of Carriers.</td>
</tr>
<tr>
<td></td>
<td>4. Replace those Carriers which don't move smoothly.</td>
</tr>
<tr>
<td></td>
<td>5. Check Synchronisation of both Cog Wheels</td>
</tr>
<tr>
<td></td>
<td>6. Perform an Autoload Auto-adjustment</td>
</tr>
<tr>
<td>Autoload rattles, sticks and slips while loading carriers</td>
<td>Generally see Autoload Step loss</td>
</tr>
<tr>
<td></td>
<td>1. Lower calibration value of Z-Drive Autoload Use Service Software Menu "Settings" "Inst. Configuration" "read Instrument data" and change existing Carrier Z value. E.g. current Carrier Z value is –037, change to –057. Keep lowering until improvement.</td>
</tr>
<tr>
<td></td>
<td>2. Shift the cogwheel angle position forwards or backwards, whatever suits better. E.g. current Carrier Y value is +003 +8913, change to +006 +8913. Keep shifting until improvement. 1st Value defines angle position of Cogwheel. 2nd Value defines the number of steps to load a carrier</td>
</tr>
</tbody>
</table>
Error Handling (continued)

<table>
<thead>
<tr>
<th>Incident</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode reading Problems</td>
<td>1. Ensure all Barcode Specifications are met according to technical Specifications in User Manual. E.g. print contrast signal, density of barcode, code type, quiet zone, label position on tubes and plates etc.</td>
</tr>
<tr>
<td></td>
<td>2. Check Barcode Reader settings in User Software.</td>
</tr>
<tr>
<td></td>
<td>3. Perform an Autoload Adjustment, answer “Would you like to setup the barcode scanner parameters?” with yes and check the laser beam positions with the autoload sensors adjustment tool.</td>
</tr>
<tr>
<td></td>
<td>4. Ensure no external light source is affecting the Barcode Reader while it is reading barcodes.</td>
</tr>
<tr>
<td></td>
<td>5. If no improvement, replace Barcode reader</td>
</tr>
<tr>
<td>No Carrier Presence detected</td>
<td>1. Carriers do not move completely to carrier Stop. Perform an autoload adjustment.</td>
</tr>
<tr>
<td></td>
<td>2. Carrier’s Magnet is defective, broken, wrongly mounted, or lost. Replace Carrier.</td>
</tr>
<tr>
<td></td>
<td>3. The Carrier Sensor Board is defective. Check for loose Plugs in any of the 7 segments and replace.</td>
</tr>
</tbody>
</table>

10.4 Firmware Error Codes

See section 12.4.3 Firmware Reference Guides on page 12-19 ff. for the firmware error codes.
11 ML STAR Extensions

Here the ML STAR Extensions Manual may be filed.
12 Appendices

Generally: Copy checklist lists and forms for multiple use

12.1 Appendix A

12.1.1 Glossary

Access Right
the specific permission needed by a user to carry out a certain function with the ML STAR software.

Accuracy
a quality which characterises the closeness of an indicated value of a measuring instrument to the corresponding true value

Adjustment
Detailed positional setting for the hardware

Alignment
the condition of being in satisfactory adjustment and having the parts in proper relative position.

Aspirate
Aspirate is the activity of sucking up liquid by a pipetting device.

Autoload
Autoload is an assembly enabling automatic loading and identification of carriers onto the Microlab® STAR.

Autoload tray Hardware unit. On it the carriers can be placed and held outside the Microlab STAR IVD. The loading tray is attached to the Microlab STAR IVD, to support the automatic loading and unloading process.

AVS
Automated Vacuum System.

Barcode Mask
The barcode mask defines the basic structure of a barcode. It is a pattern to which a barcode must conform. The assignment of a specific labware item can be done this way. The barcode mask can require a barcode to contain specific strings at fixed positions. It can contain wildcards, too.

Barcode Reader
Part of the Autoload unit.

Calibration
all operations for the purpose of determining the values of a deviation from a theoretical axis.
Glossary (continued)

Carrier
A carrier is a template describing a discrete number of positions for locating labware items such as racks or containers.
A carrier is the only labware item that can be placed directly on the deck.

Container
A container is a vessel for holding fluid, including tubes, microwells, reagent containers, etc.

Container identification
Barcode for identification of containers. Serves for unambiguous identification of the vessel, e.g. a sample test tube.

CO-RE
Compression induced O-Ring Expansion.

Cover
The cover shelters the whole Microlab® STAR, leaving user access for loading and unloading of the racks onto their respective carriers. All activities must be suspended before the cover is opened. The cover should always be closed while the Microlab® STAR is in use.

Deck
The deck is the physical work surface used by the Microlab® STAR. It includes discrete bounded sites for locating carriers.

Dispense
To distribute quantities of liquid from a pipetting device.

EEPROM
also known as E²PROM. Non volatile ROM for non volatile Data.

Firmware
Programs (sequences of commands) which are carried out on the processors of the Microlab STAR.

Flash Memory
Code Memory

FW
Firmware

Front, Side and Rear Windows
Covering for the Microlab STAR IVD in such a way that it is shielded from user intervention. At the same time, it protects the user from the movements of the Microlab STAR. It is made of transparent plexiglass.

GLP
Good Laboratory Practice

GUID
Globally unique identifier.
Glossary (continued)

Hardware error
Type of error which depends exclusively on faulty functioning of the hardware.

HSL
HAMILTON Standard Language.

Instrument
Hardware of the Microlab STAR (Mechanics, Electronics, and Firmware).

IVD
In vitro diagnostic

iSwap
Internal Swivel Arm Plate Handler. Is a mechanical device that can pick up, hold, and release microtiterplates, and that can transfer them between different locations on the deck of the Microlab® STAR.

Labware
Refers to movable items to be placed on the Microlab STAR IVD deck, such as carriers, containers, or racks.

LED
Light Emitting Diode.

LIMS
Higher-level data processing system, generally known as Laboratory Information Management System, also LMS.

Liquid
Includes all kinds of liquids, among which are included reagents, controls, standards.

LLD
Liquid Level Detection. Detection of liquid surface which may be achieved either by pressure or capacitive signal detection.

Loading, unloading
The process by which carriers are brought on to the work surface of the Microlab STAR. This happens automatically by means of the Autoload unit.

Method
The method contains all instructions as to how the content of the source vessels is to be processed. The assignment of the vessels to positions happens "virtually", however, in the deck layout definition.

MAD
Monitored Air displacement, means Aspiration is monitored

Microlab STAR
The Microlab STAR instrument with pipetting arm, deck Autoload and optional extensions such as iSwap, Washing Station, and temperature-controlled Carrier. The Number of Pipetting Channels may vary from 4 up to 16.
Glossary (continued)

Microlab STAR IVD
The Microlab STAR IVD has additionally to the Microlab STAR instrument e.g. a locked front window, a panel in the back, a different waste station, either 8 or 12 Pipetting Channels and special carriers. It runs only with the IVD User Software.

ML STAR software
user software which controls the Microlab STAR instrument.

ML STAR IVD software
user software which controls the Microlab STAR IVD instrument.

MTP
Microtiter plate. The terms 'Microplate' and 'Microtiter plate (MTP)' mean the same and are also referred to simply as 'plate'. In general we assume a plate with 96 wells (8 x 12).

Pause
Interuption of processing. The current processing steps are completed. The processing can be continued.

PC
Personal Computer.

Pipetting
Transfer of liquids from one container to another.

Pipetting arm
Assembly consisting of pipetting channels, as well as the common X-drive and arm housing.

Pipetting channel
Hardware part, which moves onto pipetting arm in Y- and Z-direction and carries pipetting head.

Pipetting head
Pipetting device on pipetting channel.

P/N
Part Number.

Programmer
The user programming the methods for the Microlab STAR IVD instrument. Precision repeatability and reproducibility of e.g. Pipetting

Rack
A rack is a template describing a discrete number of positions for the containment of containers or tips. Examples of racks include a tube rack, a microtiter plate, a microtiter strip, a deep-well plate, and tip racks.
Glossary (continued)

Rack identification
Barcode for rack identification.

Sample
Refers to a liquid in an unambiguously identified container which is to be processed.

Service Technician
Trained and authorized service engineer.

STAR
Sequential Transfer and Aliquoting Robot.

The System
Refers to the Microlab STAR instrument together with the PC running the ML STAR software and the serial cable connecting the two together.

SSW
Service Software

TADM
Total Aspiration and Dispense Monitoring.

Tip
Disposable tip for dispensing.

Tip rack
Frame that holds tips together; used to store a set of tips for access by pipetting channel.

Tip waste station
An opening in the Microlab STAR deck to direct used disposable tips via a plastic chute into a laboratory-supplied waste container below the working area.

Trace
Note of a status during a processing.

Tube
A tube is a narrow container for liquid, usually showing a circular cross-section, and a cylindrical length-section.

User
The user actually operating the Microlab STAR instrument and the ML STAR software.

USW
User Software

Verification Kit
Aid to check the functions of the Microlab STAR IVD.
Glossary (continued)

Waste Container
The Waste Container is a device on the Microlab® STAR deck to collect used disposable tips.

Well
The individual hollow in the MTP.

Well type
Geometrical shape of the well, such as U, V, or flat.

Work area
The area on the Microlab STAR IVD, to which access is provided during processing. Elements to be pipetted can be placed in this area.

Work list
Information sent from outside the system, as to what method(s) is or are to be executed on the Microlab STAR IVD, and with what liquid.
12.2 Appendix B

12.2.1 Installation Qualification

12.2.1.1 IQ Microlab STAR

Table: Microlab STAR Installation Qualification (IQ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer:</td>
<td>Contact Person:</td>
<td>Phone:</td>
</tr>
<tr>
<td></td>
<td>Fax:</td>
<td>e-Mail:</td>
</tr>
<tr>
<td>Service Organization:</td>
<td>Contact Person:</td>
<td>Phone:</td>
</tr>
<tr>
<td></td>
<td>Fax:</td>
<td>e-Mail:</td>
</tr>
<tr>
<td>ML STAR Software Version:</td>
<td>Extensions Serial #:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVG:</td>
<td>WS 1:</td>
</tr>
<tr>
<td></td>
<td>ISWAP:</td>
<td>WS 2:</td>
</tr>
<tr>
<td>Serial #:</td>
<td>TCC 1:</td>
<td></td>
</tr>
<tr>
<td>Instrument:</td>
<td>TCC 2:</td>
<td></td>
</tr>
</tbody>
</table>

Always wear required personal protection equipment!

Work Place Environment
- Inspect workplace environment for accordance to technical specifications.
- Inspect table or workbench for supporting the weight of the Microlab STAR and providing the minimum space needed.

Unpacking the Instrument
- Inspect instrument and accessories for shipping damage or missing parts.
- Use packing list to verify contents. If any items are missing, contact Customer Service.

Hooking up the Instrument
- Set up the instrument.
- Connect communication and power cables.
 - If included, inspect/install extensions:
 - ISWAP: Yes [] No []
 - AVS: Yes [] No []
 - TCC(s): Yes [] No []
 - WS(s): Yes [] No []
- Recommended Uninterruptible Power Supply (UPS) installed? Yes [] No []

Software Installation
- ML STAR software.
- Service software.
- Labware definitions of carriers.
- Remote access? Yes [] No []

Instrument Check Procedure
- Perform instrument check procedure.
- Verification
 - Volume.
 - Print out verification reports.
- Service Software
 - Print out instrument configuration.
 - Un-install service software.
- Documentation
 - Attach instrument configuration and verification reports to this IQ form.

Customer Summary
- Explain how to request technical and service assistance.
- Address any other concerns.

Comments

Customer Acceptance

<table>
<thead>
<tr>
<th>Date</th>
<th>Installed by</th>
</tr>
</thead>
</table>

P/N 61001100

HAMILTON Bonaduz AG

12-7
12.2.1.2 IQ Microlab STAR IVD

Microlab STAR IVD Installation Qualification (IQ)

<table>
<thead>
<tr>
<th>Ref. Service Manual: P/N 610754</th>
<th>Installation Date:</th>
<th>Installation Report:</th>
</tr>
</thead>
</table>

Customer:
- Address: ____________________________
- Contact Person: ________________
- Phone: ________________________
- Fax: __________________________
- e-Mail: _______________________

Service Organization:
- Address: ____________________________
- Contact Person: ________________
- Phone: ________________________
- Fax: __________________________
- e-Mail: _______________________

Serial #: ____________________________

Instrument: ____________________________

Computer: ____________________________

Extensions Serial #: ____________________________

AVS: ____________________________

ISWAP: ____________________________

ML STAR Software Version: ____________________________

Always wear required personal protection equipment!

Work Place Environment
- Inspect workplace environment for accordance to technical specifications.
- Inspect table or workbench for supporting the weight of the Microlab STAR IVD and providing the minimum space needed.

Unpacking the Instrument
- Inspect instrument and accessories for shipping damage or missing parts.
- Use packing list to verify contents. If any items are missing, contact Customer Service.

Hooking up the Instrument
- Set up the instrument.
- Connect communication and power cables.
- If included, inspect/install extensions.
 - ISWAP: Yes □ No □
 - AVS: Yes □ No □
- Install tip waste chute and container.
- Recommended Uninterruptible Power Supply (UPS) installed? Yes □ No □

Software Installation
- ML STAR IVD software.
- Service software.
- Labware definitions of carriers.
- Set up user groups.
- Remote access? Yes □ No □

Instrument Check Procedure
- Perform instrument check procedure.

Weekly Maintenance (Operator's Manual)
- Perform Weekly Maintenance procedure.

Verification
- Volume.
- Print out verification reports.

Functional Test Run

Service Software
- Print out instrument configuration.
- Un-install service software.

Documentation
- Attach instrument configuration and verification reports to this IQ form.

Customer Summary
- Explain how to request technical and service assistance.
- Address any other concerns.

Comments

Customer Acceptance

- Date

Installed by

- Date

P/N 610886_65 2002-10-31

HAMILTON Bonaduz AG
12.2.2 Maintenance Checklist

<table>
<thead>
<tr>
<th>Decontamination and cleaning of all exposed surfaces:</th>
<th>OK</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docking Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading trays(^{31})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Covers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipetting Arm housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoload ribbon(^{32})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillage trays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air filter, replace if necessary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uncover Pipetting Arm

- Check Cable connections
- Check and clean Y- Spindles

On Pipetting Heads:

- Replace CO-RE O-Rings
- Check Stop Disk’s
- Check Tip ejection Tubes

On Pipetting Heads clean and only slightly grease:

- Squeezer Spindle\(^{33}\)
- Dispensing Spindle

Clean and slightly grease guide shafts of:

- X-Guides Pipetting Arm
- X-Guide Autoload\(^{34}\)

\(^{31}\) Microlab®-STAR Instrument with Autoload Option only

\(^{32}\) dito

\(^{33}\) only with brass nuts

\(^{34}\) Microlab®-STAR Instrument with Autoload Option only
Maintenance Checklist (continued):

<table>
<thead>
<tr>
<th>Remove Deck Panels and check:</th>
<th>OK</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>For signs of liquid spillage underneath deck and inside electronic chamber.</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>If necessary: decontaminate and clean surfaces of deck underneath and electronic chamber cover.</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>Clean Flat Band Cables Groove and ensure collision free movement of Flat Band Cables.</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>All belts, drives and cables for any damage - or loose screws.</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>Distance of X-measurement Reader on Pipetting Arm to magnetic Band</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remove Autoload ribbon(^{35}) and check:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For signs of liquid spillage underneath.</td>
<td>□</td>
</tr>
<tr>
<td>If necessary: decontaminate and clean surfaces of Autoload ribbon underneath.</td>
<td>□</td>
</tr>
<tr>
<td>Clean Flat Band Cables Groove and ensure collision free movement of Flat Band Cables.</td>
<td>□</td>
</tr>
<tr>
<td>All belts, drives and cables for any damage, or loose screws.</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recover:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoload ribbon(^{36})</td>
<td>□</td>
</tr>
<tr>
<td>Deck Panels</td>
<td>□</td>
</tr>
<tr>
<td>Pipetting Arm</td>
<td>□</td>
</tr>
</tbody>
</table>

\(^{35}\) Microlab®-STAR Instrument with Autoload Option only

\(^{36}\) dito
Maintenance Checklist (continued):

Check all available Carriers:

<table>
<thead>
<tr>
<th>OK</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For signs of liquid spillage and damage</td>
</tr>
<tr>
<td></td>
<td>If necessary: decontaminate and clean Carriers.</td>
</tr>
<tr>
<td></td>
<td>Ensure smooth gliding on Deck Panels and Loading Trays.</td>
</tr>
<tr>
<td></td>
<td>Replace damaged carriers.</td>
</tr>
<tr>
<td></td>
<td>Autoload(^{37})</td>
</tr>
</tbody>
</table>

Check Needles if available:

<table>
<thead>
<tr>
<th>OK</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For signs of damage.</td>
</tr>
<tr>
<td></td>
<td>If necessary: decontaminate and clean Needles</td>
</tr>
<tr>
<td></td>
<td>Replace damaged Needles</td>
</tr>
</tbody>
</table>

Check and Adjust:

<table>
<thead>
<tr>
<th>OK</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pipetting Arm</td>
</tr>
<tr>
<td></td>
<td>Pipetting Channels</td>
</tr>
<tr>
<td></td>
<td>Autoload(^{38})</td>
</tr>
<tr>
<td></td>
<td>Verify instrument</td>
</tr>
<tr>
<td></td>
<td>Perform a test run</td>
</tr>
</tbody>
</table>

\(^{37}\) Microlab\textregistered-STAR Instrument with Autoload Option only

\(^{38}\) dito
Maintenance Checklist (continued):

<table>
<thead>
<tr>
<th>Removal of Trace files</th>
<th>OK</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Together with the Laboratory Supervisor check for trace files which may deleted from the Operating PC.</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Check for Traces files such as method / system trace files communication trace files</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Check for old methods which may be removed from PC</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Back them up if necessary, else delete</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Check for available disk space onto hard drive, 500 MB minimum are needed</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

ML STAR IVD additionally:

| Test tightness of seal for all Pipetting Heads. | ☐ | |
| Check the pressure adjustment values of TADM. | ☐ | |
12.3 Appendix C

12.3.1 Service news

<table>
<thead>
<tr>
<th>Subject</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.3.2 Parts return tag

A Tag P/N 612554 should be found here.
12.3.3 Problem report form

<table>
<thead>
<tr>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company:</th>
<th>Operating System:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User Software version:</th>
<th>PC RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC Processor:</th>
<th>PC Hard drive size / free space:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brief description:

Symptom:

- User software hangs
- System error, Abort
- System error, Continue
- Exit
- Instrument hangs
- Pipetting Arm fault
- Channel fault
- Pipetting Head fault
- Autoload fault
- Initialization fault
- Verification fault
- Processing fault
- Window / dialog box fault

Detailed description of problem:

<table>
<thead>
<tr>
<th>Attached:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Trace</td>
</tr>
<tr>
<td>Com Trace</td>
</tr>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Please sign and return to Hamilton

<table>
<thead>
<tr>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
12.4 Appendix D

12.4.1 Microlab® STAR Firmware Addresses:

- Master Module: C0 where 0 is the number zero
- X-drive Pipetting Arm Module: X0 where 0 is the number zero
- Pipetting Channel: P# where # is 1 to 9 and A to G
- Auto Load Module: I0 where 0 is the number zero
- Temperature Controlled Carrier: T# where # is 1 or 2
- Wash station: W# where # is 1 or 2
- iSwap: R0 where 0 is the number zero

12.4.2 Microlab® STAR Firmware Files:

<table>
<thead>
<tr>
<th>Firmware file</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUC0S##.ACH</td>
<td>Firmware for Master Module (Pipetting Arm X drive Module included)</td>
</tr>
<tr>
<td>GRUPXS##.ACH</td>
<td>Firmware for Pipetting Channels</td>
</tr>
<tr>
<td>GRUALS##.ACH</td>
<td>Firmware for autoload drive</td>
</tr>
<tr>
<td>GRUTXS##.ACH</td>
<td>Firmware for Temperature Controlled Carrier</td>
</tr>
<tr>
<td>GRUWXS##.ACH</td>
<td>Firmware for Wash station</td>
</tr>
<tr>
<td>GRUR0SE##.ACH</td>
<td>Firmware for iSwap</td>
</tr>
</tbody>
</table>

Where ## is the current Version of firmware
12.4.3 Firmware Reference Guides

12.4.3.1 Master Module Command Specification

File the corresponding Firmware reference guide after this page.
12.4.3.2 X0 Module Command Specification

File the corresponding Firmware reference guide after this page.
12.4.3.3 Pipetting Channel Module Command Specification

File the corresponding Firmware reference guide after this page.
12.4.3.4 Auto Load Module Command Specification

File the corresponding Firmware reference guide after this page.
12.4.3.5 Wash Station Module Command Specification

File the corresponding Firmware reference guide after this page.
12.4.3.6 Temperature Controlled Carrier Module Command Specification

File the corresponding Firmware reference guide after this page.
12.4.3.7 iSwap Module Command Specification

File the corresponding Firmware reference guide after this page.
12.5 Appendix E

12.5.1 Microlab® STAR Service Kit

All items listed below come in the Microlab® STAR Service Kit P/N 173970.

Note: The Service Kit Microlab® STAR contains items such as parts and Tools.

12.5.1.1 Parts

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>Quantity</th>
<th>Spare Part class</th>
</tr>
</thead>
<tbody>
<tr>
<td>146355</td>
<td>FAME CABLE W65</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173293</td>
<td>STOP HOOK</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>173300</td>
<td>DISC</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>173310</td>
<td>GREASE 100 GR TOPAS AK50</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173330</td>
<td>TIP EJECTOR</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>173332</td>
<td>STOP DISK</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>173520</td>
<td>U-DISC 2</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>173600</td>
<td>SLIDE BLOCK</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>173602</td>
<td>SLIDE BLOCK WEDGE</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>173817</td>
<td>CABLE X-ARM -PCHN BOARD</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>173823</td>
<td>PIPETTING ARM CONNECTOR</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173833</td>
<td>CARRIER SENSOR BOARD</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173835</td>
<td>POWER DISTRIBUTION BOARD</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173843</td>
<td>LOAD DISPLAY BOARD</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173845</td>
<td>LOAD X-CONNECTOR</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173849</td>
<td>CABLE X-MOVEMENTS</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>173850</td>
<td>CABLE FILTER-POWER SUPPLY</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173851</td>
<td>CABLE POWER SUPPLY-40VDC</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173852</td>
<td>CABLE POWER SUPPLY-GND</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173854</td>
<td>CABLE POWER-AUTO LOAD</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173856</td>
<td>OS AUTO LOAD X-INIT</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173858</td>
<td>CABLE SSC</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>173860</td>
<td>HS COVER CONTROL</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173863</td>
<td>CABLE DM X-DRIVE PIP ARM</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173864</td>
<td>OS PIPETTING ARM – X-INIT</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173874</td>
<td>DM ROTATE DRIVE</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173875</td>
<td>HS H/V POSITION</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>173877</td>
<td>HS LOAD DETECT</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173878</td>
<td>OS TUBE DETECT</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173881</td>
<td>MASTER BOARD PROG</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173882</td>
<td>AUTO LOAD BOARD PROG.</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173890</td>
<td>CABLE POWER SUPPLY-GND</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173891</td>
<td>CABLE EC AUTO LOAD X-POS</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173895</td>
<td>EC PIPETTING ARM X-POSITION</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>173898</td>
<td>CABLE RS232</td>
<td>1</td>
<td>A</td>
</tr>
</tbody>
</table>
Microlab® STAR Service Kit

Parts (continued)

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>Quantity</th>
<th>Spare Part class</th>
</tr>
</thead>
<tbody>
<tr>
<td>173900</td>
<td>X-ARM CONNECTOR</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>173905</td>
<td>CABLE X-ARM CONNECTOR 8C</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>173906</td>
<td>CABLE X-ARM CONNECTOR 16C</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>173911</td>
<td>CABLE FILTER-GND</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>182103</td>
<td>REPLACEMENT CHANNEL A</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>182104</td>
<td>REPLACEMENT CHANNEL B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>182105</td>
<td>REPL. PIPETTING HEAD 300ul</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>182106</td>
<td>REPL. PIPETTING HEAD 1000ul</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>182805</td>
<td>EXTENSIONS CONNECTOR</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>182820</td>
<td>CABLE MASTER-EXTENSIONS</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>254167</td>
<td>O-RING ID=3.6x1.45</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>256141</td>
<td>PRESSURE SPRING</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>257056</td>
<td>SPACER PINS M5x20 I/O</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>257062</td>
<td>SPACER PINS M4X40 I/O</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>258053</td>
<td>COG BELT MXL Z= 83 X 3/16"</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>258129</td>
<td>COG BELT 10AT5/2875</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>258130</td>
<td>COG BELT 10T2.5/480</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>258134</td>
<td>COG BELT 10T2.5 3065</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>258140</td>
<td>COG BELT MXL Z= 90X3/16</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>281401</td>
<td>COVERING CAP D=25.5 PA</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>281457</td>
<td>BUTTON BUFFER D=12 F=4 d=8</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>355130</td>
<td>CABLE USB TYPE A-B 3M</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>361004</td>
<td>CABLE CLAMP CFCC-4 1/2"</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>361025</td>
<td>CABLE CLAMP FCC-2A</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>361036</td>
<td>CABLE CLAMP</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>363012</td>
<td>FUSE 3.15 AT</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>363013</td>
<td>FUSE 6.3 AT</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>400002</td>
<td>FLAT HEAD SCREW M 3 X 6</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400005</td>
<td>FLAT HEAD SCREW M 3 X12</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400012</td>
<td>FLAT HEAD SCREW M 3 X30</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400024</td>
<td>FLAT HEAD SCREW M 4 X 8</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400025</td>
<td>FLAT HEAD SCREW M 4 X10</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400026</td>
<td>FLAT HEAD SCREW M 4 X12</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400028</td>
<td>FLAT HEAD SCREW M 4 X16</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400047</td>
<td>FLAT HEAD SCREW M 5 X16</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400262</td>
<td>FLAT HEAD SCREW M 3X 6 DIN912 A2</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400301</td>
<td>FLAT HEAD SCR M4X6 DIN912</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400650</td>
<td>FLAT HEAD SCR M4X16 DIN912</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400302</td>
<td>FLAT HEAD SCREWM 4X 8 DIN912 A2</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>400602</td>
<td>FLAT HEAD SCREWM2X 5 DIN912</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>400604</td>
<td>FLAT HEAD SCREWM2X 8 DIN912</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>400617</td>
<td>FLAT HEAD SCREWM2.5X 5 DIN912</td>
<td>50</td>
<td>A</td>
</tr>
</tbody>
</table>
Microlab® STAR Service Kit

Parts (continued)

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>Quantity</th>
<th>Spare Part class</th>
</tr>
</thead>
<tbody>
<tr>
<td>400619</td>
<td>FLAT HEAD SCREW M2.5X 8 DIN912</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>400621</td>
<td>FLAT HEAD SCREW M2.5X12 DIN912</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>400632</td>
<td>FLAT HEAD SCREW M3X 8 DIN912</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>403452</td>
<td>SUNK SCREW M 3X 6 DIN7991</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>403453</td>
<td>SUNK SCREW M 3X 8 DIN7991</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>403491</td>
<td>SUNK SCREW M 4X 8 DIN7991</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>403499</td>
<td>SUNK SCREW M4X30</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>405082</td>
<td>SET SCREW M 5X 5 DIN913</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>405445</td>
<td>SET SCREW M3 X 8 DIN916</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>408006</td>
<td>HEX NUT M 4 DIN934</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>409103</td>
<td>U-DISC M 2 DIN125A</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>409200</td>
<td>U-DISC M 3 DIN9021B</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>413005</td>
<td>LOCK DISC 4 DIN6799</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>413008</td>
<td>LOCK DISC 7 DIN6799</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>420010</td>
<td>ZYL-SCHR.M2.5X8 DIN912 A4</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>420013</td>
<td>FLAT HEAD SCREW M 3 X 8 DIN912</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>420074</td>
<td>FLAT HEAD SCREW M 4X16 DIN912 A2</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>420560</td>
<td>SCREW M4x10 A2 ISO7380</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5X12</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>420564</td>
<td>PASSCHULTERSCHRAUBE 6x20/M5</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>511000</td>
<td>LOCTITE 222 10 ML</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>511071</td>
<td>OMNI FIT 15M</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>7249025</td>
<td>PVC TUBING 3 X 5 TRANSP</td>
<td>0.5 m</td>
<td>A</td>
</tr>
<tr>
<td>7279372</td>
<td>TAPE D= 2 B= 12</td>
<td>0.5 m</td>
<td>A</td>
</tr>
</tbody>
</table>
Microlab® STAR Service Kit (continued)

12.5.1.2 Tools

<table>
<thead>
<tr>
<th>P/N</th>
<th>Standard Tools</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>239511</td>
<td>ALLEN SCREW DRIVER WITH GRIP</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>239512</td>
<td></td>
<td>2 mm</td>
</tr>
<tr>
<td>239012</td>
<td></td>
<td>2.5 mm</td>
</tr>
<tr>
<td>239010</td>
<td></td>
<td>3 mm</td>
</tr>
<tr>
<td>239544</td>
<td>PHILLIPS SCREW DRIVER</td>
<td>0-60</td>
</tr>
<tr>
<td>239643</td>
<td>ANGLED ALLAN SCREW DRIVER SET</td>
<td>1.5, 2, 2.5, 3, 4 mm</td>
</tr>
<tr>
<td>239644</td>
<td>TORX SCREW DRIVER</td>
<td>T 25</td>
</tr>
<tr>
<td>239596</td>
<td>ADJUSTABLE WRENCH</td>
<td>0 ÷ 10 mm</td>
</tr>
<tr>
<td>239563</td>
<td>FORK / RING WRENCH</td>
<td>7 mm</td>
</tr>
<tr>
<td>239564</td>
<td></td>
<td>8 mm</td>
</tr>
<tr>
<td>239573</td>
<td></td>
<td>17 mm</td>
</tr>
<tr>
<td>239646</td>
<td>TORQUE WRENCH ¼" SNAP ON</td>
<td>10 ÷ 60 cNm</td>
</tr>
<tr>
<td>239647</td>
<td>ALLAN BIT’s ¼"</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>239648</td>
<td>(snap on for Torque wrench ¼")</td>
<td>2 mm</td>
</tr>
<tr>
<td>239649</td>
<td></td>
<td>2.5 mm</td>
</tr>
<tr>
<td>239650</td>
<td>HEX NUT BIT</td>
<td>7 mm</td>
</tr>
<tr>
<td></td>
<td>(snap on for Torque wrench ¼")</td>
<td></td>
</tr>
<tr>
<td>239651</td>
<td>ADAPTER PIECE ¼" (for Hex Nut bit)</td>
<td>¼"</td>
</tr>
<tr>
<td>239652</td>
<td>ADAPTER PIECE ¼" (for Allan bit’s ¼")</td>
<td>¼" - 6.3 MM</td>
</tr>
<tr>
<td>239028</td>
<td>FLAT PLIERS</td>
<td>120 mm</td>
</tr>
<tr>
<td>239035</td>
<td>BRUSH</td>
<td>L=135</td>
</tr>
<tr>
<td>239034</td>
<td>PELIKAN BRUSH</td>
<td>25-1</td>
</tr>
<tr>
<td>235414</td>
<td>GLOVES</td>
<td>10 pairs</td>
</tr>
<tr>
<td>239631</td>
<td>SCALE L=300</td>
<td></td>
</tr>
<tr>
<td>239015</td>
<td>VERNIER GAUGE</td>
<td></td>
</tr>
</tbody>
</table>
Microlab® STAR Service Kit

Tools (continued)

<table>
<thead>
<tr>
<th>P/N</th>
<th>Microlab® STAR Special Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>173950</td>
<td>FRONT WINDOW MAGNET</td>
</tr>
<tr>
<td>173956</td>
<td>PIPETTING ARM ALIGMENT TOOL (2 pieces)</td>
</tr>
<tr>
<td>173952</td>
<td>Pipetting Channel Adjustment Tool Set</td>
</tr>
<tr>
<td>173960</td>
<td>CHANNEL ADJUSTMENT TOOL</td>
</tr>
<tr>
<td></td>
<td>CHANNEL CALIBRATION TOOL</td>
</tr>
<tr>
<td>173981</td>
<td>Autoload Adjustment Tool Set</td>
</tr>
<tr>
<td>173980</td>
<td>AUTOLOAD CALIBRATION TOOL</td>
</tr>
<tr>
<td>173953</td>
<td>STOP DISC MOUNTING TOOL</td>
</tr>
<tr>
<td>235920</td>
<td>CO-RE TIPS FOR ADJUSTMENT</td>
</tr>
</tbody>
</table>

One each of the Microlab® STAR Standard and Special Tools is required – except in the case of the PIPETTING ARM ALIGMENT TOOL, where 2 of them are necessary.

12.5.2 ML STAR Verification Kit

<table>
<thead>
<tr>
<th>P/N</th>
<th>Microlab® STAR Special Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>182501</td>
<td>VFV BASEKIT 230V/50Hz</td>
</tr>
<tr>
<td>182502</td>
<td>VFV BASEKIT 115V/60Hz</td>
</tr>
<tr>
<td>182503</td>
<td>VFV SUPPLEMENT ML-STAR</td>
</tr>
<tr>
<td>182506</td>
<td>VFV CONSUMABLE KIT ML-STAR</td>
</tr>
</tbody>
</table>
12.6 Appendix F Part List Summary

12.6.1 Instrument Cover Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173712</td>
<td>SIDE PANEL LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173713</td>
<td>SIDE PANEL RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>173774</td>
<td>FRONT WINDOW</td>
<td>C</td>
</tr>
<tr>
<td>173860</td>
<td>HS COVER CONTROL</td>
<td>A</td>
</tr>
<tr>
<td>281401</td>
<td>COVERING CAP D=25.5 PA</td>
<td>A</td>
</tr>
<tr>
<td>400047</td>
<td>CYL-SCR M5X16 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400619</td>
<td>CYL-SCR M2.5X8 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>420560</td>
<td>SCREW M4x10 A2 ISO7380</td>
<td>A</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5x12</td>
<td>A</td>
</tr>
</tbody>
</table>

12.6.2 Covers over electronics

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173743</td>
<td>EL-COVER LINE FILTER</td>
<td>C</td>
</tr>
<tr>
<td>173748</td>
<td>EL-COVER MASTER</td>
<td>C</td>
</tr>
<tr>
<td>173750</td>
<td>EL-COVER POWER</td>
<td>C</td>
</tr>
<tr>
<td>7279443</td>
<td>EDGE PROTECTION SECTION</td>
<td>C</td>
</tr>
<tr>
<td>7369085</td>
<td>SELF ADHESIVE GASKET</td>
<td>C</td>
</tr>
</tbody>
</table>

12.6.3 Deck Panel Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173378</td>
<td>CAP</td>
<td>C</td>
</tr>
<tr>
<td>173288</td>
<td>CONTACT PLATE</td>
<td>C</td>
</tr>
<tr>
<td>173600</td>
<td>SLIDE BLOCK</td>
<td>A</td>
</tr>
<tr>
<td>173602</td>
<td>SLIDE BLOCK WEDGE</td>
<td>A</td>
</tr>
<tr>
<td>173833</td>
<td>CARRIER SENSOR BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173858</td>
<td>CABLE SSC</td>
<td>A</td>
</tr>
<tr>
<td>182114</td>
<td>REPLACE. DECK AL RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>182115</td>
<td>REPLACE. DECK AL LEFT</td>
<td>C</td>
</tr>
<tr>
<td>182118</td>
<td>REPLACE. CARRIER STOP</td>
<td>C</td>
</tr>
<tr>
<td>182283</td>
<td>DOCKING STATION FOR ML STAR</td>
<td>C</td>
</tr>
<tr>
<td>400302</td>
<td>CYL-SCR M4X8 DIN912 A2</td>
<td>A</td>
</tr>
<tr>
<td>403491</td>
<td>C-SUNK SCR M 4X8 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>420010</td>
<td>CYL-SCR M2.5X8 DIN912 A4</td>
<td>A</td>
</tr>
<tr>
<td>420074</td>
<td>CYL-SCR M4X16 DIN912 A2</td>
<td>A</td>
</tr>
</tbody>
</table>
12.6.4 Pipetting Arm Cover Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173555</td>
<td>PANEL</td>
<td>C</td>
</tr>
<tr>
<td>173557</td>
<td>SIDE PANEL LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173559</td>
<td>SIDE PANEL RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>173568</td>
<td>TOP COVER</td>
<td>C</td>
</tr>
<tr>
<td>173607</td>
<td>H PROFILE</td>
<td>C</td>
</tr>
<tr>
<td>173609</td>
<td>BACK PANEL</td>
<td>C</td>
</tr>
<tr>
<td>173615</td>
<td>FRONT PANEL</td>
<td>C</td>
</tr>
<tr>
<td>420560</td>
<td>SCREW M4X10 A2 ISO7380</td>
<td>A</td>
</tr>
</tbody>
</table>

12.6.5 Pipetting Arm Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173206</td>
<td>CLAMP AT5</td>
<td>C</td>
</tr>
<tr>
<td>173366</td>
<td>CABLE GUIDE PLATE LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173367</td>
<td>CABLE GUIDE PLATE RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>173371</td>
<td>HOLDING PLATE LEFT</td>
<td>B</td>
</tr>
<tr>
<td>173372</td>
<td>HOLDING PLATE RIGHT</td>
<td>B</td>
</tr>
<tr>
<td>173392</td>
<td>HOLDING BAR</td>
<td>C</td>
</tr>
<tr>
<td>173446</td>
<td>Y-SPINDLE</td>
<td>C</td>
</tr>
<tr>
<td>173499</td>
<td>Y-SPINDLE BEARING</td>
<td>C</td>
</tr>
<tr>
<td>173569</td>
<td>BRIDE FLAT CABLE</td>
<td>C</td>
</tr>
<tr>
<td>173581</td>
<td>STEEL BAND</td>
<td>C</td>
</tr>
<tr>
<td>173605</td>
<td>CLAMPING BRACKET</td>
<td>C</td>
</tr>
<tr>
<td>173606</td>
<td>P-ARM LINK</td>
<td>C</td>
</tr>
<tr>
<td>173608</td>
<td>P-ARM FLAG</td>
<td>C</td>
</tr>
<tr>
<td>173817</td>
<td>CABLE X-ARM –P-CHANNEL BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173849</td>
<td>X-MOVEMENT CABLE</td>
<td>A</td>
</tr>
<tr>
<td>173895</td>
<td>EC PIPETTING ARM X-POSITION</td>
<td>A</td>
</tr>
<tr>
<td>173900</td>
<td>X-ARM CONNECTOR</td>
<td>A</td>
</tr>
<tr>
<td>173905</td>
<td>CABLE X-ARM CONNECTOR 8C</td>
<td>A</td>
</tr>
<tr>
<td>173906</td>
<td>CABLE X-ARM CONNECTOR 16C</td>
<td>A</td>
</tr>
<tr>
<td>182103</td>
<td>REPLACEMENT CHANNEL A</td>
<td>A</td>
</tr>
<tr>
<td>182104</td>
<td>REPLACEMENT CHANNEL B</td>
<td>A</td>
</tr>
<tr>
<td>182105</td>
<td>REPLACE. PIPETTING HEAD 300ul 40</td>
<td>A</td>
</tr>
<tr>
<td>182106</td>
<td>REPLACE. PIPETTING HEAD 1000ul 41</td>
<td>A</td>
</tr>
<tr>
<td>182108</td>
<td>REPL. FRAME PIP. ARM 8-CHANNEL</td>
<td>C</td>
</tr>
<tr>
<td>361025</td>
<td>FCC-2A CABLE GUIDE</td>
<td>A</td>
</tr>
<tr>
<td>400002</td>
<td>CYL-SCR M3X6 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400005</td>
<td>CYL-SCR M3X12 DIN912</td>
<td>A</td>
</tr>
</tbody>
</table>

40 Depending on instrument configuration
41 ditto
Pipetting Arm Part List (continued)

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>400012</td>
<td>CYL-SCR M3X30 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400024</td>
<td>CYL-SCR M4X8</td>
<td>A</td>
</tr>
<tr>
<td>400047</td>
<td>CYL-SCR M5X16 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400604</td>
<td>CYL-SCR M2x8 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400617</td>
<td>CYL-SCR M2.5X5 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400621</td>
<td>CYL-SCR M2.5X12</td>
<td>A</td>
</tr>
<tr>
<td>403491</td>
<td>SUNK SCREW M4X8</td>
<td>A</td>
</tr>
<tr>
<td>408006</td>
<td>HEX SCREW M 4 DIN934</td>
<td>A</td>
</tr>
<tr>
<td>420013</td>
<td>CYL-SCR M3X8 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>511071</td>
<td>OMNI FIT 15M</td>
<td>A</td>
</tr>
<tr>
<td>7279372</td>
<td>ADHESIVE TAPE 1-SIDED D=2 B=12</td>
<td>A</td>
</tr>
</tbody>
</table>
12.6.7 Pipetting Arm's X Drive Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173380</td>
<td>OS-HOLDER</td>
<td>C</td>
</tr>
<tr>
<td>173864</td>
<td>OS PIPETTING ARM – X-INIT</td>
<td>A</td>
</tr>
<tr>
<td>182111</td>
<td>REPLACEMENT X-MOTOR</td>
<td>B</td>
</tr>
<tr>
<td>250007</td>
<td>BALL BEARING ID= 8 AD=16/18 B=6</td>
<td>A</td>
</tr>
<tr>
<td>250045</td>
<td>BALL BEARING ID=15 AD=35 B=11</td>
<td>A</td>
</tr>
<tr>
<td>257056</td>
<td>SPACER PINS M5x20 I/O</td>
<td>A</td>
</tr>
<tr>
<td>258129</td>
<td>COG BELT 10AT5/2875</td>
<td>A</td>
</tr>
<tr>
<td>258130</td>
<td>COG BELT 10T2.5/480</td>
<td>A</td>
</tr>
<tr>
<td>396011</td>
<td>MAGN. MEASURING TAPE</td>
<td>B</td>
</tr>
<tr>
<td>400025</td>
<td>CYL-SCR M4X10 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400026</td>
<td>CYL-SCR M4X12 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400077</td>
<td>CYL-SCR M6X60 DIN912</td>
<td>C</td>
</tr>
<tr>
<td>400262</td>
<td>CYL-SCR M3X6 DIN912 A2</td>
<td>A</td>
</tr>
<tr>
<td>400302</td>
<td>CYL-SCR M4X8 DIN912 A2</td>
<td>A</td>
</tr>
<tr>
<td>405082</td>
<td>SET SCR M5X5 DIN913</td>
<td>A</td>
</tr>
<tr>
<td>413008</td>
<td>LOCK DISC 7 DIN6799</td>
<td>A</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5x12</td>
<td>A</td>
</tr>
</tbody>
</table>

12.6.8 Pipetting Channels Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>182103</td>
<td>Replacement Channel A</td>
<td>A</td>
</tr>
<tr>
<td>182104</td>
<td>Replacement Channel B</td>
<td>A</td>
</tr>
</tbody>
</table>

12.6.9 Pipetting Head Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173330</td>
<td>TIP EJECTOR</td>
<td>A</td>
</tr>
<tr>
<td>173332</td>
<td>STOP DISK</td>
<td>A</td>
</tr>
<tr>
<td>173520</td>
<td>DISC 2</td>
<td>A</td>
</tr>
<tr>
<td>182105</td>
<td>REPLACE. PIPETTING HEAD 300ul</td>
<td>A</td>
</tr>
<tr>
<td>182106</td>
<td>REPLACE. PIPETTING HEAD 1000ul</td>
<td>A</td>
</tr>
<tr>
<td>254167</td>
<td>O-Ring ID3.6x1.45</td>
<td>A</td>
</tr>
<tr>
<td>400602</td>
<td>CYL-SCR M2x5 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400621</td>
<td>CYL-SCR M2.5x12 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>409103</td>
<td>DISC M2 DIN125A</td>
<td>A</td>
</tr>
<tr>
<td>511071</td>
<td>OMNI FIT 15M</td>
<td>A</td>
</tr>
<tr>
<td>173310</td>
<td>GREASE 100 GR TOPAS AK50</td>
<td>A</td>
</tr>
</tbody>
</table>
12.6.10 Autoload Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173297</td>
<td>PINION MXL Z=32</td>
<td>C</td>
</tr>
<tr>
<td>173845</td>
<td>LOAD X – CONNECTOR</td>
<td>A</td>
</tr>
<tr>
<td>173849</td>
<td>CABLE X-MOVEMENTS</td>
<td>A</td>
</tr>
<tr>
<td>173874</td>
<td>DM ROTATOR DRIVE</td>
<td>A</td>
</tr>
<tr>
<td>173875</td>
<td>HS H/V POSITION</td>
<td>A</td>
</tr>
<tr>
<td>173877</td>
<td>HS LOAD DETECT</td>
<td>A</td>
</tr>
<tr>
<td>173878</td>
<td>OS TUBE DETECT</td>
<td>A</td>
</tr>
<tr>
<td>173879</td>
<td>SCANNER</td>
<td>B</td>
</tr>
<tr>
<td>182107</td>
<td>REPL. AUTO LOAD DRIVE</td>
<td>C</td>
</tr>
<tr>
<td>182119</td>
<td>REPL. GUIDE ROLLER</td>
<td>C</td>
</tr>
<tr>
<td>182120</td>
<td>REPL. RIBBON</td>
<td>C</td>
</tr>
<tr>
<td>182263</td>
<td>BLACK COVER RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>182264</td>
<td>BLACK COVER LEFT</td>
<td>C</td>
</tr>
<tr>
<td>182266</td>
<td>COVER LEFT</td>
<td>C</td>
</tr>
<tr>
<td>182274</td>
<td>COVER RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>250016</td>
<td>BALL BEARING ID=6 OD=13/15</td>
<td>C</td>
</tr>
<tr>
<td>258140</td>
<td>COG BELT MXL Z= 90X3/16"</td>
<td>A</td>
</tr>
<tr>
<td>281401</td>
<td>COVERING CAP</td>
<td>A</td>
</tr>
<tr>
<td>400262</td>
<td>SCREW M3X6</td>
<td>A</td>
</tr>
<tr>
<td>403452</td>
<td>SUNK SCREW M3X6 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>403453</td>
<td>SUNK SCREW M3X8</td>
<td>A</td>
</tr>
<tr>
<td>403499</td>
<td>SUNK SCREW M4x30</td>
<td>A</td>
</tr>
<tr>
<td>409200</td>
<td>DISC M3</td>
<td>A</td>
</tr>
</tbody>
</table>

12.6.11 Autoload's X Drive Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173855</td>
<td>SM Auto Load X-Drive</td>
<td>C</td>
</tr>
<tr>
<td>173856</td>
<td>OS Auto Load X-init</td>
<td>C</td>
</tr>
<tr>
<td>250016</td>
<td>BALL BEARING ID=6 OD=13/15</td>
<td>C</td>
</tr>
<tr>
<td>250045</td>
<td>BALL BEARING ID=15 OD=35</td>
<td>C</td>
</tr>
<tr>
<td>258053</td>
<td>COG BELT MXL Z= 83 X 3/16"</td>
<td>A</td>
</tr>
<tr>
<td>258134</td>
<td>COG BELT 10T2.5 3065</td>
<td>A</td>
</tr>
<tr>
<td>400640</td>
<td>CYL-SCR M4x10 DIN912 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>400653</td>
<td>CYL-SCR M3X6 DIN912 A2 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>405445</td>
<td>SET SCR M3x8 DIN916</td>
<td>A</td>
</tr>
<tr>
<td>413005</td>
<td>LOCK DISC 4 DIN6799</td>
<td>A</td>
</tr>
<tr>
<td>420580</td>
<td>CYL-SCR M4X50 DIN912 TUFLOK</td>
<td>C</td>
</tr>
</tbody>
</table>
12.6.12 Insertion Guide Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173292</td>
<td>INSERTION GUIDE</td>
<td>C</td>
</tr>
<tr>
<td>173293</td>
<td>STOP HOOK</td>
<td>A</td>
</tr>
<tr>
<td>173299</td>
<td>SHEET METAL</td>
<td>C</td>
</tr>
<tr>
<td>173300</td>
<td>DISK</td>
<td>A</td>
</tr>
<tr>
<td>173729</td>
<td>INSERTION GUIDE - END</td>
<td>C</td>
</tr>
<tr>
<td>173747</td>
<td>SPRING STRIP</td>
<td>C</td>
</tr>
<tr>
<td>173843</td>
<td>LOAD DISPLAY BOARD</td>
<td>B</td>
</tr>
<tr>
<td>400617</td>
<td>CYL-SCR M2.5X5 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>403452</td>
<td>SUNK SCREW M3X6 DIN7991</td>
<td>A</td>
</tr>
</tbody>
</table>

12.6.13 Loading tray Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173600</td>
<td>SLIDE BLOCK</td>
<td>A</td>
</tr>
<tr>
<td>173602</td>
<td>SLIDE BLOCK WEDGE</td>
<td>A</td>
</tr>
<tr>
<td>173700</td>
<td>HOLDER W OVAL BORE</td>
<td>C</td>
</tr>
<tr>
<td>173701</td>
<td>HOLDER W ROUND BORE</td>
<td>C</td>
</tr>
<tr>
<td>182112</td>
<td>REPLACEMENT TABLE RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>182113</td>
<td>REPLACEMENT TABLE LEFT</td>
<td>C</td>
</tr>
<tr>
<td>400026</td>
<td>CYL-SCR M4X12 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>403453</td>
<td>C-SUNK SCR M3X8 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>403453</td>
<td>SUNK SCR M3X8 DIN7991</td>
<td>A</td>
</tr>
<tr>
<td>408006</td>
<td>HEX NUT M4 DIN934</td>
<td>A</td>
</tr>
</tbody>
</table>

12.6.14 Tip Waste Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173736</td>
<td>TIP WASTE CONTAINER</td>
<td>C</td>
</tr>
<tr>
<td>173737</td>
<td>TIP WASTE LID</td>
<td>C</td>
</tr>
<tr>
<td>173738</td>
<td>TIP WASTE HANDLE</td>
<td>C</td>
</tr>
<tr>
<td>420561</td>
<td>TORX SCREW M5x12</td>
<td>A</td>
</tr>
</tbody>
</table>
12.6.15 Spillage Trays Part List

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173195</td>
<td>SPILLAGE TRAY LEFT</td>
<td>C</td>
</tr>
<tr>
<td>173196</td>
<td>SPILLAGE TRAY RIGHT</td>
<td>C</td>
</tr>
<tr>
<td>147683</td>
<td>FAME AIR FILTER</td>
<td>B</td>
</tr>
<tr>
<td>148248</td>
<td>FAME VELCRO</td>
<td>B</td>
</tr>
</tbody>
</table>

12.6.16 Instrument Parts

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>281111</td>
<td>FOOT M10x50 W CAP</td>
<td>C</td>
</tr>
<tr>
<td>173508</td>
<td>STOP BAR</td>
<td>C</td>
</tr>
<tr>
<td>173509</td>
<td>FENDER BAR</td>
<td>C</td>
</tr>
</tbody>
</table>

12.6.17 Teaching Station

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>182174</td>
<td>TEACHING STATION</td>
<td>C</td>
</tr>
<tr>
<td>182176</td>
<td>TEACHING NEEDLE</td>
<td>C</td>
</tr>
</tbody>
</table>

12.6.18 Teaching Box

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>173861</td>
<td>TEACHING BOX</td>
<td>C</td>
</tr>
</tbody>
</table>
12.6.19 Boards Part List and accessories

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>146242</td>
<td>FAME ELECTRONIC RACK FAN</td>
<td>C</td>
</tr>
<tr>
<td>173614</td>
<td>INTERFACE METAL PLATE</td>
<td>C</td>
</tr>
<tr>
<td>173835</td>
<td>POWER DISTRIBUTION BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173881</td>
<td>MASTER BOARD PROG</td>
<td>A</td>
</tr>
<tr>
<td>173882</td>
<td>AUTO LOAD BOARD PROG.</td>
<td>A</td>
</tr>
<tr>
<td>182805</td>
<td>EXTENSIONS CONNECTOR</td>
<td>A</td>
</tr>
<tr>
<td>257062</td>
<td>SPACER PINS M4X40 I/O</td>
<td>C</td>
</tr>
<tr>
<td>369026</td>
<td>WASHER</td>
<td>C</td>
</tr>
<tr>
<td>369061</td>
<td>ISOLATING TAPE</td>
<td>C</td>
</tr>
<tr>
<td>395023</td>
<td>LINE FILTER</td>
<td>B</td>
</tr>
<tr>
<td>396155</td>
<td>POWER SUPPLY 41V 600W</td>
<td>B</td>
</tr>
<tr>
<td>400640</td>
<td>CYL-SCR M4x10 DIN912 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>400301</td>
<td>CYL-SCR.M4X6 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400632</td>
<td>CYL-SCR.M3X8 DIN912</td>
<td>A</td>
</tr>
<tr>
<td>400656</td>
<td>CYL-SCR M4X8 DIN912 A2 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>403606</td>
<td>C-SUNK SCR M3X8 DIN7991 A2 TUFLOK</td>
<td>A</td>
</tr>
<tr>
<td>411002</td>
<td>LOCK DISC M4</td>
<td>C</td>
</tr>
</tbody>
</table>

12.6.20 Cables Part list

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>146355</td>
<td>CABLE W65</td>
<td>A</td>
</tr>
<tr>
<td>173817</td>
<td>CABLE X-ARM - PCHN BOARD</td>
<td>A</td>
</tr>
<tr>
<td>173849</td>
<td>CABLE X-MOVEMENTS</td>
<td>A</td>
</tr>
<tr>
<td>173850</td>
<td>CABLE FILTER-POWER SUPPLY</td>
<td>A</td>
</tr>
<tr>
<td>173851</td>
<td>CABLE POWER SUPPLY-40VDC</td>
<td>A</td>
</tr>
<tr>
<td>173852</td>
<td>CABLE POWER SUPPLY-GND</td>
<td>A</td>
</tr>
<tr>
<td>173853</td>
<td>CABLE POWER-MASTER</td>
<td>A</td>
</tr>
<tr>
<td>173854</td>
<td>CABLE POWER-AUTO LOAD</td>
<td>A</td>
</tr>
<tr>
<td>173858</td>
<td>CABLE SSC</td>
<td>A</td>
</tr>
<tr>
<td>173863</td>
<td>CABLE DM X-DRIVE PIPETTING ARM</td>
<td>A</td>
</tr>
<tr>
<td>173890</td>
<td>CABLE POWER SUPPLY-EARTH</td>
<td>A</td>
</tr>
<tr>
<td>173891</td>
<td>CABLE EC AUTO LOAD X-POSITION</td>
<td>A</td>
</tr>
<tr>
<td>173898</td>
<td>CABLE RS232</td>
<td>A</td>
</tr>
<tr>
<td>173905</td>
<td>CABLE X-ARM CONNECTOR 8C</td>
<td>A</td>
</tr>
<tr>
<td>173906</td>
<td>CABLE X-ARM CONNECTOR 16C</td>
<td>A</td>
</tr>
<tr>
<td>173911</td>
<td>CABLE FILTER-EARTH</td>
<td>A</td>
</tr>
<tr>
<td>182820</td>
<td>CABLE MASTER-EXTENSIONS</td>
<td>A</td>
</tr>
<tr>
<td>355130</td>
<td>CABLE USB TYPE A-B 3M</td>
<td>A</td>
</tr>
</tbody>
</table>
12.7 Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirate</td>
<td>12-1</td>
</tr>
<tr>
<td>Autoload</td>
<td>1-1, 1-6, 2-6, 2-7, 4-9, 4-21, 4-23, 5-2, 5-5, 6-1, 6-3, 6-9, 6-10, 6-14, 6-42, 6-43, 6-44, 6-45, 6-46, 6-49, 6-53, 6-54, 7-1, 7-4, 7-6, 7-36, 7-38, 7-39, 7-40, 7-41, 7-42, 7-43, 7-44, 7-45, 7-46, 7-47, 7-48, 7-50, 7-51, 8-1, 8-3, 8-9, 8-12, 8-18, 8-19, 8-20, 9-2, 9-4, 9-5, 9-6, 10-7, 10-13, 10-14, 12-1, 12-3, 12-11, 12-12, 12-13, 12-19, 12-39, 12-44</td>
</tr>
<tr>
<td>Automated Vacuum System</td>
<td>12-1</td>
</tr>
<tr>
<td>Barcode</td>
<td>2-9, 4-5, 6-9, 6-10, 6-14, 6-42, 6-43, 6-50, 10-14, 12-1, 12-2, 12-5</td>
</tr>
<tr>
<td>Carrier</td>
<td>1-6, 4-23, 6-10, 6-14, 6-15, 6-47, 6-48, 6-49, 6-51, 7-8, 7-9, 7-10, 7-12, 7-13, 7-38, 10-14, 10-15, 12-1, 12-2, 12-3, 12-20, 12-31</td>
</tr>
<tr>
<td>Container</td>
<td>5-1, 9-2, 12-2, 12-3, 12-4, 12-5, 12-6</td>
</tr>
<tr>
<td>Cover</td>
<td>4-9, 5-3, 5-11, 6-38, 6-51, 7-4, 7-5, 7-6, 7-15, 7-16, 7-19, 9-2, 10-8, 12-2, 12-40, 12-41</td>
</tr>
<tr>
<td>Deck</td>
<td>2-8, 2-9, 5-11, 6-9, 6-13, 6-20, 6-51, 7-4, 7-6, 7-7, 7-8, 7-9, 7-11, 7-12, 7-13, 7-19, 7-24, 7-51, 8-10, 8-14, 8-18, 9-2, 9-4, 9-5, 9-6, 10-8, 10-13, 12-2, 12-3, 12-5, 12-11, 12-12, 12-13, 12-40</td>
</tr>
<tr>
<td>Dispense</td>
<td>7-32, 12-2</td>
</tr>
<tr>
<td>Disposable Tip</td>
<td>2-5, 2-8, 4-23, 5-2, 6-1, 6-51, 7-5, 7-32, 7-35, 7-52, 9-2, 9-4, 10-1, 10-13, 12-11, 12-45</td>
</tr>
<tr>
<td>Fall Through Tip Waste</td>
<td>12-5</td>
</tr>
<tr>
<td>Internal Swivel Arm Plate Handler</td>
<td>12-3</td>
</tr>
<tr>
<td>Labware</td>
<td>2-8, 6-1, 10-11, 12-1, 12-3</td>
</tr>
<tr>
<td>Liquid Level Detection</td>
<td>12-3</td>
</tr>
<tr>
<td>liquid level detection (LLD)</td>
<td>2-2, 6-6, 6-14, 6-39, 10-12, 10-13</td>
</tr>
<tr>
<td>Microtiterplate</td>
<td>12-4</td>
</tr>
<tr>
<td>microtiterplate (MTP)</td>
<td>8-7, 10-11, 12-4</td>
</tr>
<tr>
<td>Pipetting</td>
<td>1-6, 2-2, 2-3, 2-5, 2-8, 4-8, 4-9, 4-21, 4-23, 5-1, 5-2, 5-4, 5-11, 6-1, 6-3, 6-6, 6-7, 6-8, 6-12, 6-13, 6-14, 6-15, 6-16, 6-17, 6-18, 6-19, 6-20, 6-21, 6-22, 6-23, 6-24, 6-25, 6-26, 6-27, 6-28, 6-29, 6-30, 6-31, 6-32, 6-38, 6-39, 6-52, 7-1, 7-4, 7-5, 7-8, 7-14, 7-15, 7-16, 7-17, 7-19, 7-20, 7-21, 7-22, 7-23, 7-24, 7-25, 7-26, 7-27, 7-28, 7-29, 7-30, 7-31, 7-32, 7-33, 7-34, 7-35, 8-1, 8-3, 8-8, 8-9, 8-14, 8-15, 8-16, 8-17, 8-21, 9-1, 9-2, 9-3, 9-4, 9-5, 9-6, 9-7, 10-3, 10-6, 10-8, 10-9, 10-10, 10-11, 10-12, 10-13, 12-2, 12-3, 12-4, 12-11, 12-12, 12-13, 12-14, 12-19, 12-20, 12-25, 12-29, 12-41, 12-42, 12-43, 12-47</td>
</tr>
<tr>
<td>rack</td>
<td>12-4</td>
</tr>
<tr>
<td>Rack</td>
<td>12-3, 12-5</td>
</tr>
<tr>
<td>Tip</td>
<td>12-5</td>
</tr>
<tr>
<td>Total Aspiration and Dispense Monitoring</td>
<td>2-4, 12-5</td>
</tr>
<tr>
<td>Tube</td>
<td>6-9, 6-42, 7-38, 9-4, 12-2, 12-5, 12-11, 12-44</td>
</tr>
<tr>
<td>Wash station</td>
<td>2-5, 8-8, 8-12, 12-20</td>
</tr>
<tr>
<td>Waste</td>
<td>2-8, 5-1, 5-2, 6-10, 6-51, 7-52, 9-2, 12-6, 12-45</td>
</tr>
</tbody>
</table>