40L HIGH FLOW INSUFFLATOR

Standard Model

Hermes Ready Model

SERVICE MANUAL
1 Introduction/Basics .. 4
 1-1 Functional Diagram F105 4
 1-2 Explosion Diagram ... 5
 1-3 Cable Layout Plan .. 6
 1-4 Testing Tools and Resources 7
 1-5 Front of the Device .. 7
 1-6 Rear of the Device ... 8
 1-7 Opening the Device .. 8
2 Function Test .. 9
 2-1 Safety Test ... 9
 2-2 Damages Caused by Disinfectants, UV Rays, etc. 9
 2-3 Testing the High Pressure Unit (HPU) 9
 2-4 Testing the Low Pressure Regulator LPR 10
 2-5 Low Pressure Safety Valve LSV 10
 2-6 Testing Low Pressure Unit for Leaks 10
 2-7 Testing Flow Volume .. 10
 2-8 Testing Overpressure Alarm 11
 2-9 Testing Blockage Alarm 11
 2-10 Testing Gas Heater .. 11
3 Service Menu ... 12
 3-1 Opening the Service Menu 12
 3-2 Calibration .. 13
 3-2-1 Offset Calibration 14
 3-2-2 Low Pressure Calibration 15
 3-2-3 High Pressure Calibration 17
 3-2-4 LPR Calibration .. 18
 3-2-5 Flow Calibration ... 19
 3-2-6 Flow Calibration ... 20
 3-2-6 LSV-Calibration ... 21
 3-2-7 Heater Calibration .. 22
 3-2-8 12h Test .. 23
 3-2-9 Factory Default .. 24
4 Replacing Components ... 25
 4-1 High Pressure Unit HPU 25
 4-2 Gas Connection .. 26
 4-3 Low Pressure Unit LPU 26
 4-4 Power Pack ... 27
 4-5 Non-Heating Device Plug 27
 4-6 Panel Board (ON/OFF Key) 28
 4-7 Modules/Boards .. 29
 4-8 Video Board/LCD ... 29
 4-9 Heater Board HB ... 30
 4-10 Insufflation Tube Connection (Gas Outlet) 30
 4-11 Fluid Sensor .. 30
 4-12 Front Panel .. 31
5 Spare Parts List ... 32
6 Calibration Error Messages 33
7 Technical Data .. 35
8 Glossary .. 36
9 Index ... 37
10 Maintenance- and Checklist 38
 Test Record .. 39
 Return form .. 41

Safety Instructions

Liability
Device and additional equipment have been carefully and thoroughly tested at the factory before shipping. The manufacturer is only responsible for the safety and reliability as well as performance of the product if all tests and repairs are carried out by qualified and authorized personnel and the device and all additional equipment is employed according to its proper and intended use.

WARNING
Maintenance, repair, or modifications may be carried out only by personnel authorized by the manufacturer. The electrical installation of the power supply has to comply with DIN/IEC rules and regulations.

An authorized service technician has to inspect and service the device every two years to ensure the safety and functionality of the unit. If the service interval is not adhered to, the manufacturer does not assume any liability for the functional safety of the device.

Service technicians are to be trained and certified only by the manufacturer.

The manufacturer is not liable for direct or consequential damages; the warranty is null and void if

- the device or any additional equipment is used improperly,
- instructions and rules of the manual are not observed,
- the device or any additional equipment is used, prepared, or maintained/repaired improperly,
- non-authorized personnel carries out repairs, adjustments, or modifications on the device or any additional equipment,
- the prescribed inspection and maintenance intervals are exceeded.

Receiving technical documents does not constitute authorization to repair, adjust, or modify the device or any additional equipment.

Proper care and maintenance of the device and any additional equipment is required to ensure safe operation. Function and operational of the device and additional equipment thus have to be checked after each maintenance session to protect patient and operator. New factory supplied and repaired products have to be prepared before first use (see manual).

Protection from Germs
Devices, instruments, and any additional equipment returned for repairs have to be prepared before shipping according to the manual to protect the service personnel and ensure safety during transport. If this is not possible,

- the contaminated product has to be clearly marked referencing the type of contamination and
- has to be shrink-wrapped in two layers of safety foil.

Certificate
The device or instrument operator has to be provided with a certificate about the scope and extent of the performed services/repairs. This certificate has to list the date of the service as well as the company together with a signature. Please use the maintenance and checklist included in the back of the service manual.
1. Gas bottle
2. Gas bottle connection
3. High pressure unit (HPU)
4. Filter
5. High pressure sensor 60 bar
6. High pressure regulating valve 3 bar
7. Temperature sensor -40 to +70 °C
8. High pressure safety valve 3.5 bar
9. Heater for high pressure unit
10. Low pressure unit
11. Low pressure regulating valve 120 mmHg
12. Medium pressure safety valve 500 mmHg
13. Controllable pressure reducer
14. Solenoid valve
15. Flow sensor
16. Pressure sensor I
17. 2/2 way valve, normal closed
18. Temperature sensor
19. Pressure sensor II
20. Low pressure safety valve 55 mmHg
21. Fluid sensor
22. Heating wire for gas heating
23. Temperature sensor for gas heating
24. Foil keyboard
25. Speaker
26. Warning displays
27. LCD display
28. Remote control receiver
29. Video OUT
30. Video IN
31. Serial interface
32. Service interface
1. Insufflation tube connection
2. Gas heater connection
3. Front plate / Design foil
4. Front plate
5. Cloth sealing strip
6. LCD display
7. Graphic board
8. Basic module BAM 01
9. I/O module IDM 01
10. Video module VIM 01 (alternate option)
11. Interface-Modul IFM 01 (alternate option)
12. Upper section of case
13. Low pressure unit LPU 01
14. Power plug
15. Non-heating plug with safety catch
16. High pressure unit HPU 01
17. Gas connection Co2
18. High pressure safety valve
19. Video In/Out board
20. Bottom of case
21. Heater board HPL
22. Front board FPL
1 Introduction/Basics

1-3 Cable Layout Plan
This device has to be serviced every two years. The chapter Function Test describes this routine inspection. Please use the maintenance and checklist included in the back of the service manual to document the bi-annual inspection.

1-4 Testing Tools and Resources
The following tools and resources are required to perform the maintenance and service tasks described in this manual. Please make sure that all tools and resources are calibrated and in perfect working order before commencing any service or maintenance tasks.

- Manometer Range 0-70 mm Hg, Test Class 1.0
- Manometer Range 0-7 bar, Test Class 1.6
- Manometer Range 0-100 bar, Test Class 1.6
- Silicone Tube 8x2 mm
- PVC Tube 6x4 mm, 1 m
- T Connector 8.8-8.8 mm
- Flow Column Range 0-20 l/min CO2 Max. Pressure Drop at 9 l/min < 10 mbar
- Flow Column Range 0-40 l/min CO2 Max. Pressure Drop at 9 l/min < 10 mbar
- Veress Hollow Needle Length 100 mm, Opening Diameter 1.4 mm, Inner Diameter 1.6 mm
- Heater Calibration Box T100/T101
- Universal Multimeter

Fig. 1-5: F105 Front Control and Display Elements
1 Start/Stop Key
2 Display
3 Gas Heater Connection
4 Insufflation Tube Connection
5 Nominal Gas Flow +
6 Nominal Gas Flow -
7 Gas Consumption Reset Key
8 Menu Key
9 Nominal Pressure -
10 Nominal Pressure +
11 Line Voltage LED
12 ON/OFF Key
1-7 Opening the Device

1. You will need a recessed head screwdriver (Phillips) size 2 to open the device.
2. (See Fig. 1-6) Remove four screws from top ① and two screws from each side ③.
3. Lift the case cover panel ② towards the top and remove.

Fig. 1-6: Connection Elements, Rear of the Device

① Recessed Head Screw to Fasten Case
② Case Cover
③ Recessed Head Screw to Fasten Case
④ Blank Cover HERMES (Optional)
⑤ Service Interface
⑥ Potential Equalization Plug
⑦ Video Output RGB/FBAS
⑧ Video Output SVHS
⑨ Recessed Head Screw to Fasten Case
⑩ Video Input SVHS
⑪ Video Input RGB/FBAS
⑫ Power Pack Plug
⑬ Fuse Holder
⑭ Gas Connection
2 Function Test

2-1 Safety Test
Trained personnel has to perform a safety test as part of the annual system inspection.
1. Perform a visual inspection. Make sure that
 • the fuse corresponds with the specifications indicated by the manufacturer
 • labels and stickers on device are legible
 • the mechanical condition of the unit allows for safe operation
 • the device is clean
2. Measure leakage currents according to DIN EN 60601-1/ IEC 601-1.
3. Measure protective conductor resistance according to DIN EN 60601-1/IEC 601-1. The protective conductor resistance is measured while device is connected to the power supply. The maximum value is 0.2 Ω.
4. Measure the insulation resistance with 500-700 V DC. The min. value is 50 MΩ. The electric strength with high voltage cannot be measured.
As an alternative, perform safety test according to DIN VDE 0751 Section 1.

2-2 Damages Caused by Disinfectants, UV Rays, etc.
The surfaces of the device components can be changed and/or damaged by disinfectants used in the operating room or the ozone released during the use of UV emitters. This requires the following inspections:

Cabling
The cables are to be checked for proper fit and condition. Any cables suspected of being damaged or flawed in any way (e.g., insufficient insulation, breaks, malfunctioning contacts, etc.) are to be replaced.

Electronic Boards
If the boards show signs of corrosion or other damage to the contacts or soldering joints, they are to be replaced to ensure the safety of the device/system.

Front Panel and Case
Front panel and case are to be checked for damage. Check for safety-and function-relevant damages. The proper function of the control panel and displays is to be checked.

Tubing
Fluid can enter the device via the insufflation tube connection. This is detectable through the residue visible in the transparent tube in the area of the tube nozzle. If this is the case, please replace the entire pneumatics block.

2-3 Testing the High Pressure Unit (HPU)
The high-pressure unit consists of the following:
• Gas Intake Filter GIF
• High Pressure Sensor HPS
• High Pressure Controller HPC
• High Pressure Heater HPH
• High Pressure Valve HPV

Testing High Pressure Unit for Leaks
1. Connect manometer (0-70 bar) to gas bottle connection.
2. Remove tube (press plastic ring and pull out tube) from HPU ② output and connect a 0-7 bar manometer.
3. Connect gas supply.
4. Briefly open and then reclose the gas supply.
5. Wait 10 min. Pressure at 70-bar manometer may not have dropped more than 5 bar.

Adjustment
• Check gas connection
• Replace high-pressure unit HPU

High Pressure Valve HPV
1. Open the gas supply line.
2. Use a felt marker to mark the position of the adjustment screw ① of the high-pressure controller (Fig. 2-3-1).

Fig. 2-3-1: Position of High Pressure Unit HPU
3. Turn adjustment screw ① at high-pressure controller to increase pressure until triggering of the high-pressure valve ③ can be clearly heard (hissing sound).
4. Reverse screw ① until you can no longer hear any hissing sound. The then reached pressure has to be above 4 bar.
5. Reset the adjustment screw to the marked position.

Adjustment
• Use the adjustment screw ③ of the high-pressure valve for any adjustments.

High Pressure Regulator HPR

WARNING
The output value drops with rising temperature (e.g., long operating hours).

1. Relieve pressure of tube at magnetic valve (briefly remove and reconnect tube) until a stable final value of 3.2 bar is reached (±0.6).
2. Remove manometer and reconnect tube.
2 Function Test

Adjustment
- Use the adjustment screw 🌀 of the high-pressure controller for any adjustments.

2-4 Testing the Low Pressure Regulator LPR
1. Open the gas supply line.
2. In the service menu, open the “LPR Adjust” menu option and check the settings. (Adjust with adjustment screw, Fig. 2-4-1)

Fig. 2-4-1: F105 Low Pressure Controller Settings

2-5 Low Pressure Safety Valve LSV
Close device exit using a tube clamp (Fig. 2-6-1, 🌀).
In the service menu, open the “LSV Adjust” menu option and check the settings.

Adjustment
Use the adjustment screw of the low-pressure safety valve for a slight adjustments.

2-6 Testing Low Pressure Unit for Leaks

Fig. 2-6-1: Test Layout: Low Pressure Unit Leakage Test
�� Manometer (0-70 mm Hg)
�� Syringe
�� T-Connector
1. Attach manometer 🌀, air-filled syringe 🌀, tube, and T-connector 🌀 to the insufflation tube connection.
2. Use the syringe to generate a pressure of at least 50 mm Hg. Clamp tube at 50 mm Hg.
3. Wait 30 seconds. Pressure at manometer may not have dropped more than max. 2 mm Hg.

Adjustment
- Check fluid sensor and low-pressure unit (and replace if necessary).

2-7 Testing Flow Volume

Fig. 2-7-1: Test Layout: Flow Volume
�� Tube Connection
�� Flow Column (40 l/min)
1. Attach a tube and a flow column to insufflation tube connection (Fig. 2-6-1).
2. Turn on device.
3. Set a nominal pressure of 15 mm Hg.
4. Press the Start/Stop key.
5. Check flow volume of device in gas flow levels 2 and 3. The value of the nominal flow indicator may not exceed a tolerance of ±2.0 l/min.
 The flow column value is not to be considered until after gas flow fluctuations have stabilized.
6. Press the Start/Stop key to end test.
7. Remove all measuring tools and resources.

Adjustment
- Service menu option “Flow Calibration.”
2 Function Test

2-8 Testing Overpressure Alarm
1. Attach a tube and an air-filled syringe to insufflation tube connection (Fig. 2-5-1).
2. Use the syringe to slowly generate a pressure of 15 mm Hg.
3. Slowly increase pressure to 21 mm Hg and press the Start/Stop key.
4. An alarm is sounded after approx. 5 seconds and “Overpressure” is displayed.
5. Select gas flow level 2.
6. The bleeder (relief) system is activated after approx. 5 seconds (time and pressure value can be changed in the user menu).
7. The bleeder system relieves the pressure; alarm and “Overpressure” warning symbol are turned off.
8. Press the Start/Stop key and remove test tools and resources.

Adjustment
- Replace low-pressure unit.

2-9 Testing Blockage Alarm
1. Connect insufflation tube and close off the end of the tube.
2. Press the Start/Stop key.
3. An alarm is sounded after approx. 5 seconds and “Blockage” is displayed. The acoustic warning signal can be deactivated in the user menu.
4. Open the insufflation tube connection; the alarm is turned off.
5. Press the Start/Stop key.

Adjustment
- Return device to factory.

2-10 Testing Gas Heater
1. Connect a heater tube to insufflation tube and gas heater connection.
2. The display depicts “HEATING.” The tube is being pre-warmed.
3. Unplug the gas heater. The display “HEATING” disappears.
4. Remove heater tube.
5. Turn off device.

Adjustment
- Replace HPL board or cable to HPL.
3 Service Menu

3-1 Opening the Service Menu
- Device parameters are displayed and changed in the service menu.
- Menu options are to be carried out in sequence to avoid malfunctions.
- Use the keys below the display for input.
- The function of each key is displayed above.
- Confirm input (Enter) with the (MENU) key.
- Use the (RESET) key to exit current menu level (Esc) and to return to the previous level.

![Flowchart diagram]

- You are now in the service mode and can start the calibration process.
3 Service Menu

3.2 Calibration

The following chart provides an overview over the necessary calibrations.

- Use the keys below the display for input.
- The function of each key is displayed above.
- Confirm input (Enter) with the [MENU] key.
- Use the [MENU] and [△] key to open the next menu level.
- Use the [▼] key to open the previous menu level.
- Use the [RESET] key to exit current menu level (Esc).
3 Service Menu

3-2-1 Offset Calibration

Requirements:
- Device in service mode
- Gas bottle closed
- Device output open

After entering service code 1000 confirm with (MENU) (ok)

Confirm with (MENU) (ok)
3-2-2 LOW Pressure Calibration

Requirements:
- Device in service mode
- Gas bottle open
- Test layout according Fig. 3-2-2

Press (△)

Confirm with (MENU)

- Acknowledge error message with (RESET)
- Check error message and eliminate cause.
- Restart.

DISPLAY

Service menu

A0/Offset

ok
esc ▲

Service menu

LOW-Pressure-Calibration

ok
esc ▼▲

LOW-Pressure Calibration

Act

OK

please wait

ok
esc ▼▲

LOW-Pressure Calibration

error code xx

ok
esc ▼▲

LOW-Pressure Calibration

MN

OK

adjust pressure

ok
esc ▼▲

Continued
3 Service Menu

3-2-2 LOW-Pressure Calibration

- Read manometer
 Pressure value (e.g., 40 mm Hg ≥ 4000)
- Set read value on device with (△), (▽).

Confirm with (MENU)
3 Service Menu

3-2-3 HIGH Pressure Calibration

Requirements:
- Device in service mode
- Gas bottle with manometer
- Gas bottle open

Press (△) until display on right appears:

Confirm with (MENU).

- Read bottle pressure from manometer of gas bottle.
- Use (△), (▽) to enter this value.
- Confirm with (MENU)

- Acknowledge error message with (RESET).
- Check error message and cause.
- Restart.

Confirm with (MENU)
3 Service Menu

3-2-4 LPR Calibration

Requirements:
- Device in service mode
- Gas bottle open
- Setting according Fig. 3-2-4

Press (△) until display on right appears:

Confirm with (MENU)

· Follow Fig. 3-2-4, use screwdriver to set front pressure controller (LPC) from display value ACT to DEF.
· Confirm with (MENU)

· Acknowledge error message with (RESET).
· Check error message and cause.
· Restart.

Calibration success

Confirm with (MENU)

Servicemenu

All-Offset
ok esc ▲

Servicemenu

LPRAdj
ok esc ▼▲

Servicemenu

LPRAdj

Adjust pressure
ok esc ▼▲

Servicemenu

LPRAdj

error code xx
ok esc ▼▲

Servicemenu

LPRAdj

ok esc ▼▲

Fig. 3-2-4: F105 Low Pressure Controller Settings

DISPLAY
3 Service Menu

3-2-5 Flow Calibration

Fig. 3-2-5: Test Layout: Flow Calibration

1. Device Output/Tube Connection
2. Flow Column (40 l/min)

Requirements:
- Device in service mode
- Gas bottle open
- Test layout according Fig. 3-2-5

Press (Δ) until display on right appears.

Confirm with (MENU).

• Acknowledge error message with (RESET).
• Check error message and eliminate cause.
• Restart.

DISPLAY

Service menu

A/B Offset
ok esc ▲

Service menu

Flow Calibration
ok esc ▼▲

Flow Calibrat b n
phase wait
ok esc ▼▲

Flow Calibrat b n
error code xx
ok esc ▼▲

Continued
3 Service Menu

3-2-5 Flow Calibration

- Read flow column flow value
- Set read value on device with (▲), (▼)

Confirm with (MENU)

Flow Calibration

<table>
<thead>
<tr>
<th>ACT</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
</table>

Adjust flow

ok esc ▼▲

Continue

Calibration success

ok esc ▼▲

Confirm with (MENU)

Service menu

Flow Calibration

ok esc ▼▲
3.2.6 LSV-Calibration

![Image of service menu](image-url)

Requirements:
- Device in service mode
- Gas bottle open
- Setting according Fig. 3.2.6
- Device exit closed!

DISPLAY

Servicemenu

- **All-Offset**
 - ok
 - esc ▲

Servicemenu

- **LSV-Adjust**
 - ok
 - esc ▼▲

Servicemenu

- **LSV-Adjust**
 - **Adjust pressure**
 - ok
 - esc ▼▲

Servicemenu

- **LSV-Adjust**
 - **Error code xx**
 - ok
 - esc ▼▲

Servicemenu

- **LSV-Adjust**
 - **Calibration success**
 - ok
 - esc ▼▲

- **Servicemenu**

 - **LPR-Adjust**
 - ok
 - esc ▼▲

Press (▼) until display on right appears:

Confirm with (MENU)

- Follow Fig. 3.2.6 and use screwdriver to set LSV adjustment screw from ACT to DEF
- Confirm with (MENU)

- Acknowledge error message with (RESET)
- Check error message and eliminate cause.
- Restart.

Confirm with (MENU)
3-2-7 Heater Calibration

Requirements:
- Gerät im Servicemode
- Gas bottle open
- Calibration box according Fig. 3-2-7

DISPLAY

Servicemenu

- **AI Offset**
 - ok
 - esc

Servicemenu

- **Heater Calibration**
 - ok
 - esc

- **Heater Calibration**
 - please connect heater
 - ok
 - esc

- **Heater Calibration**
 - please connect Temperature 1
 - ok
 - esc

- **Heater Calibration**
 - please connect Temperature 2
 - ok
 - esc

- **Heater Calibration**
 - Calibration success
 - ok
 - esc

Press (▲) until display on left appears:

- Confirm with (MENU)

- **Follow Fig. 3-2-7 to connect device with calibration box.**
- After prompted by display, first connect Temp 1 and then Temp 2 to the calibration box.

- Acknowledge error message with (RESET).
- Check error message and eliminate cause.
- Restart.

Fig. 3-2-7: Connection for Heater Calibration Box

1. Heater Calibration Box T300/T301
2. Connection for Heater Calibration Box
3 Service Menu

3-2-8 12h Test

Make sure device is continuously connected with live wire during 12 hour test and is not operated or used in any other capacity during this test.

Switch device off and on again after calibration is completed to avoid error messages.
Using this menu option will reset all values to the factory default settings. The device is then not calibrated and cannot be operated.

Requirements:
- Device in service mode
- Gas bottle open

Press (△) until display on right appears:

Confirm with (MENU)

Factory default
please wait
ok esc ▲▼

Calibration successful
ok esc ▲▼

Confirm with (MENU)

Factory default
ok esc ▼
The following components and modules can be replaced if malfunctioning:

- Entire High Pressure Unit HPU
- Entire Power Pack
- Non-Heating Device Plug
- Basic Board Module BAM
- Video Board LCD
- Board HPL
- Entire Pneumatics Unit (Low Pressure Unit)
- Entire Set of Cables
- Insufflator Tube Set
- Entire Fluid Sensor
- Device Feet
- Entire Video Board
- Hermes Interface
- Potential Equalization Plug

The device has to be opened as described in Chapter 1-7 to replace any modules or components.

4-1 High Pressure Unit HPU

The high-pressure unit is connected with the gas port. The high-pressure unit consists of the following function elements:

- Pressure Controller
- High Pressure Fuse
- High Pressure Sensor

Replace elements if malfunctioning and in case of causally determined flow limitation.

1. Open device as described in Chapter 1-7.
2. Remove gas connection (see Fig. 4-1-1) as described in Chapter 4-2.
3. Remove gas tube from HPU as well as the electric jumpers (see Fig. 4-1-2).
4. Unscrew the four fastening screws on rear plate and remove HPU.
5. Reverse instructions to install elements.

Conduct the following tests after replacing modules or components:

1. New calibration of offset and high pressure.
4-2 Gas Connection
The gas connection consists of the following:
- Supply-specific connection adapter completely installed with:
- Screw Unions SW 24
- O-Ring on Face

Replace elements in case of defective, non-sealing pressure connections, flow-reducing filter soiling, and if operational functionality is reduced.
1. Use SW 24 adjustable wrench to Unscrew rear plate screws.
2. Make sure O-ring remains in place when removing component.
3. Reverse instructions to install elements. **Make sure anti-twist stop is properly inserted when replacing gas connection!**

Conduct the following tests after replacing modules or components:
1. High pressure level test (Item 2.3).
2. Flow volume test (Chapter 2-6).

Fig. 4-2-1: CO2 Gas Connection

1. Gas Supply Connection
2. Flat SW 24
3. Anti-Twist Stop
4. O-Ring Seal

4-3 Low Pressure Unit LPU
Replace elements if malfunctioning and in case of flow limitation.

Fig. 4-3-1: Position LPU
1. Flat Cable/Plug-in Connection
2. Electrical Plug-in Connection with High Pressure Unit
3. Tube Connection with HPU
4. Complete LPU
5. SW 7 Nut / Tooth Lock Washer (4x)
6. Connection Tube

1. Remove the connection tube from the LPU ① ⑤ .
2. Unscrew the plug-in connections for the electronic plugs ① ② .
3. Unscrew four fastening nuts ⑤ at base case of pneumatics unit; remove the tooth lock washers, and lift out the entire LPU complete with block, valves, and board.
Reverse instructions to install elements.
Conduct the following tests after replacing modules or components:
1. Calibration according to Chapters 3-2-1 to 3-2-6 and Chapter 3-2-8.
4-4 Power Pack
Replace power pack if malfunctioning and in case of repeated safety defect.

Fig. 4-4-1: Position Power Pack
1. Voltage Input Cable/Plug-in Connection
2. Fastening Nuts/Tooth Lock Washers for Cover
3. Entire Power Pack
4. Fastening Nuts/Tooth Lock Washers for Cover
5. Voltage Output Cable/Plug-in Connection
1. Remove the electrical plug-in connectors ①⑤.
2. Use SW 5,5 adjustable wrench to Unscrew four fastening nuts ②④ on cover and remove cover.
3. Unscrew two bolt screws on front of power pack board and two nuts in rear and lift power pack from case.

Reverse instructions to install elements.
Conduct the following tests after replacing modules or components:
1. Use a multimeter to check voltage at input and output of power pack.
2. Switch on device and perform function check.
3. Safety test according to Chapter 2-1.

4-5 Non-Heating Device Plug
Replace non-heating device plug if malfunctioning and in case of defects.
The non-heating plug is available as a complete kit including screws, cables with plugs, and fuse holder with fuse.

Fig. 4-5-1: Position Non-Heating Device Plug
1. Bolt Screw for Mass Connection/Potential Equalization Line
2. Power Pack
3. Power Pack Connector Plug
1. (Fig. 4-5-1) Unscrew PE connection ①.
2. Remove plug-in connector at cable of non-heating device plug of power pack ② by pulling towards top.
3. (Fig. 4-5-2) Unscrew two fastening screws ① at rear plate and remove non-heating device plug by pulling towards rear.
4. Reverse instructions to install elements.
4-5-2: Non-Heating Device Mounting Screws

1. Non-Heating Device Mounting Screws
 Conduct the following test after replacing modules or components:
 1. Switch on device and perform function check.
 3. Safety test according to Chapter 2-1.

4-6 Panel Board (ON/OFF Key)
Replace panel board or remote control if malfunctioning ON/OFF key.

4-6-1: Position Panel Board (ON/OFF Key)

1. Plug-in Connector to Basic Module BAM 01
2. Plug-in Connector to I/O Module IOM 01
3. Panel Board
 1. Remove the electrical plug-in connectors ① ② .
 2. Unscrew two nuts and washers ③ .
 3. Remove board.
 Reverse instructions to install elements.
Conduct the following tests after replacing modules or components:
 1. Remote control test, installation check, function test, display.
 2. Safety test, Chapter 2-1.
4-7 Modules/Boards
Replace the respective board in case of malfunction or defect.

1. Remove the electrical plug-in connectors from the component boards/modules.
2. Firmly grasp component board/module and press button ① to release.
3. Reverse instructions to install elements.
4. Lock component board/module ➔Position ① . Conduct the following test after replacing modules or components:
Function test of replaced components.

Fig. 4-7-1: Component Boards-/Module Release
① Locked position ➔ Press to release
② Component Board/Module
③ Released position ➔ Press to lock

4-8 Video Board/LCD
Replace video board if malfunctioning and in case of defects.

1. Fastening Nut/Tooth Lock Washer
2. Plug-in Connector from I/O Module
3. Video Module DIU
4. Terminal Screw for Cable from I/O Board
5. Fastening Nut/Tooth Lock Washer
The video board and the LCD can be removed without first having to disassemble other components. However, access to the video board is much easier if the front panel has been removed (see Chapter 4-12).
A SW 5,5 fork wrench/ring wrench and a small screwdriver are required for the removal of the video board.
Be careful not to damage any cables or other components when removing the video board.
1. Remove the cable connectors ② ④ .
2. (4x) Unscrew the fastening nuts ① ③ and tooth lock washers at the corners of the video board ③.
3. Watch out for the distance sleeves between video board and LCD when removing the video board together with the LCD from the bolt screws.
Reverse instructions to install elements.
Conduct the following test after replacing modules or components:
1. Function test of LCD display.

Fig. 4-8-1: Position Video Board/LCD
① Fastening Nut/Tooth Lock Washer
② Plug-in Connector from I/O Module
③ Video Module DIU
④ Terminal Screw for Cable from I/O Board
⑤ Fastening Nut/Tooth Lock Washer
4-9 Heater Board HB
Replace heater board if malfunctioning or in case of gas heater tube defects.

![Image of Heater Board HB](4-9-1)

Fig. 4-9-1: Position Heater Board

1. Connecting Cable to I/O Module IOM
2. Heater Board HB
3. Nut/Tooth Lock Washer for Fastening
4. Nut/Tooth Lock Washer for Fastening

The heater board can be removed without first having to disassemble other components.

1. Unscrew fastening nuts and tooth lock washers 3 & 4.
2. Remove board 2 together with the connecting cable 1 from bolt screws by pulling towards rear.
3. Remove cable connector from heater board.
Reverse instructions to install elements.
Conduct the following test after replacing modules or components:
1. Heater function test (Chapter 2-9).

4-10 Insufflation Tube Connection (Gas Outlet)
Replace if surface shows defects that allow leaks.

![Image of Insufflation Tube Connection](4-10-1)

Fig. 4-10-1: Position Insufflation Tube Connection

1. Fluid Sensor (FLS)
2. Fluid Sensor Electrical Connection
3. L-Shaped Adapter from Fluid Sensor

1. Remove connecting cables and front panel (see Fig. 4-12).
2. Carefully remove the FLS 1 together with the L-shaped adapter 2.
3. Use a 5/16 adjustable wrench to unscrew inner lock nut from gas outlet.
4. Remove locknut and lock washer.
5. Pull gas outlet towards front and remove.
Reverse instructions to install elements.
Conduct the following tests after replacing modules or components:
1. Leak test according to Chapter 2-5.
2. Safety test, Chapter 2-1.

4-11 Fluid Sensor
Replace if malfunctioning.
The electrical connector of the fluid sensor (Fig. 4-10-1, 2) is integrated into the connecting adapter between insufflation tube connection and pneumatic unit.

If necessary, replace the entire connecting adapter.
1. Remove cable from the cable connector.
2. Detach tube connection as described in Chapter 4-10.
Reverse instructions to install elements.
Conduct the following tests after replacing modules or components:
1. Leak test according to Chapter 2-5.
2. Safety test according to Chapter 2-1.
4 Replacing Components

4-12 Front Panel
Replace front panel or operating key if either are damaged or a front panel malfunction occurs.

![Diagram of front panel components](4-12-1)

Fig. 4-12-1: Fastening Front Panel

1. Mounting Screws
2. Insufflation Tube Connection
3. Plug-in Connection
4. Plug-in Connection
5. Mounting Screws

1. Remove the electrical plug-in connectors ③⑤.
2. Unscrew 2 cross-recessed screws ①⑤ on the left and right.
3. Remove tube connection to the insufflation tube connector.
4. Carefully remove front panel by pulling towards front.
5. Detach elements attached to the inside of the front panel. Reverse instructions to install elements.

Conduct the following tests after replacing modules or components:
1. Function test of replaced components.
2. Safety test according to Chapter 2-1.
5 Spare Parts List

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-3432-X</td>
<td>Compl. High Pressure Unit</td>
</tr>
<tr>
<td>200-1057-X</td>
<td>Compl. Power Pack</td>
</tr>
<tr>
<td>41-00096-1X</td>
<td>Non-Heating Device Plug</td>
</tr>
<tr>
<td>200-1055-X</td>
<td>Basic Board Module</td>
</tr>
<tr>
<td>200-1054-X</td>
<td>Input/Output Board Module</td>
</tr>
<tr>
<td>200-0811-X</td>
<td>LCD Board / Display</td>
</tr>
<tr>
<td>200-3400-X</td>
<td>Panel Board</td>
</tr>
<tr>
<td>200-3399-X</td>
<td>Gas Heater Board</td>
</tr>
<tr>
<td>200-3401-X</td>
<td>Compl. Pneumatics Unit (Low Pressure Unit)</td>
</tr>
<tr>
<td>200-3393-X</td>
<td>Compl. Set of Insufflator Cables</td>
</tr>
<tr>
<td>46-10027-1X</td>
<td>Insufflator Tube Set</td>
</tr>
<tr>
<td>200-4443-X</td>
<td>Tube Connection F105 6/8</td>
</tr>
<tr>
<td>200-3392-X</td>
<td>Case Cover</td>
</tr>
<tr>
<td>200-3397-X</td>
<td>Front Panel</td>
</tr>
<tr>
<td>200-3406-X</td>
<td>Compl. Fluid Sensor</td>
</tr>
<tr>
<td>16-00002-1X</td>
<td>Device Castors</td>
</tr>
<tr>
<td>200-3409-X</td>
<td>Compl. Video Board</td>
</tr>
<tr>
<td>200-3440-X</td>
<td>Hermes Interface</td>
</tr>
<tr>
<td>46-00054-1X</td>
<td>Potential Equalization Plug</td>
</tr>
</tbody>
</table>
Calibration Error Messages

To troubleshoot check connections and settings first and then repeat the calibration process before replacing a component or component group.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Cause</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>General error</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>1</td>
<td>Timeout</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>2</td>
<td>General software error</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>3</td>
<td>EEeprom write error</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>4</td>
<td>General gas supply error</td>
<td>Check gas supply</td>
</tr>
<tr>
<td>10</td>
<td>General offset calibration error</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>11</td>
<td>Offset Low pressure regulator too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>12</td>
<td>Offset Low pressure sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>13</td>
<td>Offset Safety pressure sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>14</td>
<td>Offset Differential pressure sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>15</td>
<td>Offset High pressure sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>16</td>
<td>Offset Temperature sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>17</td>
<td>Offset Current monitoring of high pressure gas heater too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>18</td>
<td>Offset Gas heater too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>19</td>
<td>Offset Low pressure regulator too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>20</td>
<td>Offset Low pressure sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>21</td>
<td>Offset Safety pressure sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>22</td>
<td>Offset Differential pressure sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>23</td>
<td>Offset High pressure sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>24</td>
<td>Offset Temperature sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>25</td>
<td>Offset Current monitoring of high pressure gas heater too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>26</td>
<td>Offset Gas heater too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>50</td>
<td>General low pressure calibration error</td>
<td>Check FIS</td>
</tr>
<tr>
<td>51</td>
<td>Low pressure - large leak</td>
<td>Check manometer connection</td>
</tr>
<tr>
<td>52</td>
<td>Low pressure - small leak</td>
<td>Check manometer connection</td>
</tr>
<tr>
<td>53</td>
<td>Low pressure intake value too low</td>
<td>Check gas supply, HPU</td>
</tr>
<tr>
<td>54</td>
<td>Low pressure intake value too high</td>
<td>Check gas supply, calibrate LPR</td>
</tr>
<tr>
<td>55</td>
<td>Amplification I - Low pressure</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>56</td>
<td>Amplification I - Low pressure sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>57</td>
<td>Amplification II - Low pressure sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>58</td>
<td>Amplification II - Low pressure sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>59</td>
<td>Amplification - Safety pressure sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>60</td>
<td>Low pressure amplification - Safety pressure sensor too high</td>
<td>Replace LPU</td>
</tr>
</tbody>
</table>
Calibration Error Messages

* To troubleshoot check connections and settings first and then repeat the calibration process before replacing a component or component group.

<table>
<thead>
<tr>
<th>Error and Warning Messages</th>
<th>Cause</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>General High Pressure Calibration Error</td>
<td>Replace HPU</td>
</tr>
<tr>
<td>73</td>
<td>High pressure intake value too low</td>
<td>Check gas supply</td>
</tr>
<tr>
<td>74</td>
<td>High pressure intake value too high</td>
<td>Check gas supply</td>
</tr>
<tr>
<td>75</td>
<td>High pressure sensor value has changed</td>
<td>Check gas supply</td>
</tr>
<tr>
<td>76</td>
<td>High pressure sensor amplification too low</td>
<td>Replace HPU</td>
</tr>
<tr>
<td>77</td>
<td>High pressure sensor amplification too high</td>
<td>Replace HPU</td>
</tr>
<tr>
<td>90</td>
<td>General low pressure regulator calibration error</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>91</td>
<td>Adjustment - Low pressure regulator not in range</td>
<td>Repeat calibration</td>
</tr>
<tr>
<td>110</td>
<td>Low pressure safety calibration error</td>
<td>Check flow meter, replace LPU</td>
</tr>
<tr>
<td>111</td>
<td>Adjustment - Low pressure safety not in range</td>
<td>Repeat calibration</td>
</tr>
<tr>
<td>130</td>
<td>Flow</td>
<td>Check flow meter, replace LPU</td>
</tr>
<tr>
<td>131</td>
<td>Flow resistance too high</td>
<td>Check flow meter, replace LPU</td>
</tr>
<tr>
<td>132</td>
<td>Flow intake value too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>133</td>
<td>Flow intake value too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>135</td>
<td>Flow sensor value changed</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>136</td>
<td>Amplification - Flow sensor too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>137</td>
<td>Amplification - Flow sensor too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>138</td>
<td>Offset Proportional valve too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>139</td>
<td>Offset Proportional valve too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>140</td>
<td>Hysteresis - Proportional valve too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>141</td>
<td>Hysteresis - Proportional valve too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>142</td>
<td>Amplification - Proportional valve too low</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>143</td>
<td>Amplification - Proportional valve too high</td>
<td>Replace LPU</td>
</tr>
<tr>
<td>144</td>
<td>Sticky proportional valve</td>
<td>Replace LPU</td>
</tr>
</tbody>
</table>
7 Technical Data

Power Supply
100 - 240 V-
Main Fuse T 3,15 A
USA 3,15 A (slow blow), UL-recognized
220-240 V-
Main Fuse T 3,15 A, UL-recognized
Connection for potential equalization

Frequency
50-60 Hz

Max. Power Consumption
130 /150°W

Max. Current
100 V: 1250/1400 *mA
240 V: 540/620* mA

Protection Class
I, Typ BF, IP41

Dimensions
Width x Height x Depth
273 x 145 x 360 [mm]
10,75x5,7x14,2 [inch]

Weight
Approx. 7 kg

Operation Conditions
10-40 °C / 50-104 °F
30-75 % rel. air humidity

Storage and Transportation Directions
-40 - +70 °C / -40 - +158°F
10-85 % rel. air humidity
85-100% rel. air humidity (14 days)

Manufactured and Tested acc. to
EMV
EN 60601-1 / IEC 601-1

CE
93/42/ EWG

Insufflation medium
Medical CO₂

Maximum output pressure
55 mm Hg

Maximum gas supply pressure
80 bar/1160 PSI

Minimum gas supply pressure
5 bar/73,3 PSI

Measurement range of gas supply
0-50 bar/0-725 PSI

Maximum gas flow
refer to device data plate located on rear of the device
1-30 mm Hg

Pressure range

Accuracy of pressure measurement
±5 %

Accuracy of gas flow measurement
±5 %

Accuracy of volume measurement
±10 %

Accuracy of gas supply measurement
±10 %

Connections (optional)
Video S-VHS IN/OUT
Video FBAS IN/OUT
Video RGB IN/OUT
RS232 Service Interface

* with reusable heating tube
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog/Digital Converter</td>
</tr>
<tr>
<td>BAM</td>
<td>Basic Module</td>
</tr>
<tr>
<td>DIU</td>
<td>Display Unit</td>
</tr>
<tr>
<td>DPS</td>
<td>Differential Pressure Sensor</td>
</tr>
<tr>
<td>EPx</td>
<td>Electrical Connection</td>
</tr>
<tr>
<td>FLS</td>
<td>Fluid Sensor</td>
</tr>
<tr>
<td>HIF</td>
<td>Hermes Interface</td>
</tr>
<tr>
<td>HPH</td>
<td>High Pressure Heater</td>
</tr>
<tr>
<td>HTS</td>
<td>High Pressure Temperature Sensor</td>
</tr>
<tr>
<td>HB</td>
<td>Heater Board</td>
</tr>
<tr>
<td>HPR</td>
<td>High Pressure Regulator</td>
</tr>
<tr>
<td>HPS</td>
<td>High Pressure Sensor</td>
</tr>
<tr>
<td>HPT</td>
<td>High Pressure Tube</td>
</tr>
<tr>
<td>HPU</td>
<td>High Pressure Unit</td>
</tr>
<tr>
<td>IOM</td>
<td>Input/Output Module</td>
</tr>
<tr>
<td>KEY</td>
<td>Plastic foil keyboard</td>
</tr>
<tr>
<td>LPT</td>
<td>Low Pressure Tube</td>
</tr>
<tr>
<td>LPR</td>
<td>Low Pressure Regulator</td>
</tr>
<tr>
<td>LPU</td>
<td>Low Pressure Unit</td>
</tr>
<tr>
<td>LSV</td>
<td>Low Pressure Safety Valve</td>
</tr>
<tr>
<td>MSA</td>
<td>Measuring Signal Amplifier</td>
</tr>
<tr>
<td>MPT</td>
<td>Median Pressure Tube</td>
</tr>
<tr>
<td>MSV</td>
<td>Median Pressure Safety Valve</td>
</tr>
<tr>
<td>OLV</td>
<td>Output Line Valve</td>
</tr>
<tr>
<td>PBU</td>
<td>Pneumatic Base Unit</td>
</tr>
<tr>
<td>PCU</td>
<td>Pneumatic Control Unit</td>
</tr>
<tr>
<td>PMS</td>
<td>Pressure Measuring Sensor</td>
</tr>
<tr>
<td>PRM</td>
<td>Pressure Regulator Module</td>
</tr>
<tr>
<td>PNB</td>
<td>Pneumatic Block</td>
</tr>
<tr>
<td>PRV</td>
<td>Proportional Valve</td>
</tr>
<tr>
<td>PSM</td>
<td>Power Supply Module</td>
</tr>
<tr>
<td>RCB</td>
<td>Remote Control Board</td>
</tr>
<tr>
<td>SPS</td>
<td>Safety Pressure Sensor</td>
</tr>
<tr>
<td>SRV</td>
<td>Service interface</td>
</tr>
<tr>
<td>NTS</td>
<td>Nominal Temperature Sensor</td>
</tr>
<tr>
<td>VAC</td>
<td>Valve Controls</td>
</tr>
<tr>
<td>VEV</td>
<td>Vent Exit Valve</td>
</tr>
<tr>
<td>VIM</td>
<td>Video Module</td>
</tr>
</tbody>
</table>
9 Index

Symbole
12h Test 23
A
Adjustment 9, 10, 11
Authorized service technicians 3
B
Blockage Alarm 11
C
Cable Layout Plan 6
Cabling 9
Calibration 13
Certificate 3
Contamination 3
E
Electronic Boards 9
Explosion Diagram 5
Explosionsdarstellung 5
F
Factory Default 24
Flow Calibration 19, 20
Flow Volume 10
Flow-Kalibrierung 19
Front of the Device 7
Front Panel 31
Front Panel and Case 9
Function Test 7
Functional Diagram 4
G
Gas Connection 26
Gas Heater 11
Glossary 36
H
Heater Board HB 30
Heater Calibration 22
High Pressure Calibration 17
High Pressure Regulator HPR 9
High Pressure Unit (HPU) 9
High Pressure Unit for Leaks 9
High Pressure Unit HP 25
High Pressure Valve HPV 9
HIGH-Pressure Kalibrierung 17
I
Inflation Tube Connection (Gas Outlet) 30
L
Liability 3
Low Pressure Calibration 15
Low Pressure Regulator LPR 10
Low Pressure Safety Valve LSV 10
Low Pressure Unit for Leaks 10
Low Pressure Unit LPU 26
LOLPR Calibration 18
LSV-Calibration 21
M
Modules/Boards 29
N
Non-Heating Device Plug 27
O
Offset Calibration 14
Opening the Device 8
Overpressure Alarm 11
P
Panel Board (ON/OFF Key) 28
Power Pack 27
Protection from Germs 3
R
Rear of the Device 8
S
Safety Test 9
Service Menu 12
T
Technische Daten 35
Testing High Pressure Unit for Leaks 9
Testing Tools and Resources 7
Tubing 9
V
Verkabelungsplan 6
Video Board/LCD 29
Maintenance- and Checklist

Type of device: __________________________ **Device no.:** _____________

Location of use: __

Maintenance date: ______________ **Inspected by:** ______________ **Company:** ______________

I. Safety Test (chap. 2-1)

<table>
<thead>
<tr>
<th>Main fuse</th>
<th>Incritions</th>
<th>Mechanical Condition</th>
<th>Cleanliness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug connections</td>
<td>PC Boards</td>
<td>Front panel and casing</td>
<td></td>
</tr>
</tbody>
</table>

II. Function Test (chap. 2)

<table>
<thead>
<tr>
<th>High Pressure Unit HPU</th>
<th>Low Pressure Regulator LPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niederdruckeinheit LPU</td>
<td>Flow Volume</td>
</tr>
<tr>
<td>Warning overpressure</td>
<td>Blockage Alarm</td>
</tr>
<tr>
<td></td>
<td>Gas Heater</td>
</tr>
</tbody>
</table>

III. Remarks

__

__

Date _____________ **Signature** _____________________________

US-38
Test Record

<table>
<thead>
<tr>
<th>Date</th>
<th>Result</th>
<th>Remarks</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Return form

If you have to return the device, please fill out the card below and mail the manual back with the device.

Name of owner:

Zip code:
City:

State/Province:

Country:

Type of device:

Device identification number (see ID marker):

Description of defect:

Address for Service

STRYKER ENDOSCOPY
5900 Optical Court
San Jose, CA 95138
USA
Tel: +1 800 624 4422
Fax: +1 800 729 2917

STRYKER AUSTRALIA Pty Ltd
50 Broughton Road
Artarmon, NSW 2065
Australia
Tel: +61 2 9415 5100
Fax: +61 2 9420 0633

STRYKER CHINA Ltd
Room 1710, Kodak House 2
39 Healthy Street East, North Point
Hong Kong, China
Tel.: 852 2858 6433
Fax: 852 2875 5502

STRYKER GUANGZHOU - REPRESENTATIVE OFFICE
Room 3007, Jian Li Bao Building
410 Dong Feng Zhong Road
Guangzhou, 510620, China
Tel.:+86 20 8348 6919/6920
Fax:+86 20 8348 6921

STRYKER SHANGHAI - REPRESENTATIVE OFFICE
Room 2718-20, Shanghai Central Plaza
381 Huai Hai Zhong Road
Shanghai 200020, China
Tel.:+86 21 6391 6887
Fax:+86 21 6391 6119

STRYKER PACIFIC Ltd
Suite 2301, Citibank Tower
Citibank Plaza, 3 Garden Road
Central
Hong Kong, China
Tel.:+852 2840 4400
Fax:+852 2804 6303

STRYKER SHENGYANG - REPRESENTATIVE OFFICE
Room 501, Block B,
Shenglong Int’l Hotel
97A Zhongsan Road, Heping District
Shenyang 110001, China
Tel.:+86 24 2284 2583
Fax:+86 24 2285 5366

STRYKER CHENGDU - REPRESENTATIVE OFFICE
Room B, 26/F, First City Plaza
308 Shun Cheng Da Jie
Chengdu, Sichuan Province, China
Tel.: +86 28 652 8693/7572
Fax: +86 28 652 8177

STRYKER FAR EAST Inc., THAILAND
A3 Floor, Unit D1, 719 KPN Tower
Rama 9 Road, Bangkapi
Haoy kwang, Bangkok 10360
Thailand
Tel.:+662 717 0551/2
Fax:+662 717 0553

STRYKER MALAYSIA Sdn Bhd
No. 55, Lorong Rahim Kajai 13
Taman Tun Dr. Ismail
60000 Kuala Lumpur
Malaysia
Tel.:+60 3 7725 3650/7725 3651
Fax:+60 3 7725 5228

STRYKER BEIJING - REPRESENTATIVE OFFICE
Room 832, Capital Times Square
No. 88 West Chang An Street
Beijing 100031, PR China
Tel.:+86 10 839 131023
Fax:+86 10 839 13571

STRYKER INDIA Pvt. Ltd.
C-5, First Floor,
SDA Commercial Complex
New Delhi - 110016
India
Tel.: +91 11 686 6740
Fax:+91 11 696 6020

STRYKER SINGAPORE Pte. Ltd.
70 Bendemeer Road
#03-02 Hiap Huat House
Singapore 339940
Tel.:+65 293 0119
Fax:+65 293 7028

STRYKER HOWMEDIA GmbH
Gewerbeallee 18
45478 Muelheim a.d. Ruhr
Germany
Tel.: +49 208 999 060
Fax:+49 208 999 06325

STRYKER-OSTEONICS BV
Marinus Van Meelweg 17
5657 EN Eindhoven
TheNetherlands
Tel.: +31 40 2922 522
Fax:+31 40 2922 555

STRYKER OSTEONICS SA-LUGANO
Via della Posta
6934 Bioggio
Switzerland
Tel.: +41 91 610 44 10
Fax:+41 91 610 44 70