Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2-7</td>
</tr>
<tr>
<td>2.1 Overview Sub-Racks</td>
<td>2-8</td>
</tr>
<tr>
<td>2.1.1 Legend Overview Sub-Racks</td>
<td>2-8</td>
</tr>
<tr>
<td>2.2 Top Level Sub-Rack</td>
<td>2-9</td>
</tr>
<tr>
<td>2.2.1 Legend Top Level Sub-Rack</td>
<td>2-9</td>
</tr>
<tr>
<td>2.3 UF Sub-Rack</td>
<td>2-10</td>
</tr>
<tr>
<td>2.3.1 Legend UF Sub-Rack</td>
<td>2-10</td>
</tr>
<tr>
<td>2.4 DF Sub-Rack</td>
<td>2-11</td>
</tr>
<tr>
<td>2.4.1 Legend DF Sub-Rack</td>
<td>2-11</td>
</tr>
<tr>
<td>2.5 Water Inlet Sub-Rack</td>
<td>2-12</td>
</tr>
<tr>
<td>2.5.1 Legend Water Inlet Sub-Rack</td>
<td>2-12</td>
</tr>
<tr>
<td>2.6 Rinsing Bridge</td>
<td>2-13</td>
</tr>
<tr>
<td>2.6.1 Legend Rinsing Bridge</td>
<td>2-13</td>
</tr>
<tr>
<td>2.7 Rear Door</td>
<td>2-14</td>
</tr>
<tr>
<td>2.7.1 Legend Rear Door</td>
<td>2-14</td>
</tr>
<tr>
<td>2.8 TFT Monitor</td>
<td>2-15</td>
</tr>
<tr>
<td>2.8.1 Legend TFT Monitor</td>
<td>2-15</td>
</tr>
<tr>
<td>2.9 Power Board 1 PB1</td>
<td>2-16</td>
</tr>
<tr>
<td>2.9.1 Legend Power Board 1 PB1</td>
<td>2-16</td>
</tr>
<tr>
<td>2.10 Power Board 2 PB2</td>
<td>2-17</td>
</tr>
<tr>
<td>2.10.1 Legend Power Board 2 PB2</td>
<td>2-17</td>
</tr>
<tr>
<td>2.11 Supervisor Board SB</td>
<td>2-18</td>
</tr>
<tr>
<td>2.11.1 Legend Supervisor Board SB</td>
<td>2-18</td>
</tr>
<tr>
<td>2.12 Controller Board CB</td>
<td>2-19</td>
</tr>
<tr>
<td>2.12.1 Legend Controller Board CB</td>
<td>2-19</td>
</tr>
<tr>
<td>2.13 Switch Mode Power Supply SMPS (Benning)</td>
<td>2-20</td>
</tr>
<tr>
<td>2.13.1 Legend Switch Mode Power Supply SMPS</td>
<td>2-20</td>
</tr>
<tr>
<td>2.14 Front Door</td>
<td>2-21</td>
</tr>
<tr>
<td>2.14.1 Legend Front Door</td>
<td>2-21</td>
</tr>
<tr>
<td>2.15 Flow Diagram</td>
<td>2-22</td>
</tr>
</tbody>
</table>
2. Technical System Description

2.15.1 Legend Flow Diagram

2.16 Description Flow Diagram

2.16.1 Water Inlet Section with Upline Tank

2.16.2 Degassing Circuit with Temperature System

2.16.3 Dialysate Processing

2.16.4 Central Bicarbonate and Concentrate Supply

2.16.5 BIC Cartridge Holder

2.16.6 Balance Chamber System

2.16.7 Working Principle Balance Chamber System

2.16.8 Ultrafiltration and Rinsing Bridge

2.16.9 Disinfection and Cleaning Program

2.17 Block Diagram

2.17.1 Legend Block Diagram

2.18 TFT Monitor

2.18.1 Description TFT Monitor

2.19 ABPM Option (Non-Invasive Blood Pressure Measurement)

2.19.1 Wiring Diagram ABPM Option

2.20 bioLogic RR Option (Automatic Blood Pressure Stabilisation)

2.21 Supervisor Board SB

2.21.1 Supervisor

2.21.1.1 Block Diagram Supervisor

2.21.1.2 Description Supervisor

2.22 Bicarbonate Conductivity Measurement

2.22.1 Block Diagram Bicarbonate Conductivity Measurement

2.22.2 Description Bicarbonate Conductivity Measurement

2.23 END Conductivity Measurement Controller

2.23.1 Description END Conductivity Measurement Controller

2.23.2 END Conductivity Measurement Supervisor

2.23.3 Block Diagram END Conductivity Measurement Supervisor

2.23.4 Description END Conductivity Measurement Supervisor

2.24 Temperature Measurement

2.24.1 Block Diagram Degassing Temperature Measurement

2.24.2 Design Degassing Temperature Measurement

2.24.3 Description Bicarbonate Temperature Measurement
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.24.4</td>
<td>Description Dialysate Controller Temperature Measurement</td>
<td>2-43</td>
</tr>
<tr>
<td>2.24.5</td>
<td>Block Diagram Dialysate Supervisor Temperature Measurement</td>
<td>2-44</td>
</tr>
<tr>
<td>2.24.6</td>
<td>Description Temperature Measurement Dialysate Supervisor</td>
<td>2-44</td>
</tr>
<tr>
<td>2.25</td>
<td>Level Measurement</td>
<td>2-44</td>
</tr>
<tr>
<td>2.25.1</td>
<td>Block Diagram Level Measurement Upline Tank</td>
<td>2-44</td>
</tr>
<tr>
<td>2.25.2</td>
<td>Description Level Measurement Upline Tank</td>
<td>2-44</td>
</tr>
<tr>
<td>2.26</td>
<td>Reed Contacts</td>
<td>2-45</td>
</tr>
<tr>
<td>2.26.1</td>
<td>Block Diagram Coupling Status</td>
<td>2-45</td>
</tr>
<tr>
<td>2.26.2</td>
<td>Description Coupling Status</td>
<td>2-45</td>
</tr>
<tr>
<td>2.27</td>
<td>Pressure Measurement</td>
<td>2-45</td>
</tr>
<tr>
<td>2.27.1</td>
<td>Block Diagram Venous Pressure Measurement</td>
<td>2-45</td>
</tr>
<tr>
<td>2.27.2</td>
<td>Description Venous Pressure Measurement</td>
<td>2-45</td>
</tr>
<tr>
<td>2.27.3</td>
<td>Block Diagram Arterial Pressure Measurement</td>
<td>2-46</td>
</tr>
<tr>
<td>2.27.4</td>
<td>Description Arterial Pressure Measurement</td>
<td>2-46</td>
</tr>
<tr>
<td>2.28</td>
<td>Blood Inlet Pressure Measurement</td>
<td>2-46</td>
</tr>
<tr>
<td>2.28.1</td>
<td>Block Diagram Blood Inlet Pressure Measurement</td>
<td>2-46</td>
</tr>
<tr>
<td>2.28.2</td>
<td>Description Blood Inlet Pressure Measurement</td>
<td>2-46</td>
</tr>
<tr>
<td>2.29</td>
<td>Level Sensors</td>
<td>2-47</td>
</tr>
<tr>
<td>2.29.1</td>
<td>Block Diagram Level Sensors Air Separator</td>
<td>2-47</td>
</tr>
<tr>
<td>2.29.2</td>
<td>Description Level Sensors Air Separator</td>
<td>2-47</td>
</tr>
<tr>
<td>2.30</td>
<td>Red Detector</td>
<td>2-47</td>
</tr>
<tr>
<td>2.30.1</td>
<td>Block Diagram Red Detector</td>
<td>2-47</td>
</tr>
<tr>
<td>2.30.2</td>
<td>Description Red Detector</td>
<td>2-47</td>
</tr>
<tr>
<td>2.31</td>
<td>Degassing Pressure Measurement and Dialysate Pressure Measurement</td>
<td>2-48</td>
</tr>
<tr>
<td>2.31.1</td>
<td>Block Diagram Pressure Measurement</td>
<td>2-48</td>
</tr>
<tr>
<td>2.31.2</td>
<td>Description Pressure Measurement</td>
<td>2-48</td>
</tr>
<tr>
<td>2.32</td>
<td>Monitoring Analogue 12 V Voltage Supply</td>
<td>2-48</td>
</tr>
<tr>
<td>2.32.1</td>
<td>Block Diagram Monitoring of Analogue 12 V Voltage Supply</td>
<td>2-48</td>
</tr>
<tr>
<td>2.32.2</td>
<td>Description Monitoring of Analogue 12 V Voltage Supply</td>
<td>2-48</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.33</td>
<td>Safety Air Detector SAD and Venous Red Detector RDV</td>
<td>2-49</td>
</tr>
<tr>
<td>2.33.1</td>
<td>Block Diagram SAD/RDV</td>
<td>2-49</td>
</tr>
<tr>
<td>2.33.2</td>
<td>General Information SAD</td>
<td>2-49</td>
</tr>
<tr>
<td>2.33.3</td>
<td>Description Safety Air Detector SAD</td>
<td>2-50</td>
</tr>
<tr>
<td>2.33.4</td>
<td>Description Venous Red Detector RDV</td>
<td>2-52</td>
</tr>
<tr>
<td>2.34</td>
<td>Blood Leak Detector</td>
<td>2-53</td>
</tr>
<tr>
<td>2.34.1</td>
<td>Block Diagram Blood Leak Detector</td>
<td>2-53</td>
</tr>
<tr>
<td>2.34.2</td>
<td>Description Blood Leak Detector</td>
<td>2-53</td>
</tr>
<tr>
<td>2.35</td>
<td>Controller Board CB</td>
<td>2-54</td>
</tr>
<tr>
<td>2.35.1</td>
<td>Block Diagram Controller Board</td>
<td>2-54</td>
</tr>
<tr>
<td>2.35.2</td>
<td>Description Controller Board</td>
<td>2-55</td>
</tr>
<tr>
<td>2.36</td>
<td>Power Board 1 PB1</td>
<td>2-57</td>
</tr>
<tr>
<td>2.36.1</td>
<td>Block Diagram Power Board 1</td>
<td>2-57</td>
</tr>
<tr>
<td>2.36.2</td>
<td>Description Power Board 1</td>
<td>2-57</td>
</tr>
<tr>
<td>2.37</td>
<td>Power Board 2 PB2</td>
<td>2-59</td>
</tr>
<tr>
<td>2.37.1</td>
<td>Block Diagram Power Board 2</td>
<td>2-59</td>
</tr>
<tr>
<td>2.37.2</td>
<td>Description Power Board 2</td>
<td>2-60</td>
</tr>
<tr>
<td>2.38</td>
<td>Heparin Pump Compact</td>
<td>2-62</td>
</tr>
<tr>
<td>2.38.1</td>
<td>Block Diagram Heparin Pump Compact</td>
<td>2-62</td>
</tr>
<tr>
<td>2.38.2</td>
<td>Description Heparin Pump Compact</td>
<td>2-62</td>
</tr>
<tr>
<td>2.39</td>
<td>Single Needle Cross Over</td>
<td>2-64</td>
</tr>
<tr>
<td>2.39.1</td>
<td>Block Diagram SN Cross Over</td>
<td>2-64</td>
</tr>
<tr>
<td>2.39.2</td>
<td>Description SN Cross Over</td>
<td>2-65</td>
</tr>
<tr>
<td>2.40</td>
<td>Staff Call (Option)</td>
<td>2-66</td>
</tr>
<tr>
<td>2.40.1</td>
<td>Block Diagram Staff Call</td>
<td>2-66</td>
</tr>
<tr>
<td>2.40.2</td>
<td>Description Staff Call</td>
<td>2-66</td>
</tr>
<tr>
<td>2.40.3</td>
<td>Operating Modes Staff Call System</td>
<td>2-67</td>
</tr>
<tr>
<td>2.40.4</td>
<td>Block Diagram Alarm Monitoring</td>
<td>2-67</td>
</tr>
<tr>
<td>2.40.5</td>
<td>Pin Assignment</td>
<td>2-67</td>
</tr>
<tr>
<td>2.41</td>
<td>Switch Mode Power Supply SMPS (Benning)</td>
<td>2-68</td>
</tr>
<tr>
<td>2.41.1</td>
<td>Block Diagram Switch Mode Power Supply</td>
<td>2-68</td>
</tr>
<tr>
<td>2.41.2</td>
<td>System Integration</td>
<td>2-69</td>
</tr>
<tr>
<td>2.41.3</td>
<td>Layout Switch Mode Power Supply SMPS</td>
<td>2-70</td>
</tr>
<tr>
<td>2.41.4</td>
<td>Wiring Diagram Switch Mode Power Supply SMPS with Battery Option</td>
<td>2-71</td>
</tr>
<tr>
<td>2.41.5</td>
<td>Description Switch Mode Power Supply</td>
<td>2-72</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.41.6</td>
<td>Pin Assignment Switch Mode Power Supply</td>
<td>2-72</td>
</tr>
<tr>
<td>2.42</td>
<td>Safety Concept</td>
<td>2-77</td>
</tr>
<tr>
<td>2.42.1</td>
<td>Block Diagram Safety Concept</td>
<td>2-77</td>
</tr>
<tr>
<td>2.42.2</td>
<td>Description Safety Concept</td>
<td>2-78</td>
</tr>
</tbody>
</table>
Dialog+

with the options:

- Double Pump
- BIC Cartridge Holder
- Central Concentrate Supply
General Information

Operation is accomplished via a touch screen (TFT monitor). Two microprocessor systems control and monitor the machine.

The hardware concept consists of the following systems:

- Top Level System
- Low Level System

Top Level System

The top level system consists of the following components:

- Communication module
- Top level controller TLC (motherboard)
- Hard disk drive
- Floppy disk drive
- ABPM (option)

The communication between the user and the machine is performed via the top level.

Example data exchange to communication module:

- Entry via input mask of the touch screen or keyboard
- Output via the output mask of the TFT monitor

Example data exchange to low level:

- Transmitting and receiving of data from/to low level controller

Low Level System

The low level system consists of the following components:

- Low level controller LLC
- Supervisor SB
- Power board PB1 and power board PB2

The low level controls and monitors all functions.

Example data exchange to top level controller:

- Transmitting and receiving of data from/to low level controller

Example data exchange low level controller to supervisor:

- Transmitting and receiving messages, data and commands from/to supervisor

All sensors are connected to the processor system via the supervisor board. The actuators, motors and valves are driven via the power boards 1 and 2.
2.1 Overview Sub-Racks

2.1.1 Legend Overview Sub-Racks

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top Level Sub-Rack</td>
</tr>
<tr>
<td>2</td>
<td>UF Sub-Rack</td>
</tr>
<tr>
<td>3</td>
<td>DF Sub-Rack</td>
</tr>
<tr>
<td>4</td>
<td>Water Inlet Sub-Rack</td>
</tr>
</tbody>
</table>
2.2 Top Level Sub-Rack

2.2.1 Legend Top Level Sub-Rack

1 Hard Disk Drive
2 Motherboard

Fig.: Top Level Sub-Rack
2.3 UF Sub-Rack

2.3.1 Legend UF Sub-Rack

- Air Separator LA
- Air Separator Valve VLA
- Balance Chamber BK1/2
- Bypass Valve VBP
- Dialyser Inlet Throttle DDE
- Dialyser Inlet Valve VDEBK1
- Dialyser Inlet Valve VDEBK2
- Dialyser Outlet Valve Balance Chamber VABK1
- Dialyser Outlet Valve Balance Chamber VABK2
- Dialyser Outlet Valve Balance Chamber VDABK1
- Dialyser Outlet Valve Balance Chamber VDABK2
- Inlet Valve Balance Chamber VEBK1
- Inlet Valve Balance Chamber VEBK2
- Membrane Position Sensor Balance Chamber MSBK1/2
- Outlet Flow Pump FPA
- Outlet Flow Pump Throttle RVFPA
2.4 DF Sub-Rack

Fig.: DF Sub-Rack

2.4.1 Legend DF Sub-Rack

- BIC Pump: BICP
- Bicarbonate Conductivity: BICLF
- Bicarbonate Temperature Sensor: TSBIC
- Bicarbonate Throttle: RVB
- Concentrate Pump: KP
- Concentrate Throttle: RVK
- Degassing Chamber: EK
- Degassing Control Valve: RVE
- Degassing Pressure Sensor: PE
- Degassing Pump: EP
- Dialysate Temperature Sensor Supervisor: TSD-S
- Dialysate Temperature Sensor: TSD
- END Conductivity/Supervisor: ENDLF/ENDLF-S
- Inlet Flow Pump: FPE
- Inlet Flow Pump Throttle: RVFPE
- UF Pump: UFP
2.5 Water Inlet Sub-Rack

2.5.1 Legend Water Inlet Sub-Rack

Degassing Chamber EK
Degassing Control Valve RVE
Degassing Pressure Sensor PE
Degassing Pump EP
Degassing Temperature Sensor TSE
Heat Exchanger WT (Option)

Heater H
Heater Inlet Temperature Sensor TSHE
Heater Temperature Sensor TSH
Pressure Reducer Valve DMV
Upline Tank Inlet Valve VVBE
Upline Tank VB

Fig.: Water Inlet Sub-Rack (with and without Heat Exchanger WT Option)
2.6 Rinsing Bridge

Fig.: Rinsing Bridge

2.6.1 Legend Rinsing Bridge

1. Disinfection Valve VD
2. Pressure Sensor Dialysate Outlet PDA
3. Dialyser Inlet Valve VDE
4. Blood Leak Detector BL
2.7 Rear Door

2.7.1 Legend Rear Door

- BIC Cartridge Holder Board **BIC-KV** (Option)
- Controller Board **CB**
- HDF Online Power Board **HOP** (Option)
- HFS 2 Board **HFS2** with TSHE (Option) (2)
- Fan (1)
- Power Board 1 **PB1**
- Power Board 2 **PB2**
- SAKA Board **SAKA** with TSHE (Option) (2)
- Switch Mode Power Supply **SMPS**
- Supervisor Board **SB**
- Heater Inlet Temperature Sensor Board **TSHE** (2)
2.8 TFT Monitor

2.8.1 Legend

- TFT Monitor
- Backlight Inverter Board BIB
- Front Panel Board FPB
- Optical Status Display Board OSDB
- TFT Monitor TFT
- Touch Controller Board TCB
- Touch Screen
2.9 Power Board 1 PB1

Fig.: Power Board 1 PB1

2.9.1 Legend Power Board 1 PB1

- **P1** Arterial Blood Pump BPA
- **P2** Supervisor Board SB
- **P3** Voltage Supply
- **P4** Sensors Blood Pump
- **P5** Inlet Flow Pump FPE
- **P6** Outlet Flow Pump FPA
- **P7** Degassing Pump EP

Cover switch
2.10 Power Board 2 PB2

2.10.1 Legend Power Board 2 PB2

- **P1** for Valves and SAKV:
 - Upline Tank Inlet Valve **RVV8**
 - Degassing Control Valve **RVE**
 - Venous Tubing Clamp Currentles Closed **SAKV-SG**
 - Dialyser Outlet Valve **VDA**
 - Dialyser Inlet Valve **VDE**
 - Balance Chamber Valves **VABK1/2, VDABK1/2, VEBK1/2, VDEBK1/2**
 - Air Separator Valve **VLA**
 - Circulation Valve **VZ**
 - Bypass Valve **VBP**

- **P2** Supervisor Board **SB**
- **P3** Piston Pumps:
 - Concentrate Pump **KP**
 - Bicarbonate Pump **BICP**
 - Ultrafiltration Pump **UFP**
- **P4** Voltage Supply
- **P5** Disinfection Valve **VD**
2.11 Supervisor Board SB

Fig.: Supervisor Board SB

2.11.1 Legend Supervisor Board SB

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Pressure Sensor PBE</td>
</tr>
<tr>
<td>P2</td>
<td>Voltages +5 V/±24 V/V+24 VGB/+12 V/−12 VAN</td>
</tr>
<tr>
<td>P3</td>
<td>Voltages +5 VREF/+12 V/−12 VD</td>
</tr>
<tr>
<td>P4</td>
<td>Voltages +5 V/12 VD/−12 VD</td>
</tr>
<tr>
<td>P5</td>
<td>Extension Connector</td>
</tr>
<tr>
<td>P6</td>
<td>Communication Program Adapter</td>
</tr>
<tr>
<td>P7</td>
<td>Hardware Switch:</td>
</tr>
<tr>
<td></td>
<td>Position 0: Therapy Mode</td>
</tr>
<tr>
<td></td>
<td>Position 2: TSM Service Program Mode</td>
</tr>
<tr>
<td></td>
<td>Position 3: Software Update Mode</td>
</tr>
<tr>
<td>P8</td>
<td>BP/EP/FP Signals</td>
</tr>
<tr>
<td>P9</td>
<td>SCB-RX/TX/CTS/RTS Signals</td>
</tr>
<tr>
<td>P10</td>
<td>BL Signals</td>
</tr>
<tr>
<td>P11</td>
<td>REM/HOFF/HREL Signals</td>
</tr>
<tr>
<td>P12</td>
<td>Heparin Pump Signals</td>
</tr>
<tr>
<td>P13</td>
<td>VCS/KSS/RDVL/LED/SAD RTS/CTS/RX Signals</td>
</tr>
<tr>
<td>P14</td>
<td>Staff Call Signals</td>
</tr>
<tr>
<td>P15</td>
<td>Controller Board CB</td>
</tr>
<tr>
<td>P16</td>
<td>BICSS/KSS/RDVL/LED/SAD RTS/CTS/RX Signals</td>
</tr>
<tr>
<td>P17</td>
<td>BP/VBS/SAKA Signals</td>
</tr>
<tr>
<td>P18</td>
<td>BL Signals</td>
</tr>
<tr>
<td>P19</td>
<td>BPV/PBS/SAKA Signals</td>
</tr>
<tr>
<td>P20</td>
<td>BL Signals</td>
</tr>
<tr>
<td>K1</td>
<td>Hardware Switch:</td>
</tr>
<tr>
<td></td>
<td>Position 0: Therapy Mode</td>
</tr>
<tr>
<td></td>
<td>Position 2: TSM Service Program Mode</td>
</tr>
<tr>
<td></td>
<td>Position 3: Software Update Mode</td>
</tr>
</tbody>
</table>
2.12 Controller Board CB

2.12.1 Legend Controller Board CB

P1/P2/P3 Supervisor Board SB

P5 Program Adapter with Memory Card
2.13 Switch Mode Power Supply SMPS (Benning)

2.13.1 Legend Switch Mode Power Supply SMPS

- X1 Mains Input, Heater
- X2 -
- X3 Fluid Warmer (via Relay)
- P2 Supervisor/Watchdog, Service Board
- P3 Battery Connection (Screw Terminal)
- P4 Power Board 1/2
- P5 Supervisor/Controller Board
- P6 Floppy Disk Drive
- P7 Options, Service Board (Service Tool)
- F1/F2 6.25 AT (6.3x32), Mains Input
- F3/F4 3.15 AT (TR5), Fluid Warmer + Monitor
- F5/F6 10 AM (6.3x32), Heater 1800 W (240 V)
- 20 AF (6.3x32), Heater 1800 W (110/120 V)
- F301 3.15 AT (TR5), +5 VD
- F302 5.00 AT (TR5), +5 VD
- F303/ 3.15 AT (TR5), +5 VD
- F304 3.15 AT (TR5), +5 VD
- P8 ABPM
- P9 Fan, Mains Switch
- P10 PC
- P11 Hard Disk Drive
- P12 Options
- P13 -
- P14 EXT ON
- P101 Service Watchdog
- X100 Fan
- F401 1.25 AT (TR5), +12 VD
- F402 5.00 AT (TR5), +12 VD
- F403 1.25 AT (TR5), +12 VDAN
- F600 10 AM (6.3x32), +24 VL
- F601J 3.15 AT (TR5), +24 VGB
- F602 -
2.14 Front Door

2.14.1 Legend Front Door

Arterial Blood Pump BPA
Arterial Pressure Sensor PA
Arterial Tubing Clamp SAKA-SG
Cover for Suction Rods 2
Heparin Pump Compact HP
Pressure Sensor PBE

Pressure Sensor PBS/SN
Safety Air Detector SAD/Venous Red Detector RDV
Substitution Port 1
Venous Blood Pump BPV
Venous Pressure Sensor PV
Venous Tubing Clamp Currentles Closed SAKV-SG
2.15 Flow Diagram

Rinsing Bridge
Spülbrücke
Pyrogen Filter
Pyrogenfilter
UF Sub-Rack
UF-Einschub
DF Sub-Rack
DF-Einschub
Water Sub-Rack
Wasser-Einschub
Disinfectant
Desinfektionsmittel
(Rear Side of Unit)
(Bi-Carbonate Concentrate)
Central Bi-Carbonate Supply
Central Konzertv. Konzentrat
Acid Concentrate
Bicarbonate Concentrate
2. Technical System Description

2.15.1 Legend Flow Diagram

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>Bicarbonate Withdrawal Rod</td>
</tr>
<tr>
<td>BICLF</td>
<td>Bicarbonate Conductivity</td>
</tr>
<tr>
<td>BICP</td>
<td>Bicarbonate Pump</td>
</tr>
<tr>
<td>BICSS</td>
<td>Bicarbonate Rinsing Connection Sensor</td>
</tr>
<tr>
<td>BK1</td>
<td>Balance Chamber 1</td>
</tr>
<tr>
<td>BK2</td>
<td>Balance Chamber 2</td>
</tr>
<tr>
<td>BL</td>
<td>Blood Leak Detector</td>
</tr>
<tr>
<td>BPA</td>
<td>Arterial Blood Pump</td>
</tr>
<tr>
<td>BPV</td>
<td>Venous Blood Pump</td>
</tr>
<tr>
<td>BVA</td>
<td>Bicarbonate Supply Connection (Central Supply)</td>
</tr>
<tr>
<td>DBK</td>
<td>Throttle Bicarbonate Cartridge Holder</td>
</tr>
<tr>
<td>DDE</td>
<td>Throttle Dialyser Inlet</td>
</tr>
<tr>
<td>DMV</td>
<td>Pressure Reducer Valve</td>
</tr>
<tr>
<td>EK</td>
<td>Degassing Chamber</td>
</tr>
<tr>
<td>ENDLF</td>
<td>END Conductivity</td>
</tr>
<tr>
<td>ENDLF-S</td>
<td>END Conductivity Supervisor</td>
</tr>
<tr>
<td>EP</td>
<td>Degassing Pump</td>
</tr>
<tr>
<td>FB</td>
<td>Filter Bicarbonate</td>
</tr>
<tr>
<td>FBIC</td>
<td>Filter Bicarbonate Cartridge</td>
</tr>
<tr>
<td>FBK1</td>
<td>Filter Balance Chamber 1</td>
</tr>
<tr>
<td>FBK2</td>
<td>Filter Balance Chamber 2</td>
</tr>
<tr>
<td>FK</td>
<td>Filter Concentrate</td>
</tr>
<tr>
<td>FM</td>
<td>Flowmeter</td>
</tr>
<tr>
<td>FPA</td>
<td>Outlet Flow Pump</td>
</tr>
<tr>
<td>FPE</td>
<td>Inlet Flow Pump</td>
</tr>
<tr>
<td>FVD</td>
<td>Filter from Dialysate</td>
</tr>
<tr>
<td>H</td>
<td>Heater</td>
</tr>
<tr>
<td>HP</td>
<td>Heparin Syringe Pump</td>
</tr>
<tr>
<td>KE</td>
<td>Concentrate Withdrawal Rod</td>
</tr>
<tr>
<td>KP</td>
<td>Concentrate Pump</td>
</tr>
<tr>
<td>KSS</td>
<td>Concentrate Rinsing Connector Sensor</td>
</tr>
<tr>
<td>KVA</td>
<td>Concentrate Supply Connector (Central Supply)</td>
</tr>
<tr>
<td>LA</td>
<td>Air Separator</td>
</tr>
<tr>
<td>LAB1</td>
<td>Air Separator BIC Cartridge Holder 1</td>
</tr>
<tr>
<td>LAB2</td>
<td>Air Separator BIC Cartridge Holder 2</td>
</tr>
<tr>
<td>LAFS</td>
<td>Air Separator Level Sensors</td>
</tr>
<tr>
<td>LVD</td>
<td>Light Barrier Disinfection Valve</td>
</tr>
<tr>
<td>MSBK1</td>
<td>Membrane Position Sensor Balance Chamber 1</td>
</tr>
<tr>
<td>MSBK2</td>
<td>Membrane Position Sensor Balance Chamber 2</td>
</tr>
<tr>
<td>NSVB</td>
<td>Level Sensor Upline Tank</td>
</tr>
<tr>
<td>PA</td>
<td>Arterial Pressure Sensor</td>
</tr>
<tr>
<td>PBE</td>
<td>Pressure Sensor Blood Inlet</td>
</tr>
<tr>
<td>PBS</td>
<td>Blood Pressure Control Sensor</td>
</tr>
<tr>
<td>PDA</td>
<td>Pressure Sensor Dialysate Outlet</td>
</tr>
<tr>
<td>PE</td>
<td>Degassing Pressure Sensor</td>
</tr>
<tr>
<td>PV</td>
<td>Venous Pressure Sensor</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>RDV</td>
<td>Venous Red Detector</td>
</tr>
<tr>
<td>RVB</td>
<td>Throttle Bicarbonate</td>
</tr>
<tr>
<td>RVDA</td>
<td>Throttle Dialysate Valve</td>
</tr>
<tr>
<td>RVE</td>
<td>Degassing Control Valve</td>
</tr>
<tr>
<td>RVFP</td>
<td>Throttle Flow Pump Outlet</td>
</tr>
<tr>
<td>RVFPE</td>
<td>Throttle Flow Pump Inlet</td>
</tr>
<tr>
<td>RVK</td>
<td>Throttle Concentrate</td>
</tr>
<tr>
<td>RVUF</td>
<td>Throttle Ultrafiltration</td>
</tr>
<tr>
<td>SAD</td>
<td>Safety Air Detector</td>
</tr>
<tr>
<td>SAKA</td>
<td>Arterial Tubing Clamp</td>
</tr>
<tr>
<td>SAKV-SD</td>
<td>Venous Tubing Clamp Currentles Closed</td>
</tr>
<tr>
<td>SBS1</td>
<td>Rinsing Bridge Connector Sensor 1</td>
</tr>
<tr>
<td>SBS2</td>
<td>Rinsing Bridge Connector Sensor 2</td>
</tr>
<tr>
<td>TSBIC</td>
<td>Bicarbonate Temperature Sensor</td>
</tr>
<tr>
<td>TSD</td>
<td>Dialysate Temperature Sensor</td>
</tr>
<tr>
<td>TSD-S</td>
<td>Dialysate Temperature Sensor Supervisor</td>
</tr>
<tr>
<td>TSE</td>
<td>Degassing Temperature Sensor</td>
</tr>
<tr>
<td>TSH</td>
<td>Thermal Fuse Heater Element</td>
</tr>
<tr>
<td>TSHE</td>
<td>Heater Inlet Temperature Sensor</td>
</tr>
<tr>
<td>UFP</td>
<td>Ultrafiltration Pump</td>
</tr>
<tr>
<td>VABK1</td>
<td>Outlet Valve Balance Chamber 1</td>
</tr>
<tr>
<td>VABK2</td>
<td>Outlet Valve Balance Chamber 2</td>
</tr>
<tr>
<td>VB</td>
<td>Upline Tank</td>
</tr>
<tr>
<td>VBICP</td>
<td>Bicarbonate Pump Valve</td>
</tr>
<tr>
<td>VBKO</td>
<td>Bicarbonate Cartridge Holder Top Valve</td>
</tr>
<tr>
<td>VBKS</td>
<td>Bicarbonate Cartridge Holder Concentrate Rod Valve</td>
</tr>
<tr>
<td>VBP</td>
<td>Bypass Valve</td>
</tr>
<tr>
<td>V.D.</td>
<td>Dialyser Coupling (from Dialysate)</td>
</tr>
<tr>
<td>VD</td>
<td>Disinfection Valve</td>
</tr>
<tr>
<td>VDA</td>
<td>Dialyser Outlet Valve</td>
</tr>
<tr>
<td>VDABK1</td>
<td>Dialyser Outlet Valve Balance Chamber 1</td>
</tr>
<tr>
<td>VDABK2</td>
<td>Dialyser Outlet Valve Balance Chamber 2</td>
</tr>
<tr>
<td>VDE</td>
<td>Dialyser Inlet Valve</td>
</tr>
<tr>
<td>VDEBK1</td>
<td>Dialyser Inlet Valve Balance Chamber 1</td>
</tr>
<tr>
<td>VDEBK2</td>
<td>Dialyser Inlet Valve Balance Chamber 2</td>
</tr>
<tr>
<td>VEBK1</td>
<td>Inlet Valve Balance Chamber 1</td>
</tr>
<tr>
<td>VEBK2</td>
<td>Inlet Valve Balance Chamber 2</td>
</tr>
<tr>
<td>VLA</td>
<td>Air Separator Valve</td>
</tr>
<tr>
<td>VVB</td>
<td>Upline Tank Valve</td>
</tr>
<tr>
<td>VVBE</td>
<td>Upline Tank Inlet Valve</td>
</tr>
<tr>
<td>VZ</td>
<td>Circulation Valve</td>
</tr>
<tr>
<td>WT</td>
<td>Heat Exchanger</td>
</tr>
<tr>
<td>Z.D.</td>
<td>Dialyser Coupling (to Dialysate)</td>
</tr>
</tbody>
</table>
2.16 Description Flow Diagram

The flow diagram can be divided into six sections:
- Water Inlet Section with Upline Tank
- Degassing Circuit with Temperature System
- Dialysate Processing
- Balance Chamber
- Ultrafiltration
- Rinsing Bridge

2.16.1 Water Inlet Section with Upline Tank

The water inlet section has the following components:
- Pressure Reducer Valve DMV
- Upline Tank Inlet Valve VVBE (2/2 way valve)
- Upline Tank VB
- Level Sensors Upline Tank NSVB
- Heat Exchanger WT (Option)

![Flow Diagram of Water Inlet with Upline Tank]

Pressure Reducer Valve DMV
The pressure reducer valve DMV limits the pressure of the inlet water (e.g. osmosis water) to a maximum of approx. 1.3 bar.

Upline Tank Inlet Valve VVBE
The valve VVBE is time-delayed controlled via the level sensor NSVB (top) in the upline tank VB. The delay time depends on the dialysate flow.

Level Sensors Upline Tank NSVB
The level sensors are mounted in the upline tank.
- NSVB top: closed - VVBE is closed
- NSVB bottom (monitoring low water level): closed (alarm) - Water inlet is disturbed
 - Heater is switched off

Heat Exchanger WT (Option)
The cold inlet water can be warmed up via the optional heat exchanger WT. Thereby the heat consumption to heat up the water can be reduced.

Fig. : Water Inlet with Upline Tank
2.16.2 Degassing Circuit with Temperature System

The degassing circuit with temperature system has the following components:

- Degassing Control Valve RVE
- Degassing Pressure Sensor PE
- Degassing Chamber EK
- Degassing Pump EP
- Thermal Fuse Heater Element TSH
- Temperature Sensor Heater Inlet TSHE
- Heater Element H
- Degassing Temperature Sensor TSE

The control valve RVE, pressure sensor PE, degassing chamber EK and degassing pump EP produce and measure a negative pressure respectively. The negative pressure is produced to separate the dissolved gas from the water.

The control valve RVE reduces the flow (throttle principle) depending on the measured pressure at the pressure sensor PE. Thereby the desired negative pressure is gained between the control valve RVE and the degassing pump EP. The value of the negative pressure is approx. -500 mmHg and thus always higher than the lower pressure of the dialysate behind the dialyser. The degassing pump works with constant speed, which is determined by the dialysate, unless the negative pressure is insufficient at the smallest opening of RVE. Then the speed of EP is increased.

The heater H has an integrated thermal fuse TSH as a thermal cut-off. The temperature sensor TSE measures the actual temperature posterior to the heater.

The temperature of the water inlet determines the amount of heat which the heater must supply, to replace the amount of heat (dialysate flow and dialysate temperature) withdrawn by the drainage.

The differential temperature between the heater inlet (TSHE) and the heater outlet (TSE) determines the controlled variable for the heater, depending on the dialysate flow and dialysate temperature.
2.16.3 Dialysate Processing

The dialysate processing has the following components:

- Bicarbonate Concentrate Pump BICP
- Bicarbonate Throttle RVB
- Bicarbonate Temperature Sensor TSBIC
- Bicarbonate Conductivity BICLF
- Concentrate Pump KP
- Concentrate Throttle RVK
- END Conductivity ENDLF
- END Conductivity Supervisor ENDLF-S
- Dialysate Temperature Sensor TSD
- Dialysate Temperature Sensor Supervisor TSD-S
- Inlet Flow Pump FPE
- Inlet Flow Pump Throttle RVFPE

The main components of the dialysate preparation are the bicarbonate concentrate pump BICP and the concentrate pump KP, with the conductivity cells BICLF and ENDLF and a flow pump FPE. The flow pump FPE delivers the dialysate. The bicarbonate concentrate, which is added via the bicarbonate pump BICP, is measured by the conductivity measurement cell BICLF. Thereby the pump can control the given conductivity set-point value.

The concentrate or acid concentrate addition has the same working principle. The nonreturn valves RVB and RVK stabilise the dosage of the bicarbonate and concentrate.

The temperature sensors TSBIC and TSD are responsible for:

- the temperature compensation of the conductivity measurement and
- temperature measurement TSD after the addition of cold concentrate (second measurement sensor for temperature system) and thus compensation of temperature loss.

The conductivity sensor ENDLFS is an independent monitoring unit (supervisor). The geometry of the ENDLFS sensor is different (but has the same cell constant) than the ENDLF sensor of the controller. Thereby a deposit on the sensor can be identified. The temperature compensation is carried out by the temperature sensor TSDS. The temperature sensor additionally monitors the dialysate flow temperature for the supervisor. The ENDLFS and TSDS sensors have no influence on the respective control.

The throttle RVFPE prevents a high pressure build-up and thus a bursting of tubing if the flow path is blocked behind FPE. If the set pressure is reached RVFPE is opened and the fluid can circulate.
2.16.4 Central Bicarbonate and Concentrate Supply

A canister or central supply can be selected via the bicarbonate and concentrate supply connection BVA and KVA. The supply connection is an option.

The flow pump FPE guarantees a continuous control of the desired dialysate flow into the balance chambers.

The flow rate is determined by the filling time of the balance chamber. The flow pump FPE is controlled via the predetermined volume of the chamber and a continuous detection of the position of the membrane.

2.16.5 BIC Cartridge Holder

- **DBK** (Throttle Bicarbonate Cartridge Holder)
 DBK ensures a constant pressure (approx. 200 mmHg) during the filling of the bicarbonate cartridge.

- **LAB1** (Air Separator BIC Cartridge Holder 1)
 LAB1 ensures that only fluid can enter the bicarbonate cartridge.

- **VBKO** (Bicarbonate Cartridge Holder Top Valve)
 The bicarbonate cartridge is filled to the limit pressure (200 mmHg) after VBKO opens.

- **VBKS** (Bicarbonate Cartridge Holder Concentrate Rod Valve)
 The bicarbonate cartridge is vented during preparation and in therapy, i.e. VBKO closes and VBKS opens for a short time. This is repeated in regular intervals during therapy. VBKS is opened after the end of the therapy to empty the bicarbonate cartridge.

- **VBICP** (Bicarbonate Pump Valve)
 If VBICP is opened the liquid level in LAB2 is increased. VBICP switches the BIC pump in bypass after the end of the therapy to empty the bicarbonate cartridge.

- **LAB2** (Air Separator BIC Cartridge Holder 2)
 LAB2 serves as a buffer chamber for the bicarbonate cartridge (and canister) to prevent conductivity malfunctions/deviations during therapy.

- **VVB** (Upline Tank Valve)
 VVB cuts off the main flow after the end of the therapy to empty the bicarbonate cartridge via FPE (VBICP and VBKS are opened).

Fig.: BIC Cartridge Holder (Option)
2.16.6 Balance Chamber System

The balance chamber system has the following components:

- Balance Chamber BK1
- Balance Chamber BK2
- Balance Chamber Dialyser Inlet Valve VDEBK1 and VDEBK2
- Balance Chamber Inlet Valve VEBK1 and VEBK2
- Balance Chamber Membrane Position Sensor MSBK1 and MSBK2
- Balance Chamber Dialyser Outlet Valve VDABK1 and VDABK2
- Balance Chamber Outlet Valve VABK1 and VABK2

The measurement and control of the ultrafiltration rate is accomplished by the double balance chamber system and the ultrafiltration pump UFP.

Both balance chambers BK1 and BK2 are identical. The chambers have flexible membranes, which can be moved to both sides. The membranes divide the chambers into two sub-compartments. The flow direction is defined by the membranes and the eight solenoid valves. The position of the membranes is measured by inductive membrane position sensors MSBK1 and MSBK2. The membrane position sensors (ferrites) are connected to the membranes and each move in a respective coil MSBK1 and MSBK2.

2.16.7 Working Principle Balance Chamber System

Phase 1:

The balance chamber BK1 is filled with dialysate at the beginning of phase 1. The membrane is in right position. The valves VDEBK1 and VDABK1 are opened. The balance chamber BK1 is filled by the outlet flow pump FPA, via valve VDABK1. Simultaneously the dialysate is removed from the balance chamber BK1 via valve VDEBK1. Phase 1 is completed and the membrane is in left position (see figure).

The balance chamber BK2 is filled with fresh dialysate during this period. The used dialysate from the previous phase 2 is drained (see description phase 2).
Phase 2: After phase 1 is completed there is an automatic switch to the filled balance chamber BK2 to obtain a constant flow in the dialyser. The complete cycle is repeated in phase 2, i.e. valves VDEBK2 and VDABK2 are opened. The balance chamber BK2 is filled via valve VDABK2. Simultaneously the dialysate is drained from the balance chamber BK2 via valve VDEBK2. Phase 2 is completed and the membrane is in left position (see figure).

Simultaneously the balance chamber BK1 is filled with fresh dialysate. Therefore valve VEBK1 is opened. Valve VABK1 is also opened, to initiate the flow path for the used dialysate to the drain. The membrane moves to the right position.

The outlet fluid volume is equal to the returned fluid volume, due to the closed balance chamber system.

The fluid volume removed from the closed system via the ultrafiltration pump UFP is replaced from the blood in the dialyser and equals the precise ultrafiltration volume.

The system is initialised in preparation, i.e. the membrane sensors are automatically calibrated and the speed of the flow pumps FPE and FPA are determined. Thus a synchronisation of the membranes is guaranteed, and the pump speeds for the desired flow are determined.
2.16.8 Ultrafiltration and Rinsing Bridge

The main flow path and bypass have the following components:

- Dialyser Inlet Throttle DDE
- Dialyser Inlet Valve VDE
- Dialyser Outlet Valve VDA
- Bypass Valve VBP
- Outlet Flow Pump FPA

The flow path for the main flow and bypass are determined by the valves VDE, VDA and VBP. The built up flow from the flow pump FPA is stabilised by the throttle DDE. Valves VDE and VBP are closed for sequential therapy (ultrafiltration without dialysate fluid flow). The ultrafiltrate removal is carried out by the ultrafiltration pump UFP.

Further components are:

- Red sensitive blood leak detector BL
- Pressure sensor PDA which monitors the dialysate pressure (also used to calculate TMP)
- Air separator LA with built in level sensors LAFS and air separator valve VLA
- Throttle RVDA functions as a resistance to stabilise the flow of FPE

The throttle RVFPE prevents a high pressure build-up and thus a bursting of tubing if the flow path is blocked behind FPE. If the set pressure is reached RVFPE is opened and the fluid can circulate.

The fluid level is lowered in the air separator LA, due to air bubbles from the dialyser (degassing or possible leakages). The air separator valve VLA is opened if the fluid level is lower than the bottom level sensor. The fluid level is increased, due to the negative pressure for the degassing range, until the level reaches the upper level sensor of the air separator LA.

2.16.9 Disinfection and Cleaning Program

The user can select a disinfection or cleaning program. The position of the couplings are checked by the sensors BICSS, KSS, SBS1 and SBS2. Then the UF pump UFP starts running and builds up a negative pressure against the closed disinfection valve VD. At approx. -200 mmHg VD opens and disinfectant is sucked in by the UFP.

The circulation valve VZ is open and fluid flows into the upline tank VB, because the throttle RVDA acts as a forward resistance. Thereby a quicker heat-up in the hot cleaning program is achieved and thus a reduction of disinfectant. There is no flow of fluid to the drain during suction, heat-up and circulation.
2.17 Block Diagram
2.17.1 Legend Block Diagram

Supervisor Board SB

Controller Sensors
- **BICLF** Bicarbonate Conductivity
- **BICSS** Bicarbonate Rinsing Connection Sensor
- **ENDLF** END Conductivity
- **KSS** Concentrate Rinsing Connector Sensor
- **NSVB** Level Sensor Upline Tank
- **PBE** Pressure Sensor
- **PE** Degassing Pressure Sensor
- **SBS1** Rinsing Bridge Connector Sensor 1
- **SBS2** Rinsing Bridge Connector Sensor 2
- **TSBIC** Bicarbonate Temperature Sensor
- **TSD** Dialysate Temperature Sensor
- **TSE** Degassing Temperature Sensor

Supervisor Sensors
- **ENDLFS** END Conductivity Supervisor
- **TSDS** Dialysate Temperature Sensor Supervisor

Controller/Supervisor Sensors/Actuators
- **BKUS** Bottom Bicarbonate Sensor
- **BL** Blood Leak Detector
- **FEDFFS** DF Filter Detection Sensor
- **FEDHDFS** HD Filter Detection Sensor
- **LAFS** Air Separator Level Sensors
- **M SBK1** Membrane Position Sensor Balance Chamber 1
- **M SBK2** Membrane Position Sensor Balance Chamber 2
- **PA** Arterial Pressure Sensor
- **PDA** Pressure Sensor Dialysate Outlet
- **PSABFS** Port Substitution Drain Sensor
- **PSAUS** Port Substitution Outlet Sensor
- **PV** Venous Pressure Sensor
- **RDV** Venous Red Detector
- **SAD** Safety Air Detector
- **TSHE** Heater Inlet Temperature Sensor
- **VBE** Filter Vent Valve
- **VBICP** BIC Pump Valve
- **VBKS** BIC Concentrate Suction Rod Valve
- **VBKO** Top BIC Cartridge Valve
- **VDF** DF Filter Valve
- **VSAA** Substitution Connection Outlet Valve (drain)
- **VSAE** Substitution Connection Inlet Valve
- **VSB** Substitution Bypass Valve
- **VVB** Upline Tank Valve
Power Board 1 PB1

- **BPA**: Arterial Blood Pump
- **EP**: Degassing Pump
- **FPA**: Outlet Flow Pump
- **FPE**: Inlet Flow Pump

Power Board 2 PB2

- **BICP**: Bicarbonate Pump
- **KP**: Concentrate Pump
- **RVE**: Degassing Control Valve
- **SAKV-SG**: Venous Tubing Clamp (currently closed)
- **UFP**: Ultrafiltration Pump
- **VABK1**: Outlet Valve Balance Chamber 1
- **VABK2**: Outlet Valve Balance Chamber 2
- **VB**: Upline Tank
- **VBP**: Bypass Valve
- **VD**: Disinfection Valve
- **VDA**: Dialyser Outlet Valve
- **VDABK1**: Dialyser Outlet Valve Balance Chamber 1
- **VDABK2**: Dialyser Outlet Valve Balance Chamber 2
- **VDE**: Dialyser Inlet Valve
- **VDEBK1**: Dialyser Inlet Valve Balance Chamber 1
- **VDEBK2**: Dialyser Inlet Valve Balance Chamber 2
- **VEK1**: Inlet Valve Balance Chamber 1
- **VEK2**: Inlet Valve Balance Chamber 2
- **VLA**: Air Separator Valve
- **VVBE**: Upline Tank Inlet Valve
- **VZ**: Circulation Valve

Heparin Pump Comfort Board

- **HP**: Heparin Pump Compact

SN-Crossover Board

- **BPV**: Venous Blood Pump
- **PBS**: Pressure Single Needle
- **PBS-S**: Pressure Single Needle Supervisor
- **SAKA**: Arterial Tubing Clamp

Power Supply

- **H**: Heater Element
- **TSH**: Thermal Fuse Heater Element
2.18 TFT Monitor

2.18.1 Description TFT Monitor

The 15” TFT monitor (TFT=thin film transistor) has a resolution of 1024 x 768 XGA. The TFT housing can be swivelled.

Keyboard

The following settings can be performed via the keyboard:
- Start/stop arterial blood pump BPA
- Increase/decrease speed of arterial blood pump BPA
- Acknowledge alarms
- Acknowledge entries

Display:

Battery Option

Keys:

- Decrease speed of arterial blood pump BPA

Start and stop arterial blood pump BPA

Increase speed of arterial blood pump BPA

Acknowledge alarms

Acknowledge entries

The start/stop key has two integrated yellow LEDs. In both the start and stop keys two red LEDs are integrated. All keys switch a resistor on the supervisor communication board to ground (GND).

Optical Status Displays OSD

An optical status display OSD is integrated into the TFT housing (top left and right). The red LED is cyclically checked during therapy. The following operating statuses are displayed:

- Red: Alarm
- Yellow: Warning
- Green: Trouble-free operation

Touch Screen/Touch Controller Board TCB

The touch screen has a resolution of 4096 x 4096 with a 4-wire technique and has an RS 232 interface (9600 Baud).
Backlight Inverter Board BIB
The backlight inverter board drives four lamps for the TFT monitor.

Front Panel Board FPB
The front panel board has five keys. If a key is pressed a signal is generated for the TLC and LLS.

Three LEDs are integrated in each key. Thus the signals for the TLC are generated. The alarm acknowledge key additionally generates a signal for the LLS.

A charge LED is integrated on the FPB for the battery option.

The volume can be set with a potentiometer. A signal is generated for the TLC. The LLS monitors the signal via the current and the pulse.

The signals are generated for the TLC and LLS for the optical status displays OSDs.

The signals for the brightness of the LEDs (OSD) are generated for the TLC.

The signal (brightness for the TFT) for the backlight inverter board BIB is generated for the TLC.

The signal for the parallel port is generated for the TLC.

The signal for the RS 232 interface is generated for the LLS.

Loudspeaker
A loudspeaker for audible alarms is either integrated in the basic housing. The volume can be set with a potentiometer on the FPB (TFT housing, rear bottom left).
2.19 ABPM Option (None-Invasive Blood Pressure Measurement)

ABPM Option

A none-invasive blood pressure measurement is possible with the ABPM option (automatic blood pressure measurement). The ABPM option works on an oscillometrical basis for the automatical control of the symptomatic hypertonia during dialysis.

The ABPM option can be retrofitted in the dialysis machine.

ABPM Module/ABPM Interface Board

The ABPM option consists of the ABPM module and the ABPM interface board.

Dialog+

The ABPM option will be assembled in the basic housing (left side).

Voltage Supply

The ABPM module is connected to the switch mode power supply via the ABPM interface board (connector P8).

Multi I/O

The ABPM module is connected to the motherboard (COM 3 port) via the ABPM interface board.

2.19.1 Wiring Diagram ABPM Option

Fig.: Wiring Diagram ABPM Option
2.20 bioLogic RR Option (Automatic Blood Pressure Stabilisation)

The bioLogic RR option can be installed and activated subsequently. The ABPM option must be present in the Dialog+ to run the bioLogic RR option.

The software for the bioLogic RR option is installed via an installation diskette. The diskette is automatically marked (assigned to the machine) during installation and subsequently can only be used for this specific Dialog+ machine.

- Installation diskette for bioLogic RR for SW ≥ 6.20

Note

If the TLC software has to be reinstalled or the hard disk drive has to be replaced:

Activate the option bioLogic RR, i.e. use the bioLogic RR installation diskette which belongs to the respective machine and activate again the option.
2.21 Supervisor Board SB

2.21.1 Supervisor

2.21.1.1 Block Diagram Supervisor

The supervisor board connects the low level controller LLC with the peripheral. Additionally the supervisor (monitoring microprocessor) is integrated on the board. The following components are assembled on the board. The sensors are directly connected:

- Bicarbonate Conductivity Measurement
- END Conductivity Measurement Controller
- END Conductivity Measurement Supervisor
- Degassing Temperature Measurement
- Bicarbonate Temperature Measurement
- Dialysate Temperature Measurement Controller
- Dialysate Temperature Measurement Supervisor
- Level Sensors Upline Tank
- Reed Contacts Rinsing Bridge
- Venous Pressure Sensor
- Arterial Pressure Sensor
- Level Sensors in the Air Separator
- Red Sensors
- Degassing Pressure Measurement
- Blood Inlet Pressure Measurement

Additionally the following components are available for monitoring and control:

- Monitoring of analogue 12 V supply voltage
- Synchronisation of actual pump values
The signal processing for the low level controller and supervisor are on the supervisor board. All sensors are connected to this board via plugs. The power board BP1 and PB2 are also connected to this board. Signals for single sensors of the processor system are also processed separately.

Microprocessor
The supervisor has the following components:
- 80C535 CPU
- E²PROM
Connection for:
- Memory Card
- Digital Inputs and Outputs
- Analogue Inputs
- Serial Interface
- Communication with the Controller
- Reset Generator

80C535 CPU
The supervisor CPU (central processing unit) has the following data:
- 8 Bit Processor
- 256 x 8 RAM (internal)
- 6 8 Bit I/O Ports
- 3 16 Bit Counter
- 1 Serial Interface with max. 9600 Baud
- 8 Bit AD Converter with 8 Multiplexer Inputs

Address Decoding Logic
The processor is equipped with a 32 kB external RAM and a 1 MB E²PROM. The program code is stored in the E²PROM. The RAM is used to store data.

Serial E²PROM
The serial E²PROM stores the supervisor sensor calibration data. The data is stored during calibration in the TSM service program and loaded before a therapy is activated.

Digital Inputs and Outputs
Additional signal memory (latches) for the in- and outputs are available, because the implemented ports of the 535 processor are limited. The outputs have open collectors. All inputs have TTL level.

Analogue Inputs
The processor has an internal 8 bit AD converter. The input voltage range is 0 to 5 V. The supervisor monitors the analogue sensors conductivity, temperature and pressure, these are directly connected with the inputs.

Serial Interface
The serial interface is used for the communication with the front panel board FPB (via the SUPBUS). The transfer rate is 9600 baud. The interface works in full duplex mode with V 24 level.

An additional ACIA (asynchronous communications interface adapter) is implemented for the communication with the top level controller via the DIABUS. The ACIA works in full duplex mode with 19200 baud and 24 V level.

Communication with the Controller
The communication with the controller is realised by a parallel interface. The interface has signal memory (latches).

Reset Generator
The reset generator resets the processor after the supply voltage is switched on. Thereby the program can start at a predefine address.
2.22 Bicarbonate Conductivity Measurement

2.22.1 Block Diagram Bicarbonate Conductivity Measurement

The conductivity of the dialysate is determined by a resistance measurement. The measurement is performed by an alternating current with approx. 4 kHz. The calibration is accomplished by the controller. The measurement cell has two transmitter electrodes and a receiver electrode with a fixed cell constant.

- A transmitter voltage for the transmitter electrode BICLF_A signal is generated from the +5 VREF reference voltage by the CLK4 signal (4000 Hz).
- The signal runs through the fluid.
- The received BICLF_C signal is amplified.
- The switched rectifier converts the a.c. voltage to a d.c. voltage BIC_LF.
- A d.c. voltage, which is proportional to the conductivity is fed to the AD converter.
- The temperature compensation and linearisation of the conductivity is performed by the controller.
2.23 END Conductivity Measurement

2.23.1 Description END Conductivity Measurement Controller

The design of the END conductivity measurement controller is identical with the bicarbonate conductivity measurement in paragraph 2.22.

2.23.2 END Conductivity Measurement Supervisor

2.23.3 Block Diagram END Conductivity Measurement Supervisor

The END conductivity measurement of the dialysate by the supervisor is in principle identical with the controller. The differences are:

- The independent generation of the reference voltage and the clock signal
- Dimension of the Measurement Cell

The calibration is performed by the supervisor software.

Fig.: Block Diagram END Conductivity Measurement Supervisor
2.24 Temperature Measurement

2.24.1 Block Diagram Degassing Temperature Measurement

![Block Diagram Degassing Temperature Measurement](image)

The temperature of the fluid is measured by a PTC resistor (PTC positive temperature coefficient).
- The PTC has a constant current flow of < 0.1 mA
- The voltage drop is measured and amplified in a differential amplifier
- An offset voltage is added to lift the zero point. Thereby the measurement range of the AD converter has an optimal working condition.
- The output voltage is fed to the AD converter on the supervisor board via a low-pass filter.

2.24.2 Design Degassing Temperature Measurement

The design is identical with the degassing temperature measurement in paragraph 2.24.1.

2.24.3 Description Bicarbonate Temperature Measurement

The design is identical with the degassing temperature measurement in paragraph 2.24.1.

2.24.4 Description Dialysate Controller Temperature Measurement

The design is identical with the degassing temperature measurement in paragraph 2.24.1.
2.24.5 Block Diagram Dialysate Supervisor Temperature Measurement

The temperature measurement of the supervisor has an independent reference voltage source. Thus a cross-interference with the temperature sensors of the controller is excluded.

2.25 Level Measurement

2.25.1 Block Diagram Level Measurement

The level sensor in the upline tank has two reed contacts. The contacts are switched by an internal magnet in a float ball. Pull-up resistors are on the input. The query is carried out by the digital inputs of the controller.
2.26 Reed Contacts

2.26.1 Block Diagram Coupling Status

Magnets are integrated in the dialysate couplings and concentrate couplings. If the couplings are connected, the reed contacts are switched. The query is performed by the digital inputs of the controller and supervisor. The inputs have pull-up resistors.

2.27 Pressure Measurement

2.27.1 Block Diagram Venous Pressure Measurement

The pressure sensor has a resistance bridge. The resistance value changes in accordance with the present pressure value. A constant +5 VREF is connected to the bridge.

- The measurement signal is tapped and amplified in the differential amplifier.
- An offset voltage is added to lift the zero point. Thereby the measurement range of the AD converter has an optimal working condition.
- The voltage is limited to +5 V by a clamp circuit on the output, in the event of a fault condition. A damage of the following circuit components is thereby prevented.
2.27.3 Block Diagram Arterial Pressure Measurement

![Diagram](image)

Fig.: Block Diagram Arterial Pressure Measurement

2.27.4 Description Arterial Pressure Measurement

The design of the arterial pressure measurement is identical with the venous pressure measurement in paragraph 2.27.2, with the exception of the offset voltage.

2.28 Blood Inlet Pressure Measurement

2.28.1 Block Diagram Blood Inlet Pressure Measurement

![Diagram](image)

Fig.: Block Diagram Blood Inlet Pressure Measurement

2.28.2 Description Blood Inlet Pressure Measurement

The design of the blood inlet pressure measurement is identical with the venous pressure measurement in paragraph 2.27.2, with the exception of the offset voltage.
2.29 Level Sensors

2.29.1 Block Diagram Level Sensors Air Separator

The query of the fluid level in the air separator behind the balance chamber is accomplished by the conductivity of the dialysate.

- The oscillator generates an a.c. voltage with a frequency of approx. 8 kHz.
- The d.c. voltage part is removed by a high-pass.
- The output voltage is fed to the electrode.
- If the electrode immerses into the fluid due to an increase of the fluid level, the voltage at the electrode is decreased.
- The voltage is rectified for evaluation and smoothed by a low-pass.
- This d.c. voltage is compared with a reference voltage by a comparator.

2.30 Red Detector

2.30.1 Block Diagram Red Detector

The red detector works as a light barrier with a triggered 4 kHz green light.

- The received signal from the photo transistor is amplified.
- The signal is only evaluated, if the green LED is also driven.
- External interferences are thereby prevented.

The venous red detector RDV has an additional preamplifier.
2.31 Degassing Pressure Measurement and Dialysate Pressure Measurement

2.31.1 Block Diagram Pressure Measurement

![Block Diagram Pressure Measurement](image)

The respective pressure sensor has a resistance bridge. The resistance value changes in accordance with the present pressure value. A constant +5 VREF is connected to the bridge.

- The measurement signal is tapped and amplified in the differential amplifier.
- An offset voltage is added to lift the zero point. Thereby the measurement range of the AD converter has an optimal working condition.
- The voltage is limited to +5 V by a clamp circuit on the output, in the event of a fault condition. Thereby a damage of the following circuit components is prevented.

2.32 Monitoring Analogue 12 V Voltage Supply

2.32.1 Block Diagram Monitoring of Analogue 12 V Voltage Supply

![Block Diagram Analogue 12 V Voltage Supply](image)

The analogue +12 VAN and -12 VAN supply voltages are monitored by two voltage monitoring components against deviation. The components have an internal reference voltage source. Thereby the connected voltage can be constantly monitored. The P12ANOK and M12ANOK signal are switched at the output, if the voltage is lower than 10.8 V.
2.33 Safety Air Detector SAD and Venous Red Detector RDV

2.33.1 Block Diagram SAD/RDV

If an alarm was not previously activated, the detected and added air volume from both the LLC and LLS system is decremented with a rate of 1 µl s⁻¹. Thus air bubbles which may have gathered in the venous bubble catcher and are accumulated in larger time intervals, do not automatically lead to an alarm, because the detected air volume is continuously subtracted by 1 µl s⁻¹.

The alarm limits for the air alarm depend upon the flow through the detector:

- 50 … 200 ml min⁻¹ blood flow = 0.2 ml
- 200 … 400 ml min⁻¹ blood flow = 0.3 ml
- 400 … 850 ml min⁻¹ blood flow = 0.5 ml

Example
- set blood flow = 250 ml min⁻¹
- no substitution
 - Flow through the sensor = 270 ml min⁻¹:
 (270 ml min⁻¹ = 250 ml min⁻¹ set blood flow + 20 ml min⁻¹ additional flow possible by external infusion devices, e.g. HDF
 - Alarm limit value = 0.3 ml air
2.33.3 Description Safety Air Detector SAD

Principles of Air Monitoring

The monitoring of air is performed by ultrasonic transmitting between two piezo elements. The piezo elements work as transmitter and receiver. The transmitter piezo element transmits pulses. These pulses are transmitted through the tubing, which is filled with blood (air), to the receiver piezo element. The filled tubing is the transmitting path.

If the tubing is filled with blood the transmitting signal is only slightly attenuated (so-called coupling resistance). If the tubing is filled with air the transmitting signal is attenuated very strongly.

The received amplitude is evaluated. Thus the condition (attenuation) of the transmitting path can be derived.

This received amplitude is compared with an alarm threshold:
- Blood in tubing (no attenuation): Amplitude of receiver signal > alarm threshold.
- Air in tubing (large attenuation): Amplitude of receiver signal < alarm threshold.

If air is in the tubing the alarm threshold is not reached and the SAD indicates air in system.

SAD Function

The ultrasonic transmitting pulse is triggered cyclically. The transmitting pulse is variably attenuated, depending on the air concentration in the tubing. The received voltage amplitude is compared with an alarm threshold. If the voltage drops below the alarm threshold the SAD and SAD_S signals of the flip-flops are set.

The SAD signal is checked cyclically by the low level controller LLC and then reset by the SADRESET signal. Simultaneously the low level supervisor LLS checks cyclically the SAD_S signal and is then reset by the SADRESET_S signal.

The LLC checks cyclically the function of the SAD during operation by switching from the alarm threshold to the test threshold. LLC and LLS expect an air signal after the activation of the test threshold.

An air signal is present at the flip-flop SAD_S, due to the cyclic test, until the SADRESET_S signal resets the air signal. The LLS monitors cyclically if at least air was detected once in 1.5 s. If air was not detected an SAD alarm is activated.

Event Chart

Example 200 ... 400 ml min⁻¹ blood flow = 0.3 ml:

- at t = 0 an air bubble with 0.2 ml is detected
- after t = 3 min a second air bubble with 0.2 ml is detected
- after time t = 4 min a third air bubble with 0.2 ml is detected

Ergebnis:

<table>
<thead>
<tr>
<th>t [min]</th>
<th>Detected Air Volume in Software Counter [ml]</th>
<th>Alarm Limit Value [ml]</th>
<th>SAD Alarm yes / no</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>0.3</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>0 + 0.2 air</td>
<td>0.3</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>0.14</td>
<td>0.3</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0.08</td>
<td>0.3</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>0.02 + 0.2 air</td>
<td>0.3</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0.16 + 0.2 air</td>
<td>0.3</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>0 after acknowledgement</td>
<td>0.3</td>
<td>no</td>
</tr>
</tbody>
</table>

After t = 3 min a second air bubble with 0.2 ml is detected. An alarm is not activated, because the first detected air volume is decremented with a rate of 1 \(\mu l s^{-1} \), during t = 3 min = 180 s (i.e. 0.18 ml). After t = 4 min an SAD alarm is activated, because the limit of 0.3 ml is exceeded.
SAD Calibration

The test threshold and alarm threshold for the SAD are calibrated in the TSM service program. In dialysis the test threshold is cyclically checked to guarantee that the sensitivity of the SAD has not been reduced compared to calibration. Thus a reduction of sensitivity is detected caused by operation and aging. The alarm threshold is cyclically measured (250 ms) by the LLS during therapy and compared with the fixed alarm threshold. The calibration threshold is the maximum sensitivity which can be reached. An individual calibration value is set in the TSM service program for the calibration ex works.

Control Logic

In the control logic the signals are linked for programming the shift register and to generate the process control for the SAD. Additionally the transmitter pulses are triggered and the receiver window is closed or opened.

Divider and Oscillator 3.6864 MHz

A quartz oscillator with a divider generates the necessary clock signals.

Transmitter

The transmitter piezo element oscillates via an induction voltage (piezo effect) and transmits ultrasonic waves.

Receiver

The transmitted pulses from the transmitter are converted into a voltage in the receiver piezo element (piezo effect). The receiver voltage is fed to the comparator input.

Programming of Shift Registers 1 and 2

The shift registers are selected by the SADSEL signal to enable data loading. The USDI signal is loaded into the shift register by the clock pulse signal USCLK. The outputs of the shift registers are fed to the low-passes.

Shift Register 1 and Low-Pass 1 (Alarm Threshold)

The output of the shift register 1 controls the control input of the multiplexer. A pulse width modulated voltage PWM is present at the output of the shift register 1. The low-pass 1 smooths the voltage which is fed to the multiplexer. This voltage is the alarm threshold for the comparator.

Shift Register 2 and Low-Pass 2 (Test Threshold)

The output of the shift register 2 controls the control input of the multiplexer. A pulse width modulated voltage PWM is present at the output of the shift register 2. The low-pass 2 smooths the voltage which is fed to the multiplexer. This voltage is fed to the comparator, during the cyclic SAD test.

Comparator

The comparator compares the receiver voltage with the alarm threshold. The receiver voltage is smaller than the alarm threshold if the transmitter signal is attenuated, due to air in the tubing. Together with the function of the receiver window the output signal of the comparator (to the flip-flop) becomes logic 1.

The receiver voltage is larger than the alarm threshold if blood is in the tubing. The output signal of the comparator (to the flip-flop) becomes logic 0.

SAD Signal for LLC

The SD signal is fed to the flip-flop and sent to the LLC as SAD signal. The SAD signal is checked cyclically by the LLC. The LLC resets the flip-flop via the SADRESET signal. If air is detected at any time during a cycle the SAD output changes to logic 0. Thereby the LLC evaluates the complete last cycle as air.

SAD_S Signal for LLS

The SD signal is fed to the flip-flop and sent to the LLS as SAD_S signal. The SAD_S signal is checked cyclically by the LLS. The LLS resets the flip-flop via the SADRESET_S signal. If air is detected at any time during a cycle the SAD_S output changes to logic 0. Thereby the LLS evaluates the complete last cycle as air.

Test SAD and SAD_S

The voltage of the low-pass 2 is switched cyclically to the comparator output by the UTEST signal. Thus the comparator, the coupling and the dynamic of the circuit is checked. The alarm threshold and the test threshold (voltage of low-pass 2) is switched by the multiplexer.
SADREF Signal

The amplifier is a differential amplifier with follow-up impedance. The difference between the voltage at the comparator input and the voltage at the voltage divider is amplified. LLS checks cyclically (250 ms) the alarm threshold with the calibrated alarm threshold during therapy. If the value is out of limits a reference alarm is activated.

TIM ECONTR Signal

The quartz oscillator monitors the SAD sampling frequency. If the control logic and quartz oscillator work correctly the divider is reset by the SADX signal.

The counter output becomes logic 1 if the SADX signal is not present or the time between two reset pulses is too long. Thereby a drop below the SAD sampling frequency is reported to the LLS. The TIM ECONTR signal becomes logic 1 and inhibits the CLK input of the counter. Thereby an overflow of the counter and a removal of the TIM ECONTR alarm is prevented.

Furthermore the SADRESET signal of the LLC is monitored. If the SADRESET signal becomes logic 0, due to an error, the SADX signal cannot reset the counter. This leads to a TIM ECONTR alarm.

2.33.4 Description Venous Red Detector RDV

Assignment and Function Red Detector

The venous red detector RDV detects blood with a certain concentration. The RDV assists the user during the connection of the venous line to the patient and after therapy during disconnection with sodium chloride bags. The amplified RDV signal is processed on the supervisor board and sent to the TLC via the DIABUS.

Principle of Venous Red Detector RDV

The RDV consists of a transmitter (green LED) and a receiver (phototransistor). A tubing is between transmitter and receiver. Blood, colourless turbid fluid or air can be in the tubing. The RDV generates a signal to detect red fluid or colourless fluid.

The function principle of the RDV is based on the fact that blood absorbs all colours with the exception of red. The green light is attenuated if blood enters the RDV. Blood or colourless fluid can be distinguished with the phototransistor and the comparator.

RDV Signal

The receiver signal of the phototransistor is amplified. The RDV signal is fed to the supervisor board SB for further signal processing. The signal is fed to the low level controller LLC which provides the signal to the top level controller TLC.
2.34 Blood Leak Detector

2.34.1 Block Diagram Blood Leak Detector

![Block Diagram Blood Leak Detector]

The drive and evaluation circuit is mounted on the sensor head. The amplified signal of the receiver is fed to the supervisor board. The blood leak detector works with red and green light. The transmitter LEDs are mounted opposite to the receiver diodes (transmitted light). The drive and evaluation is carried out by the controller. The actual value is also fed to the supervisor.

Drive Principle
The drive of the LEDs is performed alternately by the BLPWM signal. The red LED is used to level any turbidity.

Calibration
For calibration the red and green LED are driven by the BLRG signal, until both have identical output voltage. If a turbidity occurs, both drive signals are increased. If the dialysate is stained by blood only the green LED signal is attenuated. The output signal is reduced and blood is thereby detected.
2.35 Controller Board CB

2.35.1 Block Diagram Controller Board

![Block Diagram Controller Board]

- **EEPROM**
- **RTC**
- **MFP**
- **A/D**
- **MUX**
- **CPU**
- **RAM 512 K**
- **Flash 521 K**
- **Bus Termination**
- **Buffer**
- **Extension Plug P4**
- **Control Logic**
- **Control Signals**
- **16 Analog Lines (P1)**
- **8 Lines (P3)**
- **20 Lines/Component (P2)**
- **16 Bit Data Bus**
- **24 Bit Address Bus**
- **32 Bit Data Bus**

Fig.: Block Diagram Controller Board CB
2.35.2 Description Controller Board

Microprocessor
The low level controller board has the following components:

- CPU
- Clock Generator
- Control Logic
- Memory (RAM/Flash EPROM)
- Counter/Timer and Parallel I/O Ports CIo
- Serial Communication SCC
- AD Converter AD
- Multiplexer MUX
- System Clock Generation MFPMFPMFPMFPMFPMFPMFP
- E2PROM
- Real Time Clock RTC
- Extension Connection, i.e. for Second Microprocessor

CPU
The 68020 CPU (central processing unit) has the following data:

- 32 Bit Processor
- 16 MB Address Range
- 32 Bit Data Bus (external)
- 24 Bit Address Bus

The 32 bit data bus is connected unbuffered to all memories and is shielded against the remaining peripheral by drive components. The data bus is terminated by special terminator components. Thereby the signals are terminated and in case of a tristate condition the last level is held.

The 24 bit address bus is buffered by drive components and is terminated by diodes, to prevent reflections. All control and clock lines that are connected to several consumers are terminated by RC elements.

Clock Generation
The clock generation for the microprocessor and control logic is generated from a 50 MHz oscillator. A D flip-flop generates two opposite phase clock signals of 25 MHz. Thereby the necessary phase accuracy and rise times for the microprocessor is achieved. For peripheral components a 4 MHz and a 2 MHz are generated by a second 8 MHz oscillator. All clock lines are terminated.

Control Logic
The control logic is responsible for decoding and access control. All signals required for decoding are unbuffered and come directly from the CPU and from another microprocessor. The access control implements wait cycles depending on the addressed component.

Memory (RAM/Flash EPROM)
The memory has four flash EPROMs and four static RAMs. The memories are connected parallel to the data bus. Both memory work with a 32 bit data bus.

Counter/Timer and Parallel I/O Ports (CIo)
Eight parallel ports are available as CIo components (counter/timer/parallel inputs and outputs). The CIo components have the following parts:

- two 8 Bit Ports
- one 4 Bit Port
- three 16 Bit Timers

The ports can be operated in different modes.

Serial Communication (SCC)
A SCC component (serial communication controller) is available for serial communication. The two channel controller can handle asynchronous and synchronous protocols.
2. Technical System Description

AD Converter AD
The analogue signals in the range of 0 to 5 V are converted by a 2 MHz triggered AD converter. A 16 channel multiplexer MUX is connected prior to the AD converter. All 12 bits are transmitted simultaneously to the DIABUS by a read command.

Multiplexer MUX
The inputs of the multiplexer are connected to the signal plug P2. The input voltage range is 0 to 5 V. The inputs are protected against over voltages of ±20 V.

System Clock Pulse Generator MFP
A multi function peripheral component MFP is available for the internal system clock generation. The MFP has the following parts:
- three 8 bit timers
- one serial channel
- eight in/out ports

A timer is pulsed with 3.68 MHz for the baud rate of the serial channels. Two timers are in series with the time basis of the software operating system. The serial interface is reserved for debugging information. The real time clock RTC and the serial E2PROM are connected to the port pins.

E²PROM
Specific parameters of the boards are stored in the serial E²PROM.

Real Time Clock RTC
The alarm output of the real time clock RTC is directly connected to plug P3. The mains power supply can thereby be switched on automatically. The voltage supply is buffered by +5 VG in the mains power supply.

Extension Port
The available extension port is related to the signals parallel to the microprocessor. A second microprocessor could have access to the board via this port.
2.36 Power Board 1 PB1

2.36.1 Block Diagram Power Board 1

Fig.: Block Diagram Power Board 1

2.36.2 Description Power Board 1

Drive Circuit for Pumps

The following drive circuits for the d.c. motors are on power board 1:

- Arterial Blood Pump BPA
- Degassing Pump EP
- Outlet Flow Pump FPA
- Inlet Flow Pump FPE

The drives are controlled by the controller board via the supervisor board. The output signals are evaluated by the supervisor and controller board.

EC Motor with Hall Sensors

The electronic commutator d.c. motor has three hall sensors. The position of the magnetic rotors are detected with the hall sensors. The three phase motionless coils are fed with current according to the position of the rotors. The motor adapter detects the revolution. The speed dependent output signal is pulse width modulated. The sensitive degree and frequency are speed proportional. The signal is fed to the motor controller via a passive and active low-pass filter.

Asynchronous Actual Speed BPAIST_US Signal of Arterial Blood Pump

The BPAIST_US signal is generated by a NOT element from the speed dependent output signal of the motor adapter.

Stop BPASTOP Signal of Arterial Blood Pump

The EC motor can be stopped by the BPASTOP signal or by opening the pump cover. If the BPASTOP signal has logic 1, the EC motor is stopped.

Cover Switch BPADS Signal of Arterial Blood Pump

A permanent magnet is integrated in the pump cover. If the pump cover is closed a reed contact is closed. This signal is linked with the BPASTOP signal after a comparator and fed to the motor controller. If the pump cover is opened the motor is switched off.
BPAIMP Signal of Arterial Blood Pump

The supervisor monitors the rotation of the arterial blood pump BPA via a slot disc. The slot disc runs in a fork light barrier. The post comparator generates the BPAIMP signal.

BPA Signal of Arterial Blood Pump

The set-point value for the speed of the EC motor is available as a pulse width modulated (PWM) BPA signal. The BPA signal is converted to an analogue voltage by a low-pass filter and fed to the motor.

Current Limitation of EC Motor

A voltage which is proportional to a coil of the EC motor is present at a measurement resistance. A comparator compares this voltage with a reference voltage. The reference voltage is equivalent with the maximum motor current. The voltage of the measurement resistance is fed to a comparator via a low-pass filter. The low-pass filter prior to the comparator prevents an activation of the current limitation during short period load peaks of the EC motor.

Signals

<table>
<thead>
<tr>
<th>Input Signals</th>
<th>Description</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPA</td>
<td>Set-point value for motor speed of arterial blood pump</td>
<td>PWM signal</td>
</tr>
<tr>
<td>FPE</td>
<td>Set-point value for motor speed of inlet flow pump</td>
<td>PWM signal</td>
</tr>
<tr>
<td>FPA</td>
<td>Set-point value for motor speed of outlet flow pump</td>
<td>PWM signal</td>
</tr>
<tr>
<td>EP</td>
<td>Set-point value for motor speed of degassing pump</td>
<td>PWM signal</td>
</tr>
<tr>
<td>PUMP STOP</td>
<td>Start/stop signal</td>
<td>Logic 1=Stop</td>
</tr>
<tr>
<td>HS1</td>
<td>Hall sensor signal (integrated in motor)</td>
<td>-</td>
</tr>
<tr>
<td>HS2</td>
<td>Hall sensor signal (integrated in motor)</td>
<td>-</td>
</tr>
<tr>
<td>HS3</td>
<td>Hall sensor signal (integrated in motor)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Signals</th>
<th>Description</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>-IST</td>
<td>Proportional frequency signal for motor speed</td>
<td>-</td>
</tr>
<tr>
<td>BPADS</td>
<td>Pump cover position of arterial blood pump (BPA)</td>
<td>Logic 1= cover closed</td>
</tr>
<tr>
<td>BPAIMP</td>
<td>Processed signal of fork light barrier</td>
<td>-</td>
</tr>
<tr>
<td>L1</td>
<td>Coil control</td>
<td>-</td>
</tr>
<tr>
<td>L2</td>
<td>Coil control</td>
<td>-</td>
</tr>
<tr>
<td>L3</td>
<td>Coil control</td>
<td>-</td>
</tr>
</tbody>
</table>
2.37 Power Board 2 PB2

2.37.1 Block Diagram Power Board 2

Fig.: Block Diagram Power Board 2
2.37.2 Description Power Board 2

Circuit Power Board 2 Drives
Drive circuits are on the power board 2 for the following actuators:

- 15 2 way solenoid valves
- one proportional control valve
- one tubing clamp
- three bipolar stepper motors

The 2 way valves are used e.g.:
- To control the inlet/outlet of the balance chambers
- To switch the dialysate flow between main and by-pass

The proportional valve controls the degassing pressure.

The stepper motors are used for:
- Concentrate pump
- Ultrafiltration pump

The drives are controlled by logic signals from the supervisor and controller board.

Driver 2 Way Valve
Each valve has a current limitation (mono-flop) integrated in the driver. The current limitation can be activated/deactivated by the VS signal. The valve current is determined indirectly via a voltage drop over a measurement resistor.

The measurement resistor is in series with the valve coils. The voltage is compared with a reference voltage at a comparator. If the valve current reaches a limit value the output signal of the comparator switches and triggers a mono-flop. The current is cut-off for a short time, thus preventing an over load of the valves.

Driver 2 Way Valve VVBE
The driver for the upline tank inlet valve VVBE has an additional watchdog. The watchdog is triggered by a negative edge pulse of the VS signal. If the signal is not switched the valve closes after approx. 1.5 s. Thus an over flow of the upline tank is prevented.

Driver Proportional Valve
The proportional valve is driven by a pulse width signal. The current in the valve coil is controlled. The design of the current limitation is identical with the 2 way valve.

Driver Tubing Clamp
The SAKV and SAKVS signals for the tubing clamp are fed to switch transistors via an inverter. The switch transistors can close the clamp independently.

Driver Stepper Motor
The drive for the stepper motor has a GAL (generic array logic) and an integrated motor controller. The GAL generates the logic signals for the motor controller from the frequency signal of the stepper motor and the control signal of the coil current. The motor controller has an internal phase current limiter. The motor coil is thereby constant.
Signals

<table>
<thead>
<tr>
<th>Input Signals</th>
<th>Description</th>
<th>Signal Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAKV</td>
<td>Switch signal for tubing clamp (controller)</td>
<td>Logic 1=Clamp open</td>
</tr>
<tr>
<td>SAKVS</td>
<td>Switch signal for tubing clamp (supervisor)</td>
<td>Logic 1=Clamp open</td>
</tr>
<tr>
<td>VB1</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VB2</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VB3</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VLA</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>DV</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>DV1</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VE1</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VE2</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VA1</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VA2</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VDE1</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VDE2</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VDA1</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VDA2</td>
<td>Switch signal for 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>VS</td>
<td>Current limitation for 2 way valve</td>
<td>Logic 1=Valve current not limited</td>
</tr>
<tr>
<td>RVVB</td>
<td>Control proportional valve</td>
<td>PWM signal</td>
</tr>
<tr>
<td>RVE</td>
<td>Control proportional valve</td>
<td>PWM signal</td>
</tr>
<tr>
<td>BICP</td>
<td>Control Stepper motor</td>
<td>Frequency signal</td>
</tr>
<tr>
<td>KP</td>
<td>Control Stepper motor</td>
<td>Frequency signal</td>
</tr>
<tr>
<td>UFP</td>
<td>Control Stepper motor</td>
<td>Frequency signal</td>
</tr>
<tr>
<td>IBICP</td>
<td>Control stepper motor</td>
<td>Logic 1=large Coil current</td>
</tr>
<tr>
<td>IKP</td>
<td>Control stepper motor</td>
<td>Logic 1=large Coil current</td>
</tr>
<tr>
<td>IUFP</td>
<td>Control stepper motor</td>
<td>Logic 1=large Coil current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Signals</th>
<th>Description</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ventil-IST</td>
<td>Actual value switch condition of 2 way valve</td>
<td>Logic 1=Valve closed</td>
</tr>
<tr>
<td>schritt-POS</td>
<td>Reed contact signal on the axis of the stepper motor</td>
<td>-</td>
</tr>
<tr>
<td>- Q11</td>
<td>Connection for stepper motor coil</td>
<td>-</td>
</tr>
<tr>
<td>- Q12</td>
<td>Connection for stepper motor coil</td>
<td>-</td>
</tr>
<tr>
<td>- Q21</td>
<td>Connection for stepper motor coil</td>
<td>-</td>
</tr>
<tr>
<td>- Q22</td>
<td>Connection for stepper motor coil</td>
<td>-</td>
</tr>
<tr>
<td>ventil-</td>
<td>Connection for valves</td>
<td>-</td>
</tr>
</tbody>
</table>
2.38 Heparin Pump Compact

2.38.1 Block Diagram Heparin Pump Compact

![Block Diagram Heparin Pump Compact](image)

2.38.2 Description Heparin Pump Compact

Stepper Motor

The stepper motor is controlled by a motor controller and a GAL (generic array logic). The logic signals for the motor controller are generated from:

- Direction of rotation HPMORI signal
- Step frequency HP signal
- Coil current HPHALT and HPISEL signal

The stepper motor works in a half step mode. An internal phase current limiter of the motor controller is kept constant depending of the sensor resistors.

The current of the stepper motor can be set by the HPISEL and HPHALT inputs.

The internal stop signal of the motor is linked with the following signals:

- Positive locking signal FORMS
- Direction of rotation signal HPR
- Stop signal HPHALT

The motor control is switched off if HPHALT is active or the positive locking is opened and the direction of rotation is set to closing.

Speed Recognition

After processing the DREHS signal with a schmitt-trigger (signal of the light barrier for detection of rotation) it is fed to a GAL. The level is only transferred with a pulse from HP. Thus mechanical vibrations of the slot disc are filtered, and the output signal is HPIST.

Plunger Plate, Positive Locking

The plunger plate signal KOLBS and the positive locking signal FORMS for the light barrier signals are processed with a schmitt-trigger and are available as output signals HPKOLB and HPKRALO.

Syringe Sizes

Syringe sizes of 10, 20 and 30 ml can be used in the heparin pump Compact.
Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>Set-point frequency for stepper motor</td>
<td>Step is performed at falling edge</td>
</tr>
<tr>
<td>HPR</td>
<td>Direction of rotation via slot disc of stepper motor</td>
<td>Logic 1=Drive running</td>
</tr>
<tr>
<td>HPHALT</td>
<td>Setting of the phase current for the stepper motor driver</td>
<td>Logic 1=Stop=Phase current stepper motor = 0 (INH of TCA3727)</td>
</tr>
<tr>
<td>HPIST</td>
<td>Signal of the light barrier at motor</td>
<td>Updated only with HP pulse</td>
</tr>
<tr>
<td>HPKRALO</td>
<td>Status of claw</td>
<td>Logic 1=Positive locking is open</td>
</tr>
<tr>
<td>HPKOLB</td>
<td>Status of plunger plate</td>
<td>Logic 1 = Plunger plate ist pressed</td>
</tr>
<tr>
<td>HPMORI</td>
<td>Direction of rotation of stepper motor</td>
<td>Logic 1 = Drive opening</td>
</tr>
</tbody>
</table>
| HPISEL | Setting of the phase current for the stepper motor driver | Logic 0=100% current
| | | Logic 1=66% current |
2.39 Single Needle Cross Over

2.39.1 Block Diagram SN Cross Over

Fig.: Block Diagram SN Cross Over
2.39.2 Description SN Cross Over

EC Motor with Hall Sensors
The electronic commutator d.c. motor has three hall sensors. The position of the magnetic rotors are detected with the hall sensors. The three phase motionless coils are fed with current according to the position of the rotors. The motor adapter detects the revolution. The speed dependent output signal is pulse width modulated. The sensitive degree and frequency are speed proportional. The signal is fed to the motor controller via a passive and active low-pass filter.

Stop BPVSTOP Signal of Venous Blood Pump
The EC motor can be stopped by the BPVSTOP signal or by opening the pump cover. If the BPVSTOP signal has logic 1, the EC motor is stopped.

Cover Switch BPVDS Signal of Venous Blood Pump
A permanent magnet is integrated in the pump cover. If the pump cover is closed a reed contact is closed. This signal is linked with the BPVSTOP signal after a comparator and fed to the motor controller. If the pump cover is opened the motor is switched off.

BPVIMP Signal of Venous Blood Pump
The supervisor monitors the rotation of the venous blood pump BPV via a slot disc. The slot disc runs in a fork light barrier. The post comparator generates the BPVIMP signal.

BPV Signal of Venous Blood Pump
The set-point value for the speed of the EC motor is available as a pulse width modulated (PWM) BPV signal. The BPV signal is converted to an analogue voltage by a low-pass filter and fed to the motor.

Current Limitation of EC Motor
A voltage which is proportional to a coil of the EC motor is present at a measurement resistance. A comparator compares this voltage with a reference voltage. The reference voltage is equivalent with the maximum motor current. The voltage of the measurement resistance is fed to a comparator via a low-pass filter. The low-pass filter prior to the comparator prevents an activation of the current limitation during short period load peaks of the EC motor.

PBS and PBSS Signals of Single Needle Pressure Sensors
Each pressure sensor has a resistance bridge. The resistance value changes in accordance with the present pressure value. A constant +5 VREF is connected to the bridge.

- The measurement signal is tapped and amplified in the differential amplifier
- An offset voltage is added to lift the zero point. Thereby the measurement range of the AD converter has an optimal working condition.
- The voltage is limited to +5 V by a clamp circuit on the output, in the event of a fault condition. Thereby a damage of the following circuit components is prevented.

SAKA Signal of Arterial Tubing Clamp
The arterial tubing clamp is activated by the SAKA signal via a FET transistor.
2.40 Staff Call (Option)

2.40.1 Block Diagram Staff Call

Voltage Monitoring
Spannungsüberwachung

≥1

PERSR
PERSR-S
PERSR-HUP

1 sec

≥1

P5 BR
STAT

P6 BR
DYN

P7 BR
DYNAUS

BR: Soldering Bridge Lötbrücke

Fig.: Block Diagram Staff Call

2.40.2 Description Staff Call

Operating Modes

The operating modes static without OFF alarm, dynamic without OFF alarm or dynamic with OFF alarm are set with soldering bridges on the staff call board. The default setting ex works is static without OFF alarm.

P5BR: static without OFF alarm (default)
P6BR: dynamic without OFF alarm
P7BR: dynamic with OFF alarm

Static without Off Alarm

The relay K1 switches as long as one of the three inputs PERSR-S, PERSR-HUP or PERSR are active.

Dynamic without Off Alarm

If at least one input PERSR-S, PERSR-HUP or PERSR changes from active to inactive the relay K1 is switched for 1 second. The mono-flop U1 generates a switch time of one second.

Dynamic with Off Alarm

If at least one input PERSR-S, PERSR-HUP or PERSR changes from active to inactive the relay K1 is switched for 1 second or if the +12 VD voltage drops more than 10%. The mono-flop U1 generates a switch time of one second. The supply voltage for the staff call circuit is decoupled by the diode V1 from the +5 V voltage and buffered by a 1 F capacitor C1.
2.40.3 Operating Modes Staff Call System

Press the \(\text{RESET} / \text{GO} \) key to reset the alarm in the operating mode static without OFF alarm.

Signals:
- **PERSR-S** - Staff call input of low level supervisor LLS
- **PERSR** - Staff call input of low level controller LLC
- **PERSR-HUP** - Staff call input of power supply

(This line is also active if the mains power supply buzzer is switched on or if there is no WD level change in 0.7 s.)

2.40.4 Block Diagram Alarm Monitoring

Legend:
- **A**: LLC alarms (by data transmission)
- **A-S**: LLS alarms (by data transmission)
- **AKAL**: LLC audible alarm
- **AKAL-S**: LLS audible alarm
- **PERSR-T**: TLC staff call (by data transmission)
- **PERSR**: LLC staff call (hardware)
- **PERSR-S**: LLS staff call (hardware)
- **PERSR-HUP**: Voltage supply staff call (hardware)
- **WD**: LLS watchdog connection (hardware)

2.40.5 Pin Assignment

The pin assignment is shown in the figure.

Alarm Table:

<table>
<thead>
<tr>
<th>Connector</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>1-3</td>
</tr>
<tr>
<td>Operation</td>
<td>3-5</td>
</tr>
</tbody>
</table>
2.4.1 Switch Mode Power Supply SMPS (Benning)
2.4.1.2 System Integration

Battery Option

Akku-Option

Heater / Heizung

Thermal Fuse

Heater

N

K1

PF

ail

Ua

max

U Control

U-Regler

T1

T4

Mains Input

Netzeingang

X1

X3

L

N

PE

Fluid Warmer

X2

Aux. Voltage

Hilfspannung

Power

AKKU_EN

D24OFF

/B24OFF

24V

P2

P9

P101

P2

P2

Heater Control Input

Heizungssteuerung Eingang

H_DCLK

H_PROG

DGND

SMPS

Power Board

Secondary/
Sekundär

SMPS

Power Board

Primary/
Primär

Machine Monitoring Input

Geräteüberwachung

Watchdog

Message Output

Meldungen Ausgang

Signal Adapter

Low Voltage Differential

LVDS

Inverter

Board

Charge LED

Lade LED

BIB

Booster Inverter

Board

TCB

Touch Controller Board

BIB

Booster Inverter

Board

LC Display

Fig.: System Integration
2.41.4 Wiring Diagram Switch Mode Power Supply SMPS with Battery Option

Fig.: Wiring Diagram Switch Mode Power Supply SMPS with Battery Option
2.41.5 Description Switch Mode Power Supply

The switch mode power supply SMPS is assembled in the rear door.
The battery option can be retrofitted in a Dialog+.

Rated Voltage: 110/120/230/240 V 50/60 Hz

Fuses:

F1/F2	6.25 AT (6.3x32)	Mains input
F3/F4	3.15 AT (TR5)	Fluid warmer
F5/F6	230/240 V: 10 AM (6.3x32) 110/120 V: F20 A (6.3x32)	Heater 1800 W/240 V Heater 1800 W/110/120 V
F301	3.15 AT (TR5)	+5 VD
F302	5.00 AT (TR5)	+5 VD
F303/F304	3.15 AT (TR5)	+5 VD
F401	1.25 AT (TR5)	+12 VD
F402	5.00 AT (TR5)	+12 VD
F403	1.25 AT (TR5)	+12 VAN
F600	10 AM (6.3x32)	+24 VL
F601/F602	3.15 AT (TR5)	+24 VGB

Filter (EMC) The filter is required for EMC measures (EMC = electromagnetic compatibility).

Power Factor Correction PFC circuits are used for switch mode power supplies and ensure that the line current is drawn sinusoidally and in phase with the sinusoidal line voltage.

Forward Converter The forward converter (Buck converter also called down switcher) converts an input voltage into a lower output voltage, i.e. the 24 V is converted into ±12 V and +5 V.

2.41.6 Pin Assignment Switch Mode Power Supply

P2 - Signals to Supervisor Board

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>I/O</th>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>PF</td>
<td>Power Fail</td>
<td>O</td>
<td>1b</td>
<td>B24OFF_S</td>
<td>Switch-off 24 V supervisor blood side</td>
</tr>
<tr>
<td>2a</td>
<td>/REM</td>
<td>Remote control power supply</td>
<td>I</td>
<td>2b</td>
<td>D24OFF_S</td>
<td>Switch-off 24 V supervisor dialysate side</td>
</tr>
<tr>
<td>3a</td>
<td>WD_S</td>
<td>Supervisor WATCHDOG</td>
<td>I</td>
<td>3b</td>
<td>AKAL</td>
<td>Audible alarm</td>
</tr>
<tr>
<td>4a</td>
<td>nc</td>
<td></td>
<td>I</td>
<td>4b</td>
<td>AKAL_S</td>
<td>Audible alarm supervisor</td>
</tr>
<tr>
<td>5a</td>
<td>nc</td>
<td></td>
<td>I</td>
<td>5b</td>
<td>+5 VG</td>
<td>Voltage supply for clock on controller board</td>
</tr>
<tr>
<td>6a</td>
<td>H_DIN</td>
<td>Data for shift register</td>
<td>I</td>
<td>6b</td>
<td>PERSR_N</td>
<td>Signal to activate the staff call</td>
</tr>
<tr>
<td>7a</td>
<td>EXT_STATE</td>
<td>Status for external switch-on possibility</td>
<td>O</td>
<td>7b</td>
<td>AKKU_EN</td>
<td>Enable battery operation</td>
</tr>
<tr>
<td>8a</td>
<td>B24OK</td>
<td>Voltage monitoring blood side</td>
<td>O</td>
<td>8b</td>
<td>D24OK</td>
<td>Voltage monitoring dialysate</td>
</tr>
<tr>
<td>9a</td>
<td>H_DELK</td>
<td>Clock to load shift register</td>
<td>I</td>
<td>9b</td>
<td>H_PROG</td>
<td>Programming mode for shift register</td>
</tr>
<tr>
<td>10a</td>
<td>AKKU_OK</td>
<td>Battery status</td>
<td>G</td>
<td>10b</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

P3 - Battery Connection (Screw Terminal)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
<th>Tolerance</th>
<th>Current [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24VAKKU</td>
<td>stabilised</td>
<td>Charge and discharge current</td>
<td>21 V ... 28 V</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>GNDAKKU</td>
<td></td>
<td>Ground power</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P4 - Voltage Supply Power Board 1/2

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital (PB1)</td>
</tr>
<tr>
<td>2</td>
<td>GNDD</td>
<td></td>
<td>Ground digital (PB1)</td>
</tr>
<tr>
<td>3</td>
<td>-12VAN</td>
<td>stabilised</td>
<td>-12 V analogue (PB1)</td>
</tr>
<tr>
<td>4</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital (PB2)</td>
</tr>
<tr>
<td>5</td>
<td>GNDD</td>
<td></td>
<td>Ground digital (PB2)</td>
</tr>
<tr>
<td>6</td>
<td>GNDD</td>
<td></td>
<td>Ground power (PB1)</td>
</tr>
<tr>
<td>7</td>
<td>+12VAN</td>
<td>stabilised</td>
<td>+12 V analogue (PB1)</td>
</tr>
<tr>
<td>8</td>
<td>GNDD</td>
<td></td>
<td>Ground power (PB1)</td>
</tr>
<tr>
<td>9</td>
<td>GNDD</td>
<td></td>
<td>Ground power (PB2)</td>
</tr>
<tr>
<td>10</td>
<td>+24VL</td>
<td>rectified</td>
<td>+24 V power (PB1)</td>
</tr>
<tr>
<td>11</td>
<td>+24VGB</td>
<td>rectified</td>
<td>+24 V switched blood (PB1)</td>
</tr>
<tr>
<td>12</td>
<td>+24VGD</td>
<td>rectified</td>
<td>+24 V switched dialysate (PB1)</td>
</tr>
<tr>
<td>13</td>
<td>+24VL</td>
<td>rectified</td>
<td>+24 V power (PB2)</td>
</tr>
<tr>
<td>14</td>
<td>+24VGB</td>
<td>rectified</td>
<td>+24 V switched blood (PB2)</td>
</tr>
<tr>
<td>15</td>
<td>+24VGD</td>
<td>rectified</td>
<td>+24 V switched dialysate (PB2)</td>
</tr>
</tbody>
</table>

P5 - Voltage Supply Supervisor/Controller Board

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+12VAN</td>
<td>stabilised</td>
<td>+12 V analogue</td>
</tr>
<tr>
<td>2</td>
<td>-12VAN</td>
<td>stabilised</td>
<td>-12 V analogue</td>
</tr>
<tr>
<td>3</td>
<td>GNDD</td>
<td></td>
<td>Ground analogue</td>
</tr>
<tr>
<td>4</td>
<td>+12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>5</td>
<td>-12VD</td>
<td>stabilised</td>
<td>-12 V digital</td>
</tr>
<tr>
<td>6</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>7</td>
<td>+24VGB</td>
<td>20...30 V</td>
<td>+24 V switched blood side</td>
</tr>
<tr>
<td>8</td>
<td>+24VL</td>
<td>20...30 V</td>
<td>+24 V power</td>
</tr>
<tr>
<td>9</td>
<td>GNDD</td>
<td></td>
<td>Ground power</td>
</tr>
<tr>
<td>10</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>11</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>12</td>
<td>GNDD</td>
<td></td>
<td>Ground power</td>
</tr>
</tbody>
</table>

P6 - 3½” Floppy Disk Drive

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>2</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
</tbody>
</table>

P7 - Voltage Supply Options

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>2</td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>4</td>
<td>+12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>5</td>
<td>-12VD</td>
<td>stabilised</td>
<td>-12 V digital</td>
</tr>
<tr>
<td>6</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>7</td>
<td>+12VAN</td>
<td>stabilised</td>
<td>+12 V analogue</td>
</tr>
<tr>
<td>8</td>
<td>-12VAN</td>
<td>stabilised</td>
<td>-12 V analogue</td>
</tr>
<tr>
<td>9</td>
<td>GNDD</td>
<td></td>
<td>Ground analogue</td>
</tr>
</tbody>
</table>

P8 - Voltage Supply Option ABPM (Automatic Blood Pressure Measurement)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>2</td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>4</td>
<td>+12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>5</td>
<td>-12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>6</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>7</td>
<td>+12VAN</td>
<td>stabilised</td>
<td>+12 V analogue</td>
</tr>
<tr>
<td>8</td>
<td>-12VAN</td>
<td>stabilised</td>
<td>+12 V analogue</td>
</tr>
<tr>
<td>9</td>
<td>GNDD</td>
<td></td>
<td>Ground analogue</td>
</tr>
</tbody>
</table>
P9 - Mains Switch and Voltage Supply Fan

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AKKU Laden</td>
<td>Display "Charge Battery"</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>3</td>
<td>Mains Switch</td>
<td>Logic (1st level)</td>
</tr>
<tr>
<td>4</td>
<td>Mains Switch</td>
<td>+12 V (1st level)</td>
</tr>
<tr>
<td>5</td>
<td>+12VD</td>
<td>+12 V digital (fan)</td>
</tr>
<tr>
<td>6</td>
<td>+12VD</td>
<td>+12 V digital (fan)</td>
</tr>
<tr>
<td>7</td>
<td>Mains Switch</td>
<td>Logic (2nd level)</td>
</tr>
<tr>
<td>8</td>
<td>nc</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Digital ground (fan)</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Digital ground (fan)</td>
</tr>
<tr>
<td>11</td>
<td>Mains Switch</td>
<td>GND H (2nd level)</td>
</tr>
<tr>
<td>12</td>
<td>nc</td>
<td></td>
</tr>
</tbody>
</table>

P10 - Voltage Supply PC

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>2</td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>4</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>5</td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>7</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5V digital</td>
</tr>
<tr>
<td>8</td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>10</td>
<td>+12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>11</td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>13</td>
<td>-12VD</td>
<td>stabilised</td>
<td>-12 V digital</td>
</tr>
<tr>
<td>14</td>
<td>+12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>15</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
</tbody>
</table>

P11 - Voltage Supply Hard Disk Drive

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>2</td>
<td>+12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>3</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>4</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
</tbody>
</table>

P12 - Voltage Supply Options

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VD</td>
<td>stabilised</td>
<td>+5 V digital</td>
</tr>
<tr>
<td>2</td>
<td>+12VD</td>
<td>stabilised</td>
<td>+12 V digital</td>
</tr>
<tr>
<td>3</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>4</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>5</td>
<td>+12VAN</td>
<td>stabilised</td>
<td>+12 V analogue</td>
</tr>
<tr>
<td>6</td>
<td>-12VD</td>
<td>stabilised</td>
<td>-12 V digital</td>
</tr>
<tr>
<td>7</td>
<td>-12VAN</td>
<td>stabilised</td>
<td>-12 V analogue</td>
</tr>
<tr>
<td>8</td>
<td>GNDAN</td>
<td></td>
<td>Ground analogue</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>10</td>
<td>+24VL</td>
<td>20 ... 30 V</td>
<td>+24 V power</td>
</tr>
<tr>
<td>11</td>
<td>nc</td>
<td></td>
<td>Coding</td>
</tr>
<tr>
<td>12</td>
<td>GNDL</td>
<td></td>
<td>Ground power</td>
</tr>
<tr>
<td>13</td>
<td>+24VGB</td>
<td>20 ... 30 V</td>
<td>+24 V switched blood</td>
</tr>
<tr>
<td>14</td>
<td>+24VGD</td>
<td>20 ... 30 V</td>
<td>+24 V switched dialysate</td>
</tr>
<tr>
<td>15</td>
<td>GNDL</td>
<td></td>
<td>Ground power</td>
</tr>
</tbody>
</table>

P13 - Connection Monitor Booster

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 V</td>
<td>20 ... 28 V</td>
<td>+24 V power</td>
</tr>
<tr>
<td>2</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
<tr>
<td>3</td>
<td>HSS_ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GNDD</td>
<td></td>
<td>Ground digital</td>
</tr>
</tbody>
</table>
P14 - Input Signal /EXT_ON
(Switch-on machine from external source)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GNDD</td>
<td>Ground digital</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>/EXT_ON</td>
<td>Open collector input</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EXT_STATE</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+5VD</td>
<td>+5 V digital</td>
<td></td>
</tr>
</tbody>
</table>

Screw Terminal:

X1 - Mains Input, Heater

<table>
<thead>
<tr>
<th>Pin</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>L</td>
</tr>
<tr>
<td>1.2</td>
<td>N</td>
</tr>
<tr>
<td>1.3</td>
<td>PE</td>
</tr>
<tr>
<td>1.4</td>
<td>N1</td>
</tr>
<tr>
<td>1.5</td>
<td>L1</td>
</tr>
<tr>
<td>1.6</td>
<td>PE</td>
</tr>
</tbody>
</table>

X3 - Fluid Warmer, Relay Monitor Booster

<table>
<thead>
<tr>
<th>Pin</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>L3</td>
</tr>
<tr>
<td>3.2</td>
<td>N3</td>
</tr>
<tr>
<td>3.3</td>
<td>PE3</td>
</tr>
</tbody>
</table>

Inputs:

- **Mains Switch**
 - 2nd level
- **H_DIN** Data for shift register and watchdog controller
- **WD_S** Watchdog supervisor
- **/REM** Remote (clock on controller board)
- **AKAL** Audible alarm (controller)
- **AKAL_S** Audible alarm (supervisor)
- **MSWITCH** Mains switch
- **B24OFF** +24 VGB ON/OFF (supervisor)
- **D24OFF** +24 VGD ON/OFF (supervisor)
- **H_DCLK** Clock for programming shift register
- **H_PROG** Programming mode shift register
- **AKKU_EN** Enable battery operation (only possible in therapy mode)

Rated Mains Voltage 110/230 V 50/60 Hz

- **/EXT_ON** The machine can be switched on with this signal (see menu 1.26 Battery Option: external ON).
- **EXT_STATE** Status for external switch-on possibility (e.g. central disinfection), simultaneously input and output; the signal is looped through (connector P14/3 = input).
2. Technical System Description

Outputs:

- **B24OK**: +24VGB OK
- **D24OK**: +24VGD OK
- **PERSR_N**: Staff call
- **/AKKU_OK**: Load status of the battery
- **PF**: Power fail (power failure)

Connections:
- Fluid warmer, heater

Voltages:
- **+5 VD**: Digital
- **±12 VD**: Digital
- **±12 VAN**: Analog
- **+24 VL**: Power (non-regulated)
- **+24 VGB**: Switched blood side
- **+24 VGD**: Switched dialysis side

EXT_STATE: External machine switch-on (information for TLC), simultaneously input and output; the signal is only looped through (connector P2/7a = output).

Mains Switch ON/OFF: If the Dialog+ is switched off via the Automatic Switch-Off function in therapy, the machine is in standby mode, e.g. the Dialog+ can be switched on and off via the disinfection program.

The Dialog+ is only disconnected from mains if the mains plug is pulled out of the mains socket.

Standby: The power consumption is \(\leq 10 \text{ W} \) in standby mode.

H_PROG: The \(H_{\text{PROG}} \) signal is an open-collector signal and is generated by the LLC.

- **0**: No programming mode: Data rotate in shift register
- **1**: Programming mode: Shift register can be written

H_DIN: The \(H_{\text{DIN}} \) signal is an open-collector signal and is generated by the LLC (data for the shift register to drive the heater).

- **0**: Half-wave of mains voltage for heater switched off
- **1**: Half-wave of mains voltage for heater switched on

H_DCLK: The \(H_{\text{DCLK}} \) signal is an open-collector signal and is generated by the LLC. The pending data at \(H_{\text{DIN}} \) are shifted into the shift register with the \(H_{\text{DCLK}} \) signal to drive the heater.

- **0, 1**: Rectangular signal to shift the data into the shift register

Watchdog: A watchdog is integrated to prevent a permanent unintentional drive of the heater in case of a LLC reset. The watchdog is retriggered by the LLC with \(< 2\text{ s.} \)

The \(H_{\text{DIN}} \) signal is used for triggering. After switching on the switch mode power supply the watchdog prevents a drive of the heater for \(t = 10 \text{ s.} \)

The watchdog has no safety function and is therefore not tested before the therapy starts.
2.42 Safety Concept

2.42.1 Block Diagram Safety Concept

Controller Channel - Supervisor Channel

- Touch Screen
- Controller Window
- Supervisor Window
- Low Voltage Differential Signal Adapter LVDS
- Front Panel Board FPB Supervisor/Controller Tasten Supervisor/Controller Keys
- DIABUS
- BUS
- SUPBUS
- Controller Board TCB
- Low Level Controller LLC
- Low Level Supervisor LLS
- Sensors Motors Valves Sensors Sensors Safety Relay
- Floppy Disk Drive
- Hard Disk Drive
- Video Controller RAM
- UI-SW
- SW-SC
- Top Level Controller TLC
- 24 V Supply Voltage

Fig.: Hardware Safety Concept
The complete control and monitoring of the system is performed by the controller. The supervisor is an independent protection system and controls the safety relevant process parameters.

The double channel design of the hard- and software guarantees the monitoring of the safety relevant input and output values. The input of the set-point value, the fault free transmission and monitoring of the output values are thereby guaranteed.

The safety concept has the following processor systems:

- Top level controller on the top level controller board **TLC**
- Low level controller on the low level controller board **LLC**
- Supervisor on the supervisor board **LLS**

Top Level Controller

The top level controller TLC consists of:

- PC hardware
- Operating system (QNX, multi-tasking real time operating system)

The top level controller TLC has the following functions:

- Communication with the user
- Processing of the process parameters for the LLC
- Control of the ABPM
- Balance of ultrafiltration/substitution

The input of the set-point values is performed by:

- Touch screen (colour TFT)
- Floppy disk drive
- LAN (local area network)

Low Level Controller

The low level controller LLC has:

- 68020 microprocessor system

The low level controller LLC has the following functions:

- Control of motors and valves
- Monitoring

Software Supervisor Communication Module SW-SC

The software supervisor communication module (SW-SC module) is a safety independent software module within the TLC. The SW-SC module logically belongs to the supervisor. It has the following functions:

- Display of safety relevant data from the supervisor on the TFT

Front Panel Board FPB

The front panel board FPB has the following functions:

- Interaction with the user via front panel keys and LEDs
- Drive of loudspeaker

Supervisor

The supervisor consist of:

- 80535 microprocessor system

The supervisor has the following functions:

- Signal processing of the sensors
- Monitoring of the safety relevant process parameters

Enter of Set-point Values

The acquisition of the set-point values (therapy parameters) is performed as follows:

- Set-point values can be entered by the TLC for preparation of a therapy. The data is transmitted to the LLC and supervisor via the DIABUS.
• The data is used by the LLC to control the motors and valves. The alarm limit values are simultaneously generated for the monitoring of the process parameters.

• Alarm limit values are generated from the set-point values by the supervisor. These are transmitted to the SW-SC module via the DIABUS.

• The following set-point values are displayed on the screen before a therapy can be activated:

 Controller Window:
 - Safety relevant variable set-point values of the controller
 - The controller window data is prepared in the video RAM of the TLC by the user interface software UI-SW module (UI-SW module) of the TLC.

 Supervisor Window:
 - Set-point values of supervisor
 - The supervisor window data is mixed with the controller window data in the video RAM of the TLC by the SW-SC module.

• The user is requested to check these data for plausibility. The double channel key (enter acknowledgement) can be pressed. The therapy set-point values of the supervisor for monitoring are enabled by the acknowledgement of the key.

• Safety relevant set-point values can only be changed during a therapy after the user has compared and then acknowledged these values (key). Only then the data is enabled and used by the controller and supervisor.