Ohio® Infant Warmer Systems
All Models
Operation and Maintenance Manual
User Responsibility

This Product will perform in conformity with the description thereof contained in this operating manual and accompanying labels and/or inserts, when assembled, operated, maintained and repaired in accordance with the instructions provided. This Product must be checked periodically. A defective Product should not be used. Parts that are broken, missing, plainly worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary,Ohmeda recommends that a telephone or written request for service advice be made to the nearest Ohmeda Regional Service Center. This Product or any of its parts should not be repaired other than in accordance with written instructions provided by Ohmeda and by Ohmeda trained personnel. The Product must not be altered without the prior written approval of Ohmeda's Quality Assurance Department. The user of this Product shall have the sole responsibility for any malfunction which results from improper use, faulty maintenance, improper repair, damage, or alteration by anyone other than Ohmeda.

CAUTION: Federal law in U.S.A. and Canada restricts this device to sale by or on the order of a licensed medical practitioner.
Table of Contents

Model Descriptions v

Definitions vii

Precautions ix

 Warnings ix
 Cautions xiii

1/Description 1-1

 1.1 General 1-1
 1.2 Support Structure 1-1
 1.3 Heater Assembly 1-1
 1.4 Control Unit 1-2
 1.5 Bed Platform 1-2
 1.6 Bassinet 1-2
 1.7 Accessories 1-3

2/Setup and Checkout Procedure 2-1

 2.1 Setup 2-1
 2.2 Mechanical Checkout Procedure 2-1
 A. Overall Appearance 2-1
 B. Heater Assembly Rotation 2-2
 C. Mechanical Checks 2-2
 D. Warmer/Bassinet Interlock (model 3500 only) 2-3
 E. Warmer/Bassinet Unlock 2-3
 F. Accessory Checks 2-3
 G. Wall Mount Checkout 2-4
 2.3 Control Unit Checkout Procedure 2-4
 A. Control Unit Check 2-5
 B. Elapsed Timer Check 2-6
 C. Observation Light Check 2-6
 D. Raise and Lower Bed Switch Check (Elevating Models Only) 2-6
 E. Interlock Switch Check 2-7
 F. Power Failure, Memory and Battery Test (all models except the 2001 International) 2-7

3/Operation 3-1

 3.1 Control Panel Operation 3-1
 A. Displays 3-1
 B. Indicator Lights 3-2
 C. Switches 3-2
 D. Alarms 3-4
 3.2 Manual and Servo Mode Operation 3-7
 3.3 Elapsed Timer Operation 3-11
Table of Contents

3.4 Bassinet Operation (model 3500 only) 3-11
3.5 Bed Platform Operation 3-12
3.6 Side Panel Operation 3-13
3.7 X-ray Procedures 3-14
3.8 Oxygen Administration 3-16
3.9 Gas Cylinder Installation and Operation 3-16
3.10 Mounting Accessories 3-18
 A. Mounting and Releasing Procedure 3-19
 B. Adapter Plate Mounting and Releasing Procedure 3-19
 C. ECMO Adapter 3-20
3.11 ThermaLink Options 3-20
 Using the Serial Data Interface 3-21
 Using the Nurse Call System Interface 3-21
 Nurse Call checkout 3-22
3.12 Rotating Drawer Option 3-22

4/Cleaning and Disinfecting 4-1
 4.1 Cleaning 4-1
 4.2 Wood Surfaces (model 3500 only) 4-2
 4.3 Reusable Skin Temperature Probe 4-2

5/Maintenance 5-1
 5.1 Repair Policy and Procedure 5-1
 5.2 Circuit Breaker Reset 5-2
 5.3 Lamp Replacement 5-2
 A. Alarm Lamp Replacement 5-2
 B. Observation Lamp Replacement 5-3
 5.4 Yoke Manifold Assembly 5-5
 5.5 Battery Test 5-5
 5.6 Maintenance Schedule 5-6
 A. Operator Maintenance 5-6
 B. Service Maintenance 5-6

6/Illustrated Parts 6-1

Appendix A-1

Temperature Conversion Chart A-1
Servo Mode Algorithm A-2
Infant Warmer System Specifications A-2
 Electrical A-2
 Controller A-3
 Alarms A-4
 Environmental Specifications A-5
 Electromagnetic Compatibility (EMC) A-6
Table of Contents

- Mechanical (Without Accessories) A-6
- 3500 Bassinet A-7
- Accessories A-8
- Radiant Energy Distribution A-10
- Thermalink Option Specifications A-10
 - Serial data A-10
 - Nurse Call specifications A-12
- Installing wall mounted units A-13
- Pre-Installation Preparation A-13
- Warmer Installation A-14

Warranty W-1
Model Descriptions

All models of the Ohmeda Infant Warmer System provide a controlled source of radiant heat for infants and pediatric patients. The control system uses a microprocessor and provides both manual and servo modes of operation (except for the 2001 International, which is manual mode only).

The model 2001 International has an integral infant bed and is a manual mode only warmer designed for short term attended care in the OR and L&D.

The wall mounted 3050, 3100 and 3150 models are available to accommodate specific architectural requirements in the NICU, L&D, LDR and LDRP room. The 3050 is a heater head only, the 3100 is a heater and dove tail rails, and the 3150 includes a heater, rails and integral bed.

The model 3300 has an integral bed for infants and is intended for procedures and long term care in the Nursery and L&D.

The model 3000, 3500 and 4000 are free standing Warmers which can be used over a variety of infant bassinets in the general nursery, over post-operative patients, during patient feeding, and in any other application where controlled radiant heat is required.

The 3500 System also has a detachable Bassinet for infants, and is intended for procedures and long term care in the Nursery, L&D, LDR and LDRP Rooms.

The model 4300, 4400 and 5000 have a larger size bed than the model 3300 and are intended for surgical procedures and long term care in the Nursery and L&D Rooms. Both the 5000 and 4400 have an elevating pedestal to raise and lower the bed-to-floor height. The model 4400 has a narrower foot print than the 5000 warmer. The model 4300 is a non-elevating version of the 4400.

IWS Model Options

<table>
<thead>
<tr>
<th></th>
<th>Standard Heater/Bed</th>
<th>Large Heater/Bed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 Series</td>
<td>3000 Series</td>
</tr>
<tr>
<td>Free Standing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall mounted,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>heater head only</td>
<td>3050</td>
<td></td>
</tr>
<tr>
<td>Wall mounted heater</td>
<td>3100</td>
<td></td>
</tr>
<tr>
<td>with rails</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall mounted heater</td>
<td>3150</td>
<td></td>
</tr>
<tr>
<td>with rails and bed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free standing with</td>
<td>2001</td>
<td>3300</td>
</tr>
<tr>
<td>integral bed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevating pedestal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Detachable bassinet and wood grain finish standard.
Definitions

Note: A Note provides additional information to clarify a point in the text.

Important: An Important statement is similar to a note but used for greater emphasis.

CAUTION: A Caution statement is used when the possibility of damage to the equipment exists.

WARNING: A Warning statement is used when the possibility of injury to the patient or the operator exists.

Symbols

Attention! Consult the manual for more information.

Type B equipment.

Functional Earth Terminal

Protection Earth Terminal

Increase % Power or Control Temperature

Decrease % Power or Control Temperature

Alarm Silence

Alternating Current

Do not place an infant on this surface
Precautions

⚠️ Warnings

Operator Safety

Before using the Ohmeda Infant Warmer System, read this entire manual. Attempting to use this device without a thorough understanding of its operation may result in patient or user injury. This device should only be operated by personnel trained in its operation and under the direction of qualified medical personnel familiar with the risks and benefits of this type of device.

Overloading the shelves can affect the stability of the unit. Limit the load to 20 lbs. (9 kg) per instrument shelf, mounted to a single upright, and 50 lbs. (23 kg) per monitor shelf, mounted between the uprights.

Limit the load of accessories to 50 pounds (23 kg) per side on the Warmer to ensure stability. Accessories should not be mounted more than 56 inches (142 cm) above the floor. For models 3000 and 3500, limit the load of accessories to 20 pounds (9 kg) maximum per side mounted no more than 44 inches (112 cm) above the floor.

Limit the load placed on the x-ray cassette tray to 5 lbs (2.2 kg) to avoid a tipping hazard.

Overloading the drawers can affect the stability of the unit. Limit the load to 10 lbs. (4.6 kg) per drawer.

Do not use the Warmer in the presence of flammable anesthetics; a possible explosion hazard exists under these conditions.

Do not touch the protective grill under the radiant heater or the top of the heater assembly. These surfaces may be hot and a burn could result.

Due to the increased height of units with the ECMO option installed, a tipping hazard may exist if tip loading occurs. Limit the total accessory load to 50 lbs. (23 kg), no more than 25 lbs (11 kg) per side.

Use caution when rotating the cabinet to avoid damage to the drawers or possible injury. Always ensure the drawers are fully closed before rotating the cabinet.

Disconnect power to the Warmer and allow the heater rod to cool before cleaning to avoid the possibility of a burn.

Never oil or grease oxygen equipment. Oils and grease oxidize readily, and in the presence of oxygen, will burn violently. Vac-Kote is the only oxygen service lubricant recommended (Ohmeda Stock No. 6700-0092-200) if the use of a lubricant is specified.

Disconnect the Warmer power cord and allow the unit to cool before replacing the alarm or observation lights.

On elevating models, check for proper clearance above the Warmer and below the bed surface before raising or lowering the bed.

Enclosing the heater assembly inside a cabinet may prevent proper ventilation and may create a fire hazard. If the heater is enclosed in a cabinet, it must be equipped with a power cut-off device that prevents operation while the cabinet is closed.
Precautions

Keep hands clear of the hinge area when installing a wall mounted heater assembly. A pinch hazard exists.

The 3050 heater assembly weighs approximately 30 lbs (14 kg). Proper installation may require two people. Due to the weight of the 3100 and 3150 units, approximately 75 lbs. (34 kg), proper installation will require two people.

Patient Safety

Bed-to-heater spacing which differs from the specified 27 ± 2 inches (69 ± 5 cm) will result in incorrect operation and may affect the patient’s condition.

Do not place any accessories or any other objects directly over the bed surface. This may block radiant heat and lead to cooling of the infant.

Do not place items on top of the heater assembly. Items placed on top of the heater assembly can fall and injure the patient, prevent adequate ventilation of the heater assembly, and may pose a fire hazard.

Do not perform the Checkout Procedures (Mechanical and Control Unit) while a patient occupies the Warmer.

Complete the “Checkout Procedures” section of this manual before putting the unit into operation. If the warmer fails any portion of the checkout procedures it must be removed from use and repaired.

Regularly inspect the bed side panel latching mechanism, and the bed side locking mechanism on the model 3500, to ensure proper operation.

In the service position the strength of the wall mounted unit hinge bracket is reduced. Never leave a patient in the bed when the heater is in the service position. Never leave the unit unattended in the service position or with a pin removed.

Check for proper clearance above the Warmer and below the bed surface before raising or lowering the bed.

Inspect all patient connected tubes or wires before and after moving or tilting the bed. Tilting or moving the warmer bed up or down can pull on tubing or leads connected to the patient. This may disconnect tubes or leads, restrict gas or liquid flow, or move sensors out of position.

Prolonged exposure to the light emitted by the observation lamp in this unit may harm the unprotected eyes of the infant. For safety, cover the infant’s eyes.

Do not use the Warmer system if the system failure alarm is activated. Remove the unit from service and refer to qualified personnel for repair.

Radiant energy can adversely affect blood components. When using intravenous tubing systems for delivery of blood components to patients occupying a warmer, shield any tubing with aluminum foil.

When using a radiant warmer, change the patient’s diapers frequently. Radiant energy causes more rapid urine evaporation, and may lead to inaccurate urine diagnostic test/analysis and inaccurate weight measurements.

Do not install chest drainage tubes in the Tubing Organizer Rear Side Panel.
Precautions

Install tubing in the appropriately sized holes. Use of inappropriate holes may cause kinking, pinching or restriction of flow through the tubes, and may interfere with the proper operation of therapy equipment.

Do not lower the Tubing Organizer Rear Side Panel with tubing attached. Lowering can pull on the tubing, causing the tubes to dislodge from the patient.

Do not move the warmer by pushing or pulling on the bed side panels. This action may lead to the deterioration and breakage of the components which form a safety barrier around the infant.

Ensure that the bedside panels are locked in position when a patient occupies the bed. Blankets or other foreign objects may prevent the latches from fully engaging.

Do not leave the patient unattended when the side panels are lowered.

Never place an infant on the X-ray cassette tray.

Do not place any foreign objects on the warmer bed or in the under bed cavity while performing X-ray procedures. Incompatible materials in the path of the X-ray may adversely affect the quality of the X-ray image. Use of mattress or bedding materials other than those supplied by Ohmeda should be evaluated by a Neonatologist or Radiologist.

Do not leave the patient unattended when using the warmer. Check the patient's temperature regularly to ensure the comfort and the safety of the patient. If the warmer is used for an extended time, it is recommended that the servo mode of operation be used. When an alarm is silenced, close monitoring of the patient's condition is required.

Use the servo mode unless the manual mode is specifically prescribed. While both modes require patient monitoring, the manual mode requires constant attention. In the manual mode, you must take the responsibility for detecting changes in the environment (drafts, direct sunlight, phototherapy lamp usage, etc.) or the patient condition requiring heater adjustments in response to these changes. In the servo mode, the infant warmer automatically adjusts heater output to maintain the desired skin temperature, reducing (but not eliminating) the need to monitor the patient and make adjustments to the equipment.

Use of electrosurgical units or other electrical field radiating equipment can affect the operation of the warmer. Keep the patient probe lead as far away as possible from electrosurgical cables. Do not allow excess electrical cables to be laid on the bed platform. Use of electrosurgical units or other instruments which radiate electrical fields can cause indirect heating, by several tenths of a degree of the skin temperature probe due to absorbed electrical energy. When using these devices near the radiant warmer, operate the Infant Warmer in manual mode for maximum safety.

The use of phototherapy equipment may raise the patient's temperature.

Radiant warmers increase an infant's insensible water loss. Take appropriate measures to maintain the patient's fluid balance while caring for them in a radiant warmer.

Use only the Reusable Ohmeda skin temperature probe (Stock No. 0208-0697-700) and heat reflective patches (Stock No. 0203-1980-300, 50/pkg) or the disposable probe (Stock No. 6600-0208-700, 10/pkg; Stock No. 6600-0196-700, 50/pkg) to monitor the patient's skin temperature. Use of other manufacturer's probes may affect the accuracy of warmer operation and the electrical safety of the patient.
Precautions

The skin temperature probe should be located on the patient's skin in an area which is directly in the path of the radiant heat. It should not be attached to an area which is shielded from the radiant heat or between the patient and the mattress. Large temperature gradients and very long servo response times will result from improper probe placement.

Rectal temperatures must never be used to servo control a patient's temperature.

Intimate contact between the skin temperature probe tip and the patient's skin must be maintained for accurate skin temperature measurement. Underheating or overheating may result from poor contact between the skin temperature probe and the patient. Verify that the skin temperature probe is securely attached to the patient at least once every half hour.

In the servo mode, verify that the patient temperature probe is securely attached to the patient at least once every half hour. A dislodged probe may not trigger an alarm. If the probe becomes dislodged, the warmer can over or under heat the infant.

Oxygen concentrations higher than 40% can increase the risk of retrolental fibroplasia (retinopathy or prematurity). It is probable that even concentrations of 40% or less oxygen (formerly considered safe) could be dangerous to some infants. Therefore, arterial blood gas measurements are extremely important for regulation of the concentration of inspired oxygen when an oxygen-enriched environment is considered necessary. (See current edition of "Standards and Recommendations for Hospital Care of Newborn Infants" prepared by the Committee of Fetus and Newborn of the Academy of Pediatrics.)

Do not leave both cylinder valves open. Leaving both oxygen cylinder valves open at the same time will allow simultaneous depletion of both cylinders with no reserve oxygen supply available.

Use only one cylinder gasket per yoke. Use of more than one gasket could cause leakage of the cylinder gas.

Do not leave gas cylinder valves open if the pipeline supply is in use. Pressures from both oxygen cylinders may become equal, and if simultaneously used, cylinder supplies may be depleted, leaving no reserve supply in case of pipeline failure.

The patient probe is not isolated from earth ground. Any additional equipment used with the Ohmeda Infant Warmer System must comply with UL 544, CSA 22.2, IEC 601 and VDE 750.

The computer or RS-232 monitor's user program must continuously check the data link. The program should constantly verify connection to the warmer controller and check for updated data.

Remote monitoring does not replace the need for direct patient observation by qualified medical personnel.

If you connect the Nurse Call output to a system which uses a normally open connection, a disconnected Nurse Call cable will not trigger an alarm.
Precautions

When installing a wall mounted unit, to achieve adequate structural strength all four holes of each mounting bracket must engage tracks. Should the hole saw miss a track do not proceed. Consult the project engineer for further direction.

⚠️ Cautions

To prevent the drawers from opening unintentionally while moving the 3500 Bassinet, move it from the front only.

On elevating models, do not continue to run the motor at the upper and lower limit positions; equipment damage may result.

Yoke check valves are not intended to provide a leak-free seal; always use a yoke plug and a fresh cylinder gasket to seal an unused cylinder port.

Open cylinder valves S-I-O-W-L-Y to avoid damaging the regulators.

Use cleaning solution sparingly on a cloth when cleaning the Warmer. Do not saturate the unit - excessive solution causes damage to internal components.

Use of cleaning/disinfecting solutions containing chemicals that are not listed in the table on page 4-2 (i.e. alcohol, acetone, etc.), or chemicals in greater concentrations than those listed, may damage the patient probe or other material being cleaned.

Do not autoclave or gas sterilize the skin temperature probe. Do not immerse the probe in liquid cleaner. Avoid placing excessive strain on the probe lead. Always remove the probe by grasping the plug at the panel. Do not pull on the probe lead. These precautions will help avoid damage to the probe.

Do not autoclave or gas sterilize the mattress.

Only competent individuals trained in the repair of this equipment should attempt to service it as detailed in the service manual. The Service Manual provides detailed information solely for use by individuals having proper knowledge, tools and test equipment, and for service representatives trained by Ohmeda.
1/Description

In this section

1.1 General 1-1
1.2 Support Structure 1-1
1.3 Heater Assembly 1-1
1.4 Control Unit 1-2
1.5 Bed Platform 1-2
1.6 Bassinet (3500 Series) 1-2
1.7 Accessories 1-3

1.1 General

All models of the Ohmeda Infant Warmer System provide a controlled source of radiant heat for infants and pediatric patients. The control system uses a microprocessor and provides both manual and servo modes of operation (model 2001 International is manual mode only). The patient temperature, control temperature, and elapsed time displays are digital for ease of viewing. The control panel includes a one hour elapsed timer with time displayed in minutes and seconds. The timer features optional audible tones for use during Apgar scoring. A complete audio and visual alarm system is included on the control panel.

The optional ThermaLink feature simplifies charting and monitoring. RS-232 serial data is provided for use with customized research software or compatible vital signs monitors. The Nurse Call connection lets you integrate the Warmer into your current or future remote alarm systems.

1.2 Support Structure

The support structure provides excellent stability for the radiant heater and optional accessories. On free standing units, the support structure consists of the base assembly and the uprights with an integral rail system. The rails provide a means for mounting accessories and ancillary equipment to the unit. Refer to Section 1.7 for a description of the accessory items.

1.3 Heater Assembly

The warmer is designed to warm infants on a bed surface located 27 inches ± 2 inches (69±5 cm) beneath the heater assembly.

⚠️ WARNING: Bed-to-heater spacing which differs from the specified 27 ± 2 inches (69±5 cm) will result in incorrect operation and may affect the patient's condition.

For your convenience, on Model 3000, 3100, 3500, and 4000 the proper bed-to-heater spacing is indicated by a label located on the right aluminum upright (as viewed from the front).
1/Description

The heater assembly consists of a radiant heater, parabolic reflector, observation light, and a visual alarm light. The parabolic reflector focuses radiant energy on the bed surface, minimizing energy loss due to scattering and providing an even field of radiant heat over the bed surface. The observation light provides intense light for procedures. The alarm light is located on the end of the heater assembly for ease of viewing. The entire heater assembly rotates to the side for X-ray procedures and for observation lamp replacement.

1.4 Control Unit

The control unit contains the electronic circuits and controls used to operate the radiant heater and the observation light. The control unit performs regular self checks during its operation including failure diagnostics.

Either manual or servo mode of operation may be selected. In the manual mode of operation, select the level of radiant heat output as indicated by the % power display on the control panel. The control circuit then maintains the selected level of radiant heat. The manual mode has a preheat setting which allows the Warmer to be preheated. In the servo mode of operation, select the patient’s control temperature. A skin temperature probe is used to monitor the patient skin temperature. The control system modulates the radiant heat to maintain the patient at the selected control temperature. The patient’s skin temperature is continuously displayed.

Alarms activate to alert the operator of a low or high patient temperature, a skin temperature probe failure, a power failure, equipment failure or a check patient prompt.

1.5 Bed Platform

Warmers with beds include a mattress and transparent side panels. The side panels fold down for easy access to the patient and can be removed for cleaning. The X-ray cassette tray (located in an opening beneath the bed when installed) pulls out for insertion of X-ray cassettes and allows X-rays to be taken without moving the patient.* Markings located along the side panels allow easy location of the cassette in the X-ray tray relative to the position of the patient on the warmer bed.* The tiltable bed platform allows Trendelenburg and Fowler positioning. The hydraulic system for the tiltable bed provides a smooth, dampened motion to avoid disturbing the patient.* A chest drainage hanger attached to the bed and rear cross bar extrusion provides a convenient location to hang chest drainage devices.*

1.6 Bassinet (3500 Series)

The bassinet unit can be detached and rolled away from the model 3500 warmer unit by pulling up on the locking lever knob located at the top rear of the bassinet (see Figure 1-1). The bassinet includes:

1. Transparent locking side panels which fold down for easy patient access and are removable for cleaning.

* Not available on the model 3500 warmer.
1/Description

2. A mattress.

3. A tiltable, positive-lock bed platform which allows Trendelenburg and Fowler positioning at 4° and 8° tilt positions.

4. Three drawers which open from the front (or from the side in an optional configuration) for storing equipment or supplies. The top drawer is provided with a key lock.

5. Front locking casters.

Figure 1-1
Operating the bassinet locking lever knob

1.7 Accessories

The rail mounting system is the basis for most of the accessories for the Warmer. This patented design consists of a dovetail shaped aluminum extrusion and a positive locking mounting block. Mounting blocks are attached to various accessories for mounting to the rail system. The mounting blocks are produced in two standard lengths and are machined to accommodate each specific accessory.

Accessories which mount on a single upright are interchangeable between all model Warmers.

Accessories can only be mounted to the inside dovetail rail on each upright of the 3500 Warmer.
2/Setup and Checkout Procedures

In this section

2.1 Setup 2-1

2.2 Mechanical Checkout Procedure 2-1
A. Overall Appearance 2-1
B. Heater Assembly Rotation 2-2
C. Mechanical Checks 2-2
D. Warmer/Bassinet Interlock (model 3500 only) 2-3
E. Warmer/Bassinet Unlock (model 3500 only) 2-3
F. Accessory Checks 2-3
G. Wall Mount Checkout 2-4

2.3 Control Unit Checkout Procedure 2-4
A. Control Unit Check 2-5
B. Elapsed Timer Check 2-6
C. Observation Light Check 2-6
D. Raise and Lower Bed Switch Check (Elevating Models Only) 2-6
E. Interlock Switch Check 2-7
F. Power Failure, Memory and Battery Test (all models except the 2001 International) 2-7

2.1 Setup

Refer to the setup instructions shipped with the warmer for initial unpacking and setup of the unit after shipment. For model 3050, 3100 and 3150 wall mounted units, refer to the mounting instructions in the Appendix.

After removal from the shipping containers, inspect the Ohmeda Infant Warmer System and all accessory items for any signs of damage which may have occurred during shipment. File a damage claim with the shipping carrier if damage has occurred. Also confirm the presence of all accessory items or factory installed options as listed on the packing slip.

2.2 Mechanical Checkout Procedure

⚠️ WARNING: Before using the Ohmeda Infant Warmer System, read this entire manual. Attempting to use this device without a thorough understanding of its operation may result in patient or user injury.

⚠️ WARNING: Do not perform the Checkout Procedures (Mechanical and Control Unit) while a patient occupies the warmer.

⚠️ WARNING: Complete the “Checkout Procedures” section of this manual before putting the unit into operation. If the warmer fails any portion of the checkout procedures it must be removed from use and repaired.

A. Overall Appearance

1. Disconnect the power cord from the ac power source for the mechanical checks portion of this procedure.

2. Check the overall appearance of the Infant Warmer/ Bassinet System. There should be no obvious damage.
3. For the model 3500, separate the warmer from the bassinet.

4. For units with casters, check that all casters are in firm contact with the floor and that the warmer is stable and moves freely.

 For the model 3500, check that all six casters on the warmer move freely.

 Note: On the model 3500, it is possible that the two center casters may not be in contact with the floor at all times.

5. Lock the two front casters and check that the warmer is held in place. On the model 3500, lock the two rear casters and check that the warmer is held in place.

6. For the model 3500, place the bassinet on a level surface. Check that all four casters are in firm contact with the floor and that the Bassinet moves freely.

7. For the model 3500, lock the two front casters and check that the Bassinet is held in place.

8. Examine the power cord for damage. Replace the power cord if damage is evident.

9. Examine the unit for objects placed on top of the heater assembly.

 WARNING: Do not place any accessories or other objects directly over the bed surface. This may block radiant heat energy and lead to cooling of the infant.

 WARNING: Do not place items on top of the heater assembly. Items placed on top of the heater assembly can fall and injure the patient, prevent adequate ventilation of the heater assembly, and may pose a fire hazard.

B. Heater Assembly Rotation

Rotate the Heater Assembly to the side and then back to the normal position. Check for a smooth rotation.

C. Mechanical Checks

1. Check the operation of the bed sides. The bed sides should operate smoothly.

 WARNING: Regularly inspect the bed side panel latching mechanism, and the bedside locking mechanism on the model 3500, to ensure proper operation.

2. Check the operation of the tilt mechanism. Verify that the bed platform operates smoothly and locks in normal, Trendelenburg and Fowler positions.

3. If the drawer package is installed, check that all the drawers open and close freely. On units with the rotating drawer package, make sure the drawers rotate from front to 90° left and right and firmly stop in the detented positions.

 WARNING: Overloading the drawers can affect the stability of the unit. Limit the load to 10 lbs. (4.6 kg) per drawer.

4. For the model 3500 bassinet, remove the keys from the top drawer and lock it. Check that the drawer is securely held closed.
D. Warmer/Bassinet Interlock (model 3500 only)

1. Lock the 3500 warmer’s two rear casters.
2. Align the rear of the bassinet with the warmer’s base.
3. Push the bassinet into the alignment/locking track of the warmer’s base.
4. Continue pushing the bassinet until its locking pin drops into the socket at the end of the alignment track. There should be an audible click when the pin drops into position.
5. Lightly push and pull the bassinet to verify that the two units are securely held together.
6. Unlock the two rear casters on the warmer and check that the combined unit moves smoothly.

E. Warmer/Bassinet Unlock (model 3500 only)

1. Verify that the two bassinet front casters are unlocked and the two warmer rear casters are locked.
2. With the locking pin handle (located at the rear of the bassinet) raised, pull the bassinet forward until it is fully detached from the warmer.

CAUTION: To prevent the drawers from opening unintentionally while moving the detached bassinet, move it from the front only.

F. Accessory Checks

Perform these checks if they are applicable.

1. Check that all accessories are mounted securely and that the load limits are not exceeded.
2. Check that all gas accessories are installed and operating properly (refer to Section 3.9).
3. Where applicable, perform the checkout procedures detailed in the Operation and Maintenance Manuals for the accessories.

WARNING: Limit the load of accessories to 50 pounds (23 kg) per side on the Warmer to ensure stability. Accessories should not be mounted more than 56 inches (142 cm) above the floor. For models 3000 and 3500, limit the load of accessories to 20 pounds (9 kg) maximum per side mounted no more than 44 inches (112 cm) above the floor.

WARNING: Due to the increased height of units with the ECMO option installed, a tipping hazard may exist. Limit the total accessory load to 50 lbs. (23 kg), no more than 25 lbs. (11 kg) per side.
2/Setup and Checkout Procedures

G. Wall Mount Checkout

1. Verify that the warmer is rigidly secured to the wall and the heater assembly is level.

 Note: To access the control unit and display module for service procedures, either hinge pin may be removed, allowing the warmer to pivot away from the wall.

2. Check that both hinge pins are in place and fully inserted with the pin heads at the top of the hinge.

 WARNING: In the service position the strength of the hinge bracket is reduced. Never place a patient in the bed when the heater is in the service position. Never leave the unit unattended in the service position or with either pin removed.

2.3 Control Unit Checkout Procedure

![Control Panel Diagram]

- **Model Number**
- **Patient Temperature**
- **Control Temperature**
- **Heater Power %**
- **Elapsed Time Display**

Bed Controls

- **Light On/Off Switch**
- **Alarm Lights**
- **Alarm Silence**
- **Mode Switch**
- **Increase**
- **Decrease**
- **Mode Indicators**
- **Apgar On/Off**
- **Elapsed Time Start/Hold and Reset**

Note: Servo mode indicator, mode switch, and probe failure alarm are not present on the model 2001 international control panel. Bed raise/lower are only present on elevating models.

WARNING: Do not perform the Checkout Procedures (Mechanical and Control Unit) while a patient occupies the warmer.

WARNING: Complete the "Checkout Procedures" section of this manual before putting the unit into operation. If the warmer fails any portion of the checkout procedures it must be removed from use and repaired.
A. Control Unit Check

1. Connect the warmer power cord to an appropriate power source. Refer to the rating plate on the Warmer for the proper voltage needed. Switch the power On and verify the following on the Control Panel (Figure 2-1):

 a. The alternating two tone audible alarm sounds and all displays and indicators are lit for approximately two seconds.

 Note: During this time the controller also performs self check functions. If the controller detects a failure, the alarm stays on and service is required.

 Note: All alarms except system failure or power failure are preceded by a 30 second intermittent operator prompt tone.

 b. The manual mode indicator is lit.

 c. Operator prompt tones sound and the % power display flashes.

2. Adjust the heat output with the increase (▲) and decrease (▼) touch switches to attain the high and low limits as indicated by the % power display.

 Note: Steps 3 through 8 do not apply to the model 2001 International.

3. Connect the skin temperature probe to the warmer.

4. Press the mode touch switch to place the warmer in the servo mode and verify the following:

 Note: An alternating two tone alarm, a flashing overhead alarm light and the patient temperature display flashing "LL.L" may occur here if the skin temperature probe is below 30°C. Warm the probe with your fingers or silence the alarm.

 a. The servo mode indicator is lit.

 b. An operator prompt tone sounds and the control temperature display flashes 36.5°C.

5. Press the increase (▲) touch switch and verify that the maximum servo control temperature attainable is 37.5°C.

 Note: A patient temperature alarm occurs if the difference between the patient temperature and the control temperature is greater than 1°C (the difference can be adjusted to 0.5°C by a qualified service person).

6. Press the decrease touch switch and verify that the minimum servo control temperature attainable is 35.0°C.

7. Disconnect the skin temperature probe. Verify the following:

 a. The probe failure indicator light is lit.

 b. There is an alternating two tone alarm.

 c. The overhead alarm light is flashing.
2/Setup and Checkout Procedures

d. The patient temperature display flashes “HH.H”.

8. Press the alarm silence touch switch and verify the following:
 a. The probe failure indicator light is lit.
 b. The alternating two tone alarm is silenced.
 c. The overhead alarm light is lit.
 d. The patient temperature display indicates “HH.H”.
 e. After one minute, the alternating two tone alarm sounds, the overhead alarm flashes and the patient temperature display flashes “HH.H”.

9. Switch to the manual mode and set the heat at 25% power.

B. Elapsed Timer Check

1. Press the Start/Hold touch switch to activate the elapsed timer. Verify that the timer starts operating.

2. Press the Apgar tones On/Off touch switch for the Apgar tones. Verify that the indicator light for the Apgar tones is extinguished.

3. Press the Apgar tones On/Off switch for the Apgar tones again. Verify that the indicator light for the Apgar tones is lit.

4. Press the Start/Hold touch switch. Verify that the present elapsed time is held.

5. Press the Start/Hold touch switch and verify that the timer updates to the current elapsed time and the Apgar tones continue to sound at the specified times (at 1 minute and at every 5 minute interval after the elapsed timer has started).

6. Press the Reset touch switch and verify that the timer indicates “00:00”. If the elapsed timer is not used for approximately two minutes, the display switches off.

C. Observation Light Check

Press the Light On/Off touch switch. Verify that the observation light functions.

D. Raise and Lower Bed Switch Check

(Elevating Models Only)

CAUTION: Do not continue to run the motor at the upper and lower limit positions; equipment damage may result.

1. Press the Raise Bed touch switch and verify that the bed raises to a maximum of 46 1/2 inches (118 cm) off the floor.

2. Press the Lower Bed touch switch and verify that the bed lowers to a minimum of 38 1/2 inches (98 cm) off the floor.
2/Setup and Checkout Procedures

E. Interlock Switch Check

1. Place the warmer in the manual mode at 25% power output.

2. Rotate the heater assembly to the side. Verify that the heat off indicator light is On and the % power display indicates 0% heat.

3. Rotate the heater assembly to the normal operating position. Verify that the heat off indicator light is Off and the % power display indicates 25%.

F. Power Failure, Memory and Battery Test
(all models except the 2001 International)

1. Operate the unit in the manual mode with the heat set in the "pre-heat" range for a minimum of one hour to charge the battery.

 Note: The battery must be fully charged to pass the 10 minutes test or partially charged to pass the two minute test. If the battery is defective, replace it. Refer to the service manual. There is no maintenance required for the battery. The battery has a two year replacement schedule.

2. Disconnect the patient temperature probe.

3. Place the warmer in the servo mode.

4. Silence the probe failure alarm.

5. Set the control temperature to 37.0°C.

6. Remove the Warmer power plug from the power source for two minutes. Do not switch the power Off. The power failure alarm should sound for two minutes.

 Note: If the power failure alarm is tested for 10 minutes, the warmer must be connected to the correct power source and operated for 24 hours to recharge the battery before allowing a patient to occupy the Warmer.

 Note: The power failure alarm will not operate if the circuit breaker trips.

7. Reconnect the warmer to the power source. Verify the following:

 a. The warmer is operating in the servo mode.

 b. The control temperature is 37.0°C.

 c. The audio power failure alarm is off.

 (Power Failure, Memory and Battery test for 2001 International model)

1. Select 25% heater power.

2. Remove the warmer power plug from the power source for two minutes. Do not switch the power off. The power failure alarm should sound for two minutes.

3. Reconnect the warmer to the power source and verify the following:

 a. The heater is operating at 25% power.

 b. The audio power failure alarm is off.
3.1 Control Panel Operation

A. Displays

- Patient Temperature
- Control Temperature
- % Power
- Elapsed Time

Patient Temperature:

The patient temperature display indicates the temperature sensed at the skin temperature probe tip. The skin temperature probe must be properly connected to the warmer and the infant for an accurate patient temperature measurement. The range of temperature measurement is from 30.0 to 42.0°C, with a resolution of 0.1°C. Temperatures above this range result in an “HH.H” patient temperature display and below this range result in an “LL.L” patient temperature display.

Control Temperature: (all models except the 2001 International)

The control temperature display indicates the control temperature you select in the servo mode. The servo control temperature range is from 35.0 to 37.5°C. The control temperature display is not active in the manual mode.
% Power:

The % power display indicates the percentage of maximum power that is being supplied to the radiant heater in 5% increments.

The preheat range (0 to 25% power) allows operation without the 12 minute check patient alarm in the manual mode.

Elapsed Time:

The elapsed time display indicates elapsed time in minutes and seconds up to a maximum of 60 minutes.

B. Indicator Lights

- Servo Mode Indicator
- Manual Mode Indicator
- Apgar Tones Indicator

Servo Mode Indicator: (all models except the 2001 International)

The servo mode indicator lights when the warmer is in the servo mode of operation. For proper operation of the warmer in the Servo Mode see section 3.2.

Manual Mode Indicator: (all models except the 2001 International)

The manual mode indicator lights when the warmer is in the manual mode of operation. For proper operation of the warmer in the Manual Mode see section 3.2.

WARNING: Use the servo mode unless the manual mode is specifically prescribed. While both modes require patient monitoring, the manual mode requires constant attention. In the manual mode, you must take the responsibility for detecting changes in the environment (drafts, direct sunlight, phototherapy lamp usage, etc.) or the patient condition requiring heater adjustments in response to these changes. In the servo mode, the warmer automatically adjusts heater output to maintain the desired skin temperature, reducing (but not eliminating) the need to monitor the patient and make adjustments to the equipment.

Apgar Tones Indicator:

The Apgar tones indicator lights when the Apgar tones are activated, and the Apgar timer is running.

C. Switches

- Mode Switch
- Increase (▲) and Decrease (▼) Switches
- Alarm Silence
- Start/Hold
- Reset
- Apgar Tones On/Off
3/Operation

- Light On/Off
- Raise bed (Elevating Models Only)
- Lower bed (Elevating Models Only)

Mode Switch: (all models except the 2001 international)

This switch is used to select either the Manual or Servo mode of operation. An audio tone sounds momentarily when the mode switch is depressed.

Increase (▲) and Decrease (▼) Switches:

These switches are used to set the radiant power level (% power) in the manual mode and to set the control temperature in the servo mode.

Alarm Silence:

This switch is used to silence the audible alarm. It silences all alarms except the system failure alarm. Refer to Table 1 - Warmer Alarms for details on how long the audible alarms are silenced.

Holding this switch depressed for five seconds or longer activates the audible alarm and lights all the indicator lamps for testing purposes.

Start/Hold:

This switch activates the elapsed timer. Refer to the elapsed timer operation, Section 3.3, for a detailed explanation of its function.

Reset:

This switch is used to reset the elapsed timer to "00:00".

Apgar Tones On/Off:

This switch activates the Apgar tones. When the Apgar tones are activated, a short alarm tone is sounded at one minute and every five minute interval after the elapsed timer is started.

Light On/Off:

WARNING: Prolonged exposure to the light emitted by the observation lamp in this unit may harm the unprotected eyes of the infant. For safety, cover the infant's eyes.

This switch activates the observation light located in the heater assembly.

Raise Bed (Elevating Models Only)

WARNING: Check for proper clearance above the Warmer and below the bed surface before raising or lowering the bed.

WARNING: Inspect all patient connected tubes or wires before and after moving or tilting the bed. Tilting or moving the warmer bed up or down can pull on tubing or leads connected to the patient. This may disconnect tubes or leads, restrict gas or liquid flow, or move sensors out of position.
CAUTION: Do not continue to run the motor at the upper and lower limit positions; equipment damage may result.

This switch raises the bed to a maximum height of 46 ½ (118 cm) inches from the floor.

Lower Bed *(Elevating Models Only)*

This switch lowers the bed to a minimum height of 38 ½ (98 cm) inches from the floor.

On/Off Power Switch and Circuit Breaker:

(See Figure 3-1.)

The On/Off power switch is located on the left side of the controller assembly (as viewed from the front) near the power cord socket. It is used for switching the power to the warmer (On and Off). The switch is also a circuit breaker and limits the maximum current drawn by the unit. If this circuit breaker trips when the warmer is operating, the power switch is deactivated to the Off position. To reset the circuit breaker, return the power switch to the On position. If the circuit breaker trips again, service is required.

Figure 3-1
On/Off Power Switch with built-in circuit breaker

D. Alarms

All alarms except system failure and power failure are preceded by a 30 second intermittent operator prompt tone.

- Probe Failure Alarm
- Patient Temperature Alarm
- System Failure Alarm
- Heat Off Alarm
- Check Patient Alarm
- Power Failure Alarm
Probe Failure Alarm: (all models except the 2001 international)

The probe failure alarm is only active in the servo mode of operation. The alarm activates when the skin temperature probe fails electrically due to an open or short circuit, or is disconnected from the Warmer. The heater deactivates and the patient temperature display flashes "HH.H" or "LL.L" when this alarm condition exists.

Patient Temperature Alarm: (all models except the 2001 international)

The patient temperature alarm is only active in the servo mode of operation. The alarm activates when the difference between the patient temperature and the control temperature is greater than 1°C. When the patient temperature returns to within 0.8°C of the control temperature, this alarm is automatically reset.

Note: If the patient temperature probe reads below 30°C or above 42°C in servo mode, the heater is deactivated and "LL.L" or "HH.H" respectively, appears in the patient temperature display.

Note: Qualified service personnel can adjust the alarm to trigger at a difference of 0.5°C and reset at a difference of 0.3°C.

WARNING: In the servo mode, verify that the patient temperature probe is securely attached to the patient at least once every half hour. A dislodged probe may not trigger an alarm. If the probe becomes dislodged, the warmer can over or under heat the infant.

WARNING: The skin temperature probe should be located on the patient's skin in an area which is directly in the path of the radiant heat. It should not be attached to an area which is shielded from the radiant heat or between the patient and the mattress. Large temperature gradients and very long servo response times will result from improper probe placement.

WARNING: Rectal temperatures must never be used to servo control a patient's temperature.

System Failure Alarm:

The system failure alarm activates if the solid state relay controlling the radiant heater fails, if the microprocessor fails or if the calibration drifts by more than 0.3°C. The alternating two tone alarm cannot be silenced with the alarm silence switch.

WARNING: Do not use the Warmer system if the system failure alarm is activated. Remove the unit from service and refer to qualified personnel for repair.

Heat Off Alarm:

When the heater is rotated to the side position, the heater is switched off and the Heat Off indicator is switched on. The audible Heat Off alarm activates after 5 minutes if the heater is not returned to the normal position. The alarm can be silenced by pressing the Alarm Silence switch.
3/Operation

Check Patient Alarm:

1. **Manual Mode:** The check patient alarm activates in the manual mode of operation when the heater has been energized at a power level greater than 25% for 12 minutes. The alternating single tone alarm is activated for this condition. Pressing the alarm silence switch silences this alarm and resets the timer for another 12 minutes of operation. If this alarm is not silenced within 3 minutes of the check patient alarm occurring, an alternating two tone alarm is sounded and the heater is deactivated until the alarm silence switch is pressed.

2. **Servo Mode:** The check patient alarm activates in the servo mode of operation if the heater has been at the 100% power level for 12 continuous minutes. The alternating single tone alarm is activated for this alarm. Pressing the alarm silence switch silences this alarm and resets the timer for another 12 minutes of operation. If this alarm is not silenced within 3 minutes of the check patient alarm occurring, the alternating two tone alarm is sounded and the heater is deactivated until the alarm silence switch is pressed.

Power Failure Alarm:

A battery operated power failure alarm activates when the external power source fails or is accidentally disconnected. The battery also provides power to an electronic memory to recall previous control temperature settings for approximately 10 minutes, when the battery is fully charged.

Table 1 — Warmer Alarms

<table>
<thead>
<tr>
<th>Alarm Condition</th>
<th>Alarm Sound</th>
<th>Alarm Silence Period</th>
<th>Heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Failure†</td>
<td>Alternating Two-Tone †</td>
<td>1 minute</td>
<td>Off</td>
</tr>
<tr>
<td>Patient Temperature is greater than 42°C‡</td>
<td>Alternating Two-Tone †</td>
<td>1 minute</td>
<td>Off</td>
</tr>
<tr>
<td>Patient Temperature more than 2°C from Control temperature‡</td>
<td>Alternating Single-Tone †</td>
<td>5 minutes</td>
<td>*</td>
</tr>
<tr>
<td>Patient Temperature between 1 and 2°C from Control temperature‡</td>
<td>Alternating Single Tone †</td>
<td>15 minutes</td>
<td>*</td>
</tr>
<tr>
<td>Patient Temperature is less than 30°C †</td>
<td>Alternating Two-Tone †</td>
<td>1 minute</td>
<td>Off</td>
</tr>
<tr>
<td>System Failure**</td>
<td>Alternating Two-Tone silenced</td>
<td>Cannot be silenced</td>
<td>Off</td>
</tr>
<tr>
<td>Heat Off</td>
<td>Alternating Single Tone †</td>
<td>5 minutes</td>
<td>Off</td>
</tr>
<tr>
<td>Check Patient</td>
<td>Alternating Single Tone † after 12 minutes
Alternating Two-Tone after 15 minutes</td>
<td>12 minutes</td>
<td>*</td>
</tr>
<tr>
<td>Power Failure</td>
<td>Alternating Single Tone</td>
<td>Cannot be silenced</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Heater output is dependent on the Patient Temperature and Control Temperature settings in the servo mode, and the % Power setting in the manual mode.
** Error code in elapsed time display indicates the cause of the alarm.
† Preceded by a 30 second operator prompt tone.
‡ Not applicable to model 2001 International
§ Can be set to between .5 and 2°C by qualified service personnel.
3/Operation

Error Codes:

In the event of a system failure, a nonsilenceable, high priority alarm sounds and the System failure LED illuminates. Before shutting off the Warmer and removing it from service, make note of the error code that appears in the elapsed time display. This code will aid qualified service personnel in diagnosing the problem. Table 2 lists the possible error codes, for a more detailed explanation of error codes see the Service manual.

Table 2 — Warmer Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>Instruction Test Failure</td>
<td>E002</td>
<td>ADC High Calibration Failure</td>
</tr>
<tr>
<td>E003</td>
<td>ADC Low Calibration Failure</td>
<td>E004</td>
<td>Checksum Failure</td>
</tr>
<tr>
<td>E005</td>
<td>RAM Test Failure</td>
<td>E007</td>
<td>ADC Converter Failure</td>
</tr>
<tr>
<td>E010</td>
<td>Line Voltage Out of Range</td>
<td>E012</td>
<td>Heater Not Switching On</td>
</tr>
<tr>
<td>E013</td>
<td>Heater Not Switching Off</td>
<td>E014</td>
<td>Alarm Oscillator Failure</td>
</tr>
<tr>
<td>E015</td>
<td>Software Upset - RAM Inconsistency</td>
<td>E016</td>
<td>Safety Relay Not Opening Properly</td>
</tr>
<tr>
<td>E017</td>
<td>Software Upset - Missing Routine</td>
<td>E019</td>
<td>Software Upset</td>
</tr>
<tr>
<td>E025</td>
<td>Hardware Watchdog Circuit Tripped</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Manual and Servo Mode Operation

WARNING: Before using the Ohmeda Infant Warmer System, read this entire manual. Attempting to use this device without a thorough understanding of its operation may result in patient or user injury. This device should only be operated by personnel trained in its operation and under the direction of qualified medical personnel familiar with the benefits and risks of this type of device.

WARNING: Do not leave the patient unattended when using the Infant Warmer. Check the patient's temperature periodically to ensure the comfort and the safety of the patient. If the warmer is used for an extended time, it is recommended that the servo mode of operation be used. When an alarm is silenced, close monitoring of the patient's condition is required.

WARNING: Use of electrosurgical units or other electrical field radiating equipment can affect the operation of the Warmer. Keep the patient probe lead as far away as possible from electrosurgical cables. Do not allow excess electrical cables to be laid on the bed platform. Use of electrosurgical units or other instruments which radiate electrical fields can cause indirect heating, by several tenths of a degree of the skin temperature probe due to absorbed electrical energy. When using these devices near the radiant warmer, operate the Warmer in manual mode for maximum safety.

WARNING: The use of phototherapy equipment may raise the patient's temperature.

WARNING: Radiant warmers increase an infant's insensible water loss. Take appropriate measures to maintain the patient's fluid balance while caring for them in a radiant warmer.
3/Operation

WARNING: Do not use the Warmer in the presence of flammable anesthetics; a possible explosion hazard exists under these conditions.

WARNING: Radiant energy can adversely affect blood components. When using intravenous tubing systems for delivery of blood components to patients occupying a warmer, shield any tubing with aluminum foil.

WARNING: When using a radiant warmer, change the patient’s diapers frequently. Radiant energy causes more rapid urine evaporation, and may lead to inaccurate urine diagnosis test analysis and inaccurate weight measurements.

WARNING: Do not touch the protective grill under the radiant heater or the top of the heater assembly. These surfaces may be hot and a burn could result.

1. Connect the power cord to a properly grounded AC power source.

2. Place the power switch in the On position. During the first seconds of operation, the warmer performs a self check of the control system. The software is verified, calibration is checked and operation of the solid state relay controlling the heater is verified. All displays and indicators are lit and the audible alarm is sounded. If the self check detects a failure, the alarm stays on and service is required.

 Note: The Warmer begins operation in the Manual Mode, described in Step 3. To operate the warmer in the Servo Mode, refer to the Servo Mode Operation in Step 5.

3. **Manual Mode Operation.**

 WARNING: Use the servo mode unless the manual mode is specifically prescribed. While both modes require patient monitoring, the manual mode requires constant attention. In the manual mode, you must take the responsibility for detecting changes in the environment (drafts, direct sunlight, phototherapy lamp usage, etc.) or the patient condition requiring heater adjustments in response to these changes. In the servo mode, the warmer automatically adjusts heater output to maintain the desired skin temperature, reducing (but not eliminating) the need to monitor the patient and make adjustments to the equipment.

 In the manual mode of operation, an operator prompt tone and the flashing of the % power display prompt you to select a level of radiant heat.

 Use the increase (▲) or decrease (▼) touch switch to adjust the % power in 5% increments. The % power display indicates the power level selected. You must select a % power level each time the warmer is switched to the manual mode.

 When you select % power levels between 30% and 100%, a check patient alarm sounds after 12 minutes to remind you to monitor the patient temperature. After checking the patient, this alarm can be reset by pressing the alarm silence switch. This alarm recurs every 12 minutes during operation in the manual mode. If the alarm silence switch is not pressed within 3 minutes of the check patient alarm, an alternating two tone alarm sounds and the heater is turned off.

 The Warmer may be preheated using 0% to 25% power levels. The 12 minute check patient alarm is not activated within these power level settings.
The skin temperature probe may be used to monitor the patient's temperature in the manual mode but it does not control the radiant heat energy level. See step 4 for skin temperature probe attachment.

Note: A patient placed in any warmer will normally develop temperature gradients with hotter and cooler areas. This is due to radiant heat being applied above the infant, the cooling effect from the mattress below the infant, the unequal skin cooling effect from evaporative water loss, unequal internal heat generation within the patient, and the environmental variables of room temperature, room air movement, incidental sunlight, etc.

4. **Skin Temperature Probe Attachment.**

WARNING: Use only the Reusable Ohmeda skin temperature probe (Stock No. 0208-0697-700) and heat reflective patches (Stock No. 0203-1980-300, 50/pkg) or the disposable probe (Stock No. 6600-0208-700, 10/pkg; Stock No. 6600-0196-700, 50/pkg) to monitor the patient's skin temperature. Use of other manufacturer's probes may affect the accuracy of warmer operation and the electrical safety of the patient.

WARNING: The skin temperature probe should be located on the patient's skin in an area which is directly in the path of the radiant heat. It should not be attached to an area which is shielded from the radiant heat or between the patient and the mattress. Large temperature gradients and very long servo response times will result from improper probe placement.

WARNING: Rectal temperatures must never be used to servo control a patient's temperature.

The Ohmeda Patient probe lead is made from low mass wire that helps prevent probe detachment while reducing pulling on the neonate’s skin.

Place the metal side of the skin temperature probe on the skin over the liver area of the infant’s abdomen. Remove the paper protecting the hypoallergenic adhesive on the Heat Reflective Patch. Secure the skin temperature probe to the patient’s skin with the adhesive side of the patch (Figure 3-2). Do not remove the heat reflecting foil which must be facing up.

Note: The probe jack is attached at a specific torque value. Loosening or tightening the jack may break the electrical connector. See Figure 3-3.

If the patient is prone, place the skin temperature probe on the back, where it will not be against the mattress. If the probe is between the patient and the mattress, it will produce false readings.

WARNING: Intimate contact between the skin temperature probe tip and the patient's skin must be maintained for accurate skin temperature measurement. Underheating or overheating may result from poor contact between the skin temperature probe and the patient. Verify that the skin temperature probe is securely attached to the patient at least once every half hour.
3/Operation

Connect the skin temperature probe to the Warmer by plugging the probe connector into the left side of the display module as viewed from the front. (See Figure 3-3.)

CAUTION: Always remove the probe from the patient by grasping and removing the heat reflective patch first, then remove the probe from the patient or the patch. Always remove the probe from the Warmer by grasping the plug at the panel. Placing excessive strain on the skin temperature probe lead can damage the probe.

Figure 3-2
Skin Temperature Probe attachment

Figure 3-3
Temperature Probe connection to the Display Module

Note: Avoid placing excessive strain on the skin temperature probe lead. Always remove the probe by grasping the plug at the panel. Do not pull on the probe lead.

5. Servo Mode Operation. (all models except the 2001 International)

Note: The skin temperature probe must be properly attached before starting servo mode operation. Refer to step 4.

You must select a servo control temperature setting when the Warmer is used in the servo mode for the first time. You are prompted to make this setting with an operator prompt tone and the flashing of the control temperature display.
3/Operation

The servo control temperature is adjusted by pressing the increase (▲) or the decrease (▼) touch switches. The control temperature can be adjusted from 35 to 37.5°C. In the servo mode, the temperature sensed by the skin temperature probe is used by the control system to modulate the radiant heat and maintain the patient’s skin temperature at the selected control temperature. The Appendix details the Servo Control Mode Algorithm.

Note: The Warmer cannot differentiate between an increase in core temperature with cold skin (fever), and low core and skin temperature (hypo-thermia). Patient temperature should be verified with an ancillary thermometer.

⚠️ WARNING: In the servo mode, verify that the patient temperature probe is securely attached to the patient at least every half hour. A dislodged probe does not always trigger an alarm. If the probe becomes dislodged, the warmer can over or under heat the infant.

Note: A patient placed in any warmer will normally develop temperature gradients with hotter and cooler areas. This is due to radiant heat being applied above the infant, the unequal skin cooling effect from evaporative water loss, unequal heat generation within the patient, and the environmental variables of room temperature, room air movement, incidental sunlight, etc.

⚠️ WARNING: The use of phototherapy equipment may raise the patient’s temperature.

3.3 Elapsed Timer Operation

1. Press the Start/Hold touch switch to activate the elapsed timer.

2. The Apgar indicator light is illuminated when the Apgar tones are enabled. Press the Apgar Tones On/Off touch switch to enable or cancel the Apgar tones.

3. Press the Start/Hold touch switch to hold the present elapsed time when the timer is running. The Apgar tones, if enabled, continue to sound at the specified times (after 1 minute and at every 5 minute interval after the elapsed timer is started).

4. Press the Start/Hold touch switch to update the timer to the current elapsed time.

5. Press the reset touch switch to start the timer over at “00:00”. The elapsed time display is blanked out when the elapsed time reaches 60 minutes.

3.4 Bassinet Operation (model 3500 only)

Note: Lock the warmer’s two rear casters before unlocking or locking the bassinet.

The bassinet unit can be detached from the model 3500 warmer by pulling up on the locking lever knob located at the top rear of the bassinet. When the knob is pulled up, the locking pin is freed from its socket on the warmer alignment/locking track on the warmer base. The bassinet can then be rolled forward away from the warmer.
To return the bassinet to its locked position, align the bassinet with the warmer. Push the bassinet over the warmer’s alignment/locking track. Continue pushing the bassinet until its locking pin drops into the socket at the end of the alignment/locking track. There should be an audible click when the pin drops into position. Lightly push and pull the bassinet to verify that the two units are securely held together.

The bassinet’s front casters can be locked in position by pressing the locking button on each caster.

3.5 Bed Platform Operation

(See Figure 3-4.)

On large and small bed units, the bed platform tilts for Trendelenburg and Fowler positioning capabilities. Lift or push down on the tilt handle to position the bed.

⚠️ WARNING: Inspect all patient connected tubes or wires before and after moving or tilting the bed. Tilting or moving the warmer bed up or down can pull on tubing or leads connected to the patient. This may disconnect tubes or leads, restrict gas or liquid flow, or move sensors out of position.

Note: Tilting the bed mattress can affect the operation and performance of the radiant warmer.

The model 3500 bassinet bed platform also tilts for Trendelenburg and Fowler positioning. To raise the front of the bed platform, pull the handle out and lift the bed. Release the handle so it engages in the upper detent. To lower the front of the bed platform, pull the handle out and lower the bed. Release the handle so it engages in the lower detent.
3/Operation

3.6 Side Panel Operation

(See Figure 3-5.)

WARNING: Do not leave the patient unattended when the side panels are lowered.

WARNING: Do not move the warmer by pushing or pulling on the bedside panels. This action may lead to the deterioration and breakage of the components which form a safety barrier around the infant.

WARNING: Ensure that the bedside panels are locked in position when a patient occupies the bed. Blankets or other foreign objects may prevent the latches from fully engaging.

To lower a side panel, pull it up and then pull the top edge away from the bed. On the model 3500 bassinet, the side panel locking mechanism must first be unlocked.

To raise a side panel, swing it to the upright position; then allow it to engage in the latched position.

To remove a side panel, lower the side panel, press the end pins in and lift the side panel out.

To replace a side panel, hold the end pins in, place the side panel in position and release the end pins.

![Figure 3-5](Image)

Side Panel operation

The Tubing Organizer Rear Side Panel aids in routing tubing to patients receiving therapy in warmer beds. The various size holes in the panel can accommodate large diameter tubes, such as aerosol tubes or the fiber optic cable of a BiliBlanket™ System; or smaller diameter tubes, such as ventilator or I.V. tubes. See Figure 3-6.

WARNING: Install tubing in the appropriately sized holes. Use of inappropriate holes may cause kinking, pinching or restriction of flow through the tubes, and may interfere with the proper operation of therapy equipment.

WARNING: Do not install chest drainage tubes in the Tubing Organizer Rear Side Panel.
Figure 3-6
Tubing organizer panel

![Tubing organizer panel diagram]

WARNING: Inspect all patient connected tubes or wires before and after moving or tilting the bed. Tilting or moving the warmer bed up or down can pull on tubing or leads connected to the patient. This may disconnect tubes or leads, restrict gas or liquid flow, or move sensors out of position.

WARNING: Do not lower the Tubing Organizer Rear Side Panel with tubing attached. Lowering can pull on the tubing, causing the tubes to dislodge from the patient.

WARNING: Radiant energy can adversely affect blood components. When using intravenous tubing systems for delivery of blood components to patients occupying a warmer, shield any tubing with aluminum foil.

Using the side panel as a tubing organizer restricts the panel’s ability to be lowered. Install the tubing organizer side panel on the back of the bed platform (the side nearest the aluminum uprights) to maintain easy access to the infant.

The tubing organizer side panel should be inspected, visually and by touch, for sharp edges, cracks or crazing, before each use.

3.7 X-ray Procedures

(See Figure 3-7 and 3-8)

The X-ray cassette may be placed in the slot under the bed platform or in the X-ray cassette tray if installed.

The heater housing rotates to the left for X-ray procedures. To place the heater housing in the X-ray position rotate the heater to the left. The heater is deactivated when in the X-ray position and the heat off indicator is illuminated. The audible alarm is activated after 5 minutes (in the manual mode) if the heater housing is not returned to the normal position. The alarm may be silenced for 5 minutes by pressing the alarm silence switch.

Note: The normal servo temperature alarms and alarm silence periods are in effect in the servo mode of operation. The 5 minute heat off alarm silence period is overridden by the normal servo temperature alarms. The heater is deactivated in the X-ray position. Rotate the heater housing to the normal position to resume normal operation.

The X-ray cassette tray (see Figure 3-8) used with all large and small bed warmers (except model 3500) facilitates X-ray procedures while patients occupy the warmer bed. An X-ray cassette can be placed on the tray and slid into the cavity beneath the bed without disturbing the patient. The tray can also be used as a writing surface or as work space during procedures, provided that a maximum load limit of 5 lbs is not exceeded.
Using the tray

WARNING: Limit the load placed on X-ray tray 5 lbs. (2.3 Kg) to avoid a tipping hazard.

WARNING: Never place an infant on the X-ray cassette tray.

1. To help position the X-ray cassette, the tray has detents or stops at its center position and at normal extension. Gently pull the tray out allowing gravity to engage the stops. Since the tray removes easily for cleaning, use caution when pulling it out, and properly support the tray and any X-ray cassette. The tray can be pulled out on either side of the warmer bed.

2. To further aid in positioning the X-ray cassette, a location grid pattern is molded into the tray itself. The tray grid markings correspond to the decal grid markings on the warmer bed side panels. Using the markings on the side panels as a reference to the infant’s location, position the cassette on the tray so that, when the tray is fully inserted, the cassette will be directly beneath the infant.

3. With a smooth continuous motion, slide the tray back under the warmer bed until you feel the “click” when the stops on the slides engage the tray at the fully inserted center position.
3/Operation

4. Rotate the heater housing out of the way, position the X-ray machine and take the X-ray.

⚠️ WARNING: Do not place any foreign objects on the warmer bed or in the under bed cavity while performing X-ray procedures. Incompatible materials in the path of the X-ray may adversely affect the quality of the X-ray image. Use of mattress or bedding materials other than those supplied by Ohmeda should be evaluated by a Neonatologist or Radiologist.

The tray can be removed for cleaning by simply sliding it all the way out of the slides. The tray should be cleaned between patients according to the hospital protocol. Refer to section 4.1 for a list of recommended cleaning agents.

3.8 Oxygen Administration

⚠️ WARNING: Oxygen concentrations higher than 40% can increase the risk of retrolental fibroplasia (retinopathy of prematurity). It is probable that even concentrations of 40% or less oxygen (formerly considered safe) could be dangerous to some infants. Therefore, arterial blood gas measurements are extremely important for regulation of the concentration of inspired oxygen when an oxygen-enriched environment is considered necessary. (See current edition of “Standards and Recommendations for Hospital Care of Newborn Infants” prepared by the Committee of Fetus and Newborn of the Academy of Pediatrics.)

Oxygen can be administered from a regulated pipeline source or from auxiliary oxygen tanks mounted on the Warmer.

3.9 Gas Cylinder Installation and Operation

(See Figure 3-9)

Note: Use “E” size pin indexed gas cylinders only.

Note: Discontinue therapy while replacing cylinders.

![Figure 3-9](image)

Gas cylinder installation

- Cylinder Valve
- Use E size gas cylinders. Make sure cylinder valve dust cap is removed.
- Strainer Nipple and Safety Index Pin
- Cylinder Wrench
- Yoke Gate
- Tee Handle
- Use a fresh gasket each time a cylinder is replaced. Use only one cylinder gasket per yoke. 6600-0152-400
- Close Yoke Gate. Tighten tee handle by hand only.
- Make sure safety index pins are engaged before closing yoke gate.
- Open cylinder valves slowly to avoid damaging the regulators.
Cylinder Removal:

1. Close the valve on the cylinder to be removed.

2. While supporting the cylinder, back out the Tee handle until the tip of the screw is flush with the inside surface of the gate.

3. Swing the gate open in a counter clockwise direction.

4. Remove the old cylinder.

5. Remove the old gasket from the yoke strainer nipple and discard.

Cylinder Installation:

1. Install a new gasket (Ohmeda Stock No. 6600-0152-400) on the strainer nipple.

 CAUTION: Use only one cylinder gasket per yoke. Use of more than one gasket could cause leakage of the cylinder gas.

2. Before installing a cylinder:

 a. Remove the cylinder dust cap, if present.

 b. Briefly open then immediately close the cylinder valve to blow any foreign matter out of the valve outlet. Do not use excessive force on the shut off valve.

3. Install the cylinder valve over the strainer nipple, making sure that the safety index pins are engaged.

4. Swing the gate closed in a clockwise direction and tighten the Tee Handle sufficiently (by hand only) to hold the cylinder firmly in place. Do not use wrenches or any other tool on the Tee Handle screws.

5. If only one oxygen cylinder is used, a yoke plug (Ohmeda Stock No. 6600-0399-500) and a gasket are required to seal the unused yoke cylinder port.

 CAUTION: Yoke check valves are not intended to provide a leak free seal; always use a yoke plug and a fresh cylinder gasket to seal an unused cylinder port.

6. Open cylinder valve S-L-O-W-L-Y, and rotate until it is fully open.

 CAUTION: Open cylinder valves S-L-O-W-L-Y to avoid damaging the regulators.

Leak Testing the System:

Prior to initial use and as prescribed by hospital protocol, the yoke system(s) should be checked for leaks according to the following procedure:

1. Discontinue use of the system to be tested.

2. Disconnect all pipeline gas supply and outlet lines from the yoke assembly.
3/Operation

3. Use new gaskets and full cylinders at each cylinder port (optionally, one full cylinder and a yoke plug may be used on a 2 cylinder oxygen manifold).

4. Open a cylinder valve at each manifold to charge the manifold(s) to a minimum of 745 psig (5137 kPa) and then close the valve(s).

5. Note the gauge pressure reading in the manifold(s).

6. After one minute, check the gauge pressure reading(s) again. The pressure gauge needle should not drop visually. If there is a visual pressure drop, discontinue use of the gas system and have the yoke assembly repaired by a qualified service person.

Using Two Cylinders as an Oxygen Supply:

When two cylinders are installed to provide an oxygen supply, a check valve permits replacement of one depleted cylinder while the other continues to furnish oxygen. Leave the valve on the new cylinder closed until the old cylinder requires replacement, then open the valve on the new cylinder and immediately replace the old cylinder as described above. This assures that a full back-up cylinder is always available for use.

⚠️ WARNING: Leaving both oxygen cylinder valves open at the same time will allow simultaneous depletion of both cylinders with no reserve oxygen supply available.

Use of Pipeline Air and Oxygen Supplies:

1. Connect pipeline supply(s) to the appropriate pipeline inlet(s).

2. Connect desired equipment to the appropriate outlet(s).

3. Ensure correct operation of the secondary pipeline equipment.

When pipeline air or oxygen supplies are used, install cylinders as described above to provide an emergency gas supply in the event of a pipeline failure. Cylinder valves should remain closed until and unless the emergency gas supply is needed.

⚠️ WARNING: Do not leave gas cylinder valves open if the pipeline supply is in use. Pressures from both oxygen supplies may become equal, and if simultaneously used, cylinder supplies may be depleted, leaving no reserve supply in case of pipeline failure.

3.10 Mounting Accessories

(See Figure 3-10)

⚠️ WARNING: Limit the load of the accessories to 50 pounds (23 kg) per side on the Warmer to ensure stability. Accessories should not be mounted more than 56 inches (142 cm) above the floor. For models 3000 and 3500, limit the load of accessories to 20 pounds (9 kg) maximum per side mounted no more than 44 inches (112 cm) above the floor.

⚠️ WARNING: Due to the increased height of units with the ECMO option installed, a tipping hazard may exist. Limit the total accessory load to 50 lbs. (23 kg), no more than 25 lbs. (11 kg) per side.
3/Operation

Rail system components mount to the uprights and provide ready access to commonly used equipment such as suction regulators, flowmeters, collection bottles, etc.

Figure 3-10
Mounting rail system components

Loosen mounting screw and place mounting block in position.

Tighten mounting screw.

A. Mounting and Releasing Procedure

(See Figure 3-10)

1. Loosen the mounting screw on the mounting block.
2. Place the mounting block in position on the rail.
3. Tighten the mounting screw.
4. Release the rail system component by loosening the mounting screw.

B. Adapter Plate Mounting and Releasing Procedure

(See Figure 3-11)

Universal Adapter plate allows Vacuum/Collection bottle slides and Bird blender bracket to mount to the rail system.

1. Loosen the two mounting screws on the side of the adapter plate with the hex key provided with the plate.
2. Place the adapter plate in position on the rail.
3. Tighten the two mounting screws.
4. Release the adapter plate by loosening the mounting screws.
3/Operation

Figure 3-11
Mounting the Adapter
Plate

Tighten the mounting screws.

C. ECMO Adapter

The ECMO adapter raises the bed an additional six inches to facilitate Extra-Corporeal Membrane Oxygenation procedures on model 4400 and 5000 units.

⚠️ WARNING: Due to the increased height of units with the ECMO option installed, a tipping hazard may exist. Limit the total accessory load to 50 lbs. (23 kg), no more than 25 lbs. (11 kg) per side.

3.11 ThermaLink Option

Figure 3-12
ThermaLink connector
(rear view of warmer)

ThermaLink Connector
The ThermaLink Serial data and Nurse Call connections are options offered with the Warmer (units with version 5.0 software or higher). Your unit has this option if there is a nine pin connector on the back left side of the controller cover. See Figure 3-12.

Using the Serial Data interface

WARNING: Remote monitoring does not replace the need for direct patient observation by qualified medical personnel.

The serial data output can be used with a computer or a commercial RS-232 monitor. Because of the wide variety of applications and systems, detailed information on decoding the data stream appears in the appendix. For details of the RS-232 protocol and connector pin out, refer to the Specification section.

WARNING: The computer or RS-232 monitor's user program must continuously check the data link. The program should constantly verify connection to the warmer controller and check for updated data.

Using the Nurse Call System interface

WARNING: Remote monitoring does not replace the need for direct patient observation by qualified medical personnel.

WARNING: If you connect the Nurse Call output to a system which uses a normally open connection, a disconnected Nurse Call cable will not trigger an alarm.

The Nurse Call connector lets you use the Warmer with your current remote alarm system. Nurse Call alarms trigger for:

- Probe Failure Alarms
- Patient Temperature Alarms
- System Failure Alarms
- Heat Off Alarms
- Check Patient Alarms
- Power Failure Alarms

The Nurse Call alarms work with the warmer audible alarm. Silencing the audible alarm on the warmer stops the Nurse Call alarm even if the alarm condition still exists. At the end of the silence period, the Nurse Call alarm and the audible alarm reactivate unless the condition has been resolved. The alarm silence period ends prematurely if another alarm triggers.

Refer to the Appendix for additional information on Nurse Call connections.
Nurse Call checkout

1. Complete the checkout procedure in section 2.3.
2. Verify proper operation of the Nurse Call station.
3. Connect the Nurse Call connector to the warmer.
4. Unplug the warmer to trigger an alarm. Verify that you also get an alarm at the Nurse Call station.

Note: Any interruption of warmer power (deliberately switching off the warmer, accidently unplugging the power cord, etc.) triggers a Nurse Call alarm.

3.12 Rotating Drawer Option

The rotating drawer option allows access to the storage drawers from the front or from either side of the warmer. The drawer cabinet rotates by pushing on the side of the cabinet, stopping at 90° detent positions.

WARNING: Use caution when rotating the cabinet to avoid damage to the drawers or possible injury. Always ensure the drawers are fully closed before rotating the cabinet.

Figure 3-13
Rotating Drawer Package

4/Cleaning and Disinfecting

In this section

4.1 Cleaning 4-1
4.2 Wood Surfaces (model 3500 only) 4-2
4.3 Reusable Skin Temperature Probe 4-2

4.1 Cleaning

⚠️ **WARNING:** Disconnect power to the Warmer and allow the heat rod to cool before cleaning to avoid the possibility of a burn.

Clean the Warmer at least once a week or after each patient. Cleaning procedures for the Warmer and accessories are explained in the following sections.

⚠️ **CAUTION:** Use the cleaning solution sparingly on a cloth when cleaning the warmer. Do not saturate the unit - excessive solution causes damage to internal components.

1. Unplug the power cord.

2. Clean the exterior of the warmer using mild detergent solution applied with a damp cloth or sponge. Aqueous solutions which are U.S. Environmental Protection Agency approved hospital level disinfectants may be used.

Do not allow liquids to seep into the electrical housing.

Figure 4-1
Disassembly for cleaning

![Diagram of Warmer Disassembly](image-url)

- **Foam Mattress**
- **Side Panel**
- **Front/Rear Panel**
 - Push end pins in for installation and removal.
4/Cleaning and Disinfecting

3. The mattress, X-ray tray, bed, and side panels may be cleaned without immersing by using a disinfecting agent safe for use on the materials.

The following lists recommended cleaning solutions that may be used safely.

<table>
<thead>
<tr>
<th>Generic Formulation</th>
<th>Max. concentration level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide</td>
<td>6 %</td>
</tr>
<tr>
<td>Sodium hypochlorite compound</td>
<td>0.5 % Aqueous Solution</td>
</tr>
<tr>
<td>Quaternary ammonium</td>
<td>0.2 %</td>
</tr>
<tr>
<td>Iodophors</td>
<td>50 mg/liter</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>2 %</td>
</tr>
</tbody>
</table>

⚠️ CAUTION: Use of cleaning/disinfecting solutions containing chemicals that are not listed above (i.e. alcohol, acetone, etc.), or chemicals in greater concentrations than those listed above, may damage the patient probe or other material being cleaned.

⚠️ CAUTION: Do not autoclave or gas sterilize the mattress.

4.2 Wood Surfaces (model 3500 only)

The wood surfaces are covered with a tough polymer coating which does not require waxing or special cleaners. Clean all wood surfaces with a mild soap and warm water solution.

Apply the cleaning solution with a clean cloth or sponge.

Dry the wood surfaces with a clean, soft cloth.

Dust the wood surfaces with a clean, soft cloth which is free of abrasive material.

4.3 Reusable Skin Temperature Probe

Clean the skin temperature probe by gently wiping with a soft, damp cloth containing detergent or disinfecting solution.

The table in section 4.1 (above) lists recommended cleaning solutions that may be used safely.

⚠️ CAUTION: Do not autoclave or gas sterilize the skin temperature probe. Do not immerse the probe in liquid cleaner. Avoid placing excessive strain on the probe lead. Always remove the probe by grasping the plug at the panel. Do not pull on the probe lead. These precautions will help avoid damage to the probe.

Note: Disposable skin temperature probes cannot be cleaned.
5.1 Repair Policy and Procedure

Warranty repair and service must be performed by an Ohmeda Service Representative or at the Ohmeda Service and Distribution Center (USA). To contact an Ohmeda Service Representative, contact the nearest Ohmeda Service Office.

Do not use malfunctioning equipment. Make all necessary repairs or have the equipment repaired by an Ohmeda Service Representative. Parts listed in the Service Manual, for this product, may be repaired or replaced by a competent, trained person who has experience in repairing devices of this nature. After repair, test the equipment to ascertain that it complies with the published specifications.

⚠️ CAUTION: Only competent individuals trained in the repair of this equipment should attempt to service it as detailed in the Service Manual (Stock Number 6600-0195-000).

⚠️ CAUTION: Detailed information for more extensive repairs is included in the service manual solely for use by individuals having proper knowledge, tools and test equipment, and for service representatives trained by Ohmeda.

Contact the nearest Ohmeda Regional Service Office for assistance or before returning equipment for servicing. Obtain a Return Authorization Number before returning equipment.

If you send equipment to the Ohmeda Service and Distribution Center, package it securely for protection, in the original shipping container if possible, and ship it prepaid. Enclose the following five items:

1. A letter describing in detail any difficulties experienced with the equipment. Reference the Return Authorization number.

2. Warranty information — a copy of the invoice or other applicable documentation must be included.

3. Purchase order number to cover repair of equipment not under warranty.

4. Ship to and bill to information.
5. Person (name and telephone number) to contact for functional questions.

In all cases, other than where Ohmeda's warranty is applicable, repairs will be made at Ohmeda's current list price for replacement part(s) plus a reasonable labor charge.

5.2 Circuit Breaker Reset

(See Figure 5-1.)

The warmer is equipped with a combination power switch and manual-reset circuit breaker located on the left side of the controller assembly (as viewed from the front), near the power cord socket. The circuit breaker limits the maximum current drawn.

If this circuit breaker trips when the warmer is operating, the power switch is deactivated to the Off position. To reset the circuit breaker, return the power switch to the On position. If the circuit breaker trips again, service is required.

Figure 5-1
Circuit breaker reset

Place the switch in the | (On) position to reset the circuit breaker.

5.3 Lamp Replacement

WARNING: Disconnect the Warmer power cord and allow the unit to cool before replacing the alarm or observation lights.

A. Alarm Lamp Replacement

(See Figure 5-2.)

Lamp: GTE Sylvania 120 MB 6W, Ohmeda Stock No. 0690-2100-315.

1. Disconnect the Warmer power cord and allow the unit to cool for 10 minutes.
2. Use a Phillips head screwdriver to remove the lens mounting screw located in the center of the alarm light.

3. Remove the bulb by pushing in and turning it counterclockwise.

4. Install the new bulb by pushing in and turning it clockwise.

Note: Replace both bulbs for maximum lamp life.

5. Place the lens cover in position and secure it with the mounting screw.

6. Plug the power cord in and check for proper operation.

B. Observation Lamp Replacement

(See Figures 5-8, 5-9 and 5-10.)

Lamp: GE EXZ (Q50 MR16/NFL), Ohmeda Stock No. 0208-0516-300 or GE EXN (Q50 MR16/FL).

1. Disconnect the power cord for the Warmer and allow the unit to cool for 10 minutes.

2. Rotate the heater assembly to the side position (shown in Figure 5-3).
5/Maintenance

Figure 5-3
Heater rotation to the side position

Carefully rotate the heater to the left.

3. Refer to Figure 5-4. Use a Phillips head screwdriver to remove the back panel of the heater assembly.

Figure 5-4
Observation Lamp cover removal

Unscrew the two cover mounting screws and remove the cover.

4. Refer to Figure 5-5. While holding the lamp with one hand, use your other hand to pull the lever next to the lamp toward you. Remove the lamp.

5. Place the new lamp in position and push it into the lamp socket.

6. Replace the cover and the mounting screws.

7. Rotate the heater assembly back to its normal operating position.

8. Plug the power cord in and switch the observation lamp on. Check for proper operation.
5.4 Yoke Manifold Assembly

WARNING: Never oil or grease oxygen equipment. Oils and grease oxidize readily, and in the presence of oxygen, will burn violently. Vac Kote is the oxygen service lubricant recommended (Stock No. 6700-0092-200) if the use of a lubricant is specified.

Periodically (at least once a year) lubricate the Tee handle screw threads with a small amount of oxygen service lubricant. This prolongs their life and makes sealing of the yoke gaskets easier.

(See Figure 3-9)

Periodically (at least once a year) replace the yoke check valve strainer nipples before they become clogged with lint or dust.

CAUTION: Open cylinder valves S-L-O-W-L-Y to avoid damaging regulators.

When installing fresh cylinders, briefly open then immediately close the cylinder valve to blow any foreign matter out of the valve outlet. Do not use excessive force on the shut off valve. Remove the old gasket and use a clean, new gasket (Stock No. 6600-0152-400) in its place.

5.5 Battery Test

The maintenance-free battery should be tested regularly and replaced if necessary. Refer to Section 2.3 for testing the battery. The battery has a two year replacement schedule. Refer to the Service Manual for battery replacement.
5/Maintenance

5.6 Maintenance Schedule

The unit should be maintained in accordance with the procedures detailed in the Service Manual. Service maintenance must be performed by a technically competent individual as described in the Repair Policy.

A. Operator Maintenance

This schedule lists the minimum frequencies. Always follow hospital and local regulations for required frequencies.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly or after each patient</td>
<td>Clean the Warmer.</td>
</tr>
<tr>
<td>After each gas cylinder replacement</td>
<td>Discard old gasket. Use a clean, new gasket.</td>
</tr>
<tr>
<td>Annually</td>
<td>Lubricate the Tee handle screw threads (On models equipped with gas package).</td>
</tr>
</tbody>
</table>

B. Service Maintenance

This schedule lists the minimum frequencies. Always follow hospital and local regulations for required frequencies.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly</td>
<td>Perform the electrical safety and checkout procedure from the Service Manual. Every other quarterly inspection, check the calibration as detailed in the Service Manual.</td>
</tr>
<tr>
<td>Anually</td>
<td>Inspect the casters to ensure they are structurally sound and firmly support the equipment. They should move freely and roll smoothly. Replace worn or loose casters.</td>
</tr>
<tr>
<td>Anually</td>
<td>Inspect the yoke strainer nipples and replace if necessary (On models equipped with gas package).</td>
</tr>
<tr>
<td>Every two years</td>
<td>Replace the battery.</td>
</tr>
<tr>
<td>Every five years</td>
<td>Replace the regulator(s) (On models equipped with gas package).</td>
</tr>
</tbody>
</table>
6/Illustrated Parts

Figure 6-1
Illustrated parts

<table>
<thead>
<tr>
<th>Stock Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0305-5060-300</td>
<td>1. Small mattress (18.2" x 25.2", 46.2 x 64 cm)</td>
</tr>
<tr>
<td>0305-5061-300</td>
<td>Large mattress (23.2" x 29.2", 59 x 74.2 cm)</td>
</tr>
<tr>
<td>0217-5221-300</td>
<td>2. Mattress Support Panel - all models except 3500</td>
</tr>
<tr>
<td>6600-0228-800</td>
<td>3. Corner Block Kit - all models except 3500 (4 Blocks)</td>
</tr>
<tr>
<td>6600-0230-800</td>
<td>Corner Block Kit - model 3500 (4 Blocks)</td>
</tr>
<tr>
<td>6600-0185-700</td>
<td>Corner Block Kit - model 3500 (Single Block)</td>
</tr>
<tr>
<td>6600-0005-800</td>
<td>4. Left and Right Side Panel - model 2001 & series 3000</td>
</tr>
<tr>
<td>6600-0009-700</td>
<td>Left and Right Side Panel - model 5000 & series 4000</td>
</tr>
<tr>
<td>6600-0176-701</td>
<td>Left and Right Side Panel - model 3500*</td>
</tr>
<tr>
<td>6600-0004-800</td>
<td>5. Front and Rear Side Panel - model 2001 & series 3000</td>
</tr>
<tr>
<td>6600-0008-700</td>
<td>Front and Rear Side Panel - model 5000 & series 4000</td>
</tr>
<tr>
<td>6600-0176-700</td>
<td>Front and Rear Side Panel - model 3500*</td>
</tr>
</tbody>
</table>

*May be installed as optional, taller side panels on model 2001 and series 3000.

Additional items not shown in Figure 6-1:

0217-5363-800 Adapter Plate (Figure 6-2)
0217-5372-800 Air Flowmeter with DISS Fittings (50 psi) (Figure 6-3)
6600-0352-803 Air/Oxygen Yoke and Regulator (all models - U.S.)
6600-0352-804 Air/Oxygen Yoke and Regulator (all models - Canada)
6600-0352-805 Air/Oxygen Yoke and Regulator (all models - U.K.)
0217-5377-800 Airway Manometer Assembly (Figure 6-5)
0690-2100-315 Alarm Lamp
6600-0031-900 Bird Dovetail Adapter (includes adapter plate show in Figure 6-2)
6600-0274-800 Chest Drainage Hanger Kit
0212-0300-600 Collection Bottle, 1/4 Gallon
0221-6267-300 Collection Bottle Bracket
6702-1224-905 DISS Continuous 3 Mode Suction Regulator with Overflow Trap
6600-0006-850 Drawer Kit, Stationary (Model 2001 & Series 3000) (Figure 6-11)
6600-0006-851 Drawer Kit, Stationary (Model 5000 & Series 4000) (Figure 6-11)
6600-0006-852 Drawer Kit, Rotating (Model 2001 & Series 3000)
6/Illustrated Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6600-0006-853</td>
<td>Drawer Kit, Rotating (Model 5000 & Series 4000)</td>
</tr>
<tr>
<td>6600-0025-800</td>
<td>ECMO Adapter Kit - model 4400 & 5000</td>
</tr>
<tr>
<td>0203-1980-300</td>
<td>Heat Reflective Probe Patch (Box of 50)</td>
</tr>
<tr>
<td>0217-5365-800</td>
<td>Instrument Shelf 12" x 12" (30 x 30 cm) (Figure 6-12)</td>
</tr>
<tr>
<td>0217-5378-800</td>
<td>IV Pole, 12 Inch (30 cm) (Figure 6-4)</td>
</tr>
<tr>
<td>0217-5366-800</td>
<td>Monitor Shelf - series 3000 & model 2001, 12" x 26", 30 x 66 cm (Figure 6-13)†</td>
</tr>
<tr>
<td>6600-0240-800</td>
<td>Monitor Shelf - series 4000, 12" x 30½", 30 x 77 cm (Figure 6-13)</td>
</tr>
<tr>
<td>6600-0010-800</td>
<td>Monitor Shelf - model 5000 12" x 30½", 30 x 77 cm (Figure 6-13)</td>
</tr>
<tr>
<td>0208-0516-300</td>
<td>Observation Lamp</td>
</tr>
<tr>
<td>6712-1260-921</td>
<td>Oxygen Flowmeter with DISS Fittings (50 psi)</td>
</tr>
<tr>
<td>6600-0362-800</td>
<td>Oxygen Yoke and Regulator Assembly (Figure 6-6 - all models - U.S.)</td>
</tr>
<tr>
<td>6600-0362-801</td>
<td>Oxygen Yoke and Regulator Assembly (all models - Canada)</td>
</tr>
<tr>
<td>6600-0362-802</td>
<td>Oxygen Yoke and Regulator Assembly (all models - U.K.)</td>
</tr>
<tr>
<td>6600-0055-900</td>
<td>Spot Phototherapy Lamp (wall mounting)</td>
</tr>
<tr>
<td>6600-0051-800</td>
<td>Spot Phototherapy Lamp Rail Mounting Kit</td>
</tr>
<tr>
<td>0208-0523-300</td>
<td>Power Cord, 120 Volt</td>
</tr>
<tr>
<td>0217-5290-870</td>
<td>Routing Clip (Package of 6 - Figure 6-7)</td>
</tr>
<tr>
<td>6600-0195-000</td>
<td>Service Manual, all models</td>
</tr>
<tr>
<td>0208-0697-700</td>
<td>Skin Temperature Probe Model LA003</td>
</tr>
<tr>
<td>6600-0208-700</td>
<td>Skin Temperature Probe Model LA005, Disposable (10/pkg)</td>
</tr>
<tr>
<td>6600-0196-700</td>
<td>Skin Temperature Probe Model LA005, Disposable (50/pkg)</td>
</tr>
<tr>
<td>6600-0001-850</td>
<td>ThermaLink Upgrade Kit (available for IWS units w/5.0 software or higher)</td>
</tr>
<tr>
<td>6600-0004-801</td>
<td>Tubing organizer side panel (rear) - model 2001 & series 3000 † (see Fig. 3-6)</td>
</tr>
<tr>
<td>6600-0004-802</td>
<td>Tubing organizer side panel (rear) - model 5000 & series 4000 (see Fig. 3-6)</td>
</tr>
<tr>
<td>6700-0136-900</td>
<td>Du-O-Vac</td>
</tr>
<tr>
<td>6600-0018-800</td>
<td>Du-O-Vac Mounting Kit</td>
</tr>
<tr>
<td>0217-5374-800</td>
<td>Utility Post, 3.5 Inch Stub x 1 in. diameter (Figure 6-8)</td>
</tr>
<tr>
<td>0217-5369-800</td>
<td>Vacuum Manifold with DISS Fittings (Figure 6-9)</td>
</tr>
<tr>
<td>0217-5367-800</td>
<td>Vacuum Slide Bracket (Figure 6-10)</td>
</tr>
<tr>
<td>0217-5357-800</td>
<td>Ventilator Mounting Post Accessory</td>
</tr>
<tr>
<td>6600-0003-852</td>
<td>X-ray Tray Kit - model 2001 & series 3000 †</td>
</tr>
<tr>
<td>6600-0003-853</td>
<td>X-ray Tray Kit - model 5000 & series 4000</td>
</tr>
</tbody>
</table>

For more information about these and other accessories see the Infant Care Equipment Accessories Catalog (Form No F058)

†Not compatible with model 3500.
6/Illustrated Parts

Figure 6-2
Adapter Plate
(0217-5363-800)

Figure 6-3
Air Flowmeter (50 psi) with DISS Fittings
(0217-5372-800)

Figure 6-4
IV Pole, 12 Inch
(0217-5378-800)

Figure 6-5
Airway Manometer Assembly
(0217-5377-800)

Figure 6-6
Oxygen Yoke and Regulator Assembly
(see list on 6-1 and 6-2)

Figure 6-7
Routing Clip
(Package of 6)
(0217-5290-870)
6/Illustrated Parts

Figure 6-8
Utility Post,
3.5 Inch stub
(0217-5374-800)

Figure 6-9
Vacuum Manifold
with DISS Fittings
(0217-5369-800)

Figure 6-10
Vacuum Slide Bracket
(0217-5367-800)

Figure 6-11
Drawer Module
Stationary
(See list on 6-1 and 6-2)

Figure 6-12
Instrument Shelf
(0217-5365-800)

Figure 6-13
Monitor Shelf
(See list on 6-1 and 6-2)
In this section

Temperature Conversion Chart A-1
Servo Mode Algorithm A-2
Infant Warmer System Specifications A-2
 Electrical A-2
 Controller A-3
 Alarms A-4
 Environmental Specification A-5
 Electromagnetic Compatibility (EMC) A-6
 Mechanical (Without Accessories) A-6
 3500 Bassinet A-7
 Accessories A-8
 Radiant Energy Distribution A-10
Thermalink Option Specifications A-10
 Serial data A-10
 Nurse Call specifications A-12
Installing wall mounted units A-13
 Pre-Installation Preparation A-13
 Warmer Installation A-14

All specifications are subject to change without notice.

Temperature Conversion Chart

<table>
<thead>
<tr>
<th>C</th>
<th>F</th>
<th>C</th>
<th>F</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>68.0</td>
<td>34.5</td>
<td>94.1</td>
<td>37.6</td>
<td>99.7</td>
</tr>
<tr>
<td>21.5</td>
<td>70.7</td>
<td>35.0</td>
<td>95.0</td>
<td>37.7</td>
<td>99.9</td>
</tr>
<tr>
<td>22.0</td>
<td>71.6</td>
<td>35.1</td>
<td>95.2</td>
<td>37.8</td>
<td>100.0</td>
</tr>
<tr>
<td>22.5</td>
<td>72.5</td>
<td>35.2</td>
<td>95.4</td>
<td>37.9</td>
<td>100.2</td>
</tr>
<tr>
<td>23.0</td>
<td>73.4</td>
<td>35.3</td>
<td>95.4</td>
<td>38.0</td>
<td>100.4</td>
</tr>
<tr>
<td>23.5</td>
<td>74.3</td>
<td>35.4</td>
<td>95.7</td>
<td>38.1</td>
<td>100.6</td>
</tr>
<tr>
<td>24.0</td>
<td>75.2</td>
<td>35.5</td>
<td>95.9</td>
<td>38.2</td>
<td>100.8</td>
</tr>
<tr>
<td>24.5</td>
<td>76.1</td>
<td>35.6</td>
<td>96.1</td>
<td>38.3</td>
<td>100.9</td>
</tr>
<tr>
<td>25.0</td>
<td>77.0</td>
<td>35.7</td>
<td>96.3</td>
<td>38.4</td>
<td>101.1</td>
</tr>
<tr>
<td>25.5</td>
<td>77.9</td>
<td>35.8</td>
<td>96.4</td>
<td>38.5</td>
<td>101.3</td>
</tr>
<tr>
<td>26.0</td>
<td>78.8</td>
<td>35.9</td>
<td>96.6</td>
<td>38.6</td>
<td>101.5</td>
</tr>
<tr>
<td>26.5</td>
<td>79.7</td>
<td>36.0</td>
<td>96.8</td>
<td>38.7</td>
<td>101.7</td>
</tr>
<tr>
<td>27.0</td>
<td>80.6</td>
<td>36.1</td>
<td>97.0</td>
<td>38.8</td>
<td>101.8</td>
</tr>
<tr>
<td>27.5</td>
<td>81.5</td>
<td>36.2</td>
<td>97.2</td>
<td>38.9</td>
<td>102.0</td>
</tr>
<tr>
<td>28.0</td>
<td>82.4</td>
<td>36.3</td>
<td>97.3</td>
<td>39.0</td>
<td>102.2</td>
</tr>
<tr>
<td>28.5</td>
<td>83.3</td>
<td>36.4</td>
<td>97.5</td>
<td>39.5</td>
<td>103.1</td>
</tr>
<tr>
<td>29.0</td>
<td>84.2</td>
<td>36.5</td>
<td>97.7</td>
<td>40.0</td>
<td>104.0</td>
</tr>
<tr>
<td>29.5</td>
<td>85.1</td>
<td>36.6</td>
<td>97.9</td>
<td>40.5</td>
<td>104.9</td>
</tr>
<tr>
<td>30.0</td>
<td>86.0</td>
<td>36.7</td>
<td>98.1</td>
<td>41.0</td>
<td>105.8</td>
</tr>
<tr>
<td>30.5</td>
<td>86.9</td>
<td>36.8</td>
<td>98.2</td>
<td>41.5</td>
<td>106.7</td>
</tr>
<tr>
<td>31.0</td>
<td>87.8</td>
<td>36.9</td>
<td>98.4</td>
<td>42.0</td>
<td>107.6</td>
</tr>
<tr>
<td>31.5</td>
<td>88.7</td>
<td>37.0</td>
<td>98.6</td>
<td>42.5</td>
<td>108.5</td>
</tr>
<tr>
<td>32.0</td>
<td>89.6</td>
<td>37.1</td>
<td>98.8</td>
<td>43.0</td>
<td>109.4</td>
</tr>
<tr>
<td>32.5</td>
<td>90.5</td>
<td>37.2</td>
<td>99.0</td>
<td>43.5</td>
<td>110.3</td>
</tr>
<tr>
<td>33.0</td>
<td>91.4</td>
<td>37.3</td>
<td>99.1</td>
<td>44.0</td>
<td>111.2</td>
</tr>
<tr>
<td>33.5</td>
<td>92.3</td>
<td>37.4</td>
<td>99.3</td>
<td>44.5</td>
<td>112.1</td>
</tr>
<tr>
<td>34.0</td>
<td>93.2</td>
<td>37.5</td>
<td>99.5</td>
<td>45.0</td>
<td>113.0</td>
</tr>
</tbody>
</table>
Appendix

Servo Mode Algorithm

The servo mode uses the difference between the servo mode control temperature and the patient skin temperature to determine the percent of heater power required:

<table>
<thead>
<tr>
<th>Control Temp - Patient Temp</th>
<th>Percent Heater Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 0.45°C</td>
<td>100</td>
</tr>
<tr>
<td>0.44 to 0.30°C</td>
<td>95</td>
</tr>
<tr>
<td>0.29 to 0.25°C</td>
<td>90</td>
</tr>
<tr>
<td>0.24 to 0.20°C</td>
<td>85</td>
</tr>
<tr>
<td>0.19 to 0.15°C</td>
<td>75</td>
</tr>
<tr>
<td>0.14 to 0.10°C</td>
<td>65</td>
</tr>
<tr>
<td>0.09 to 0.05°C</td>
<td>45</td>
</tr>
<tr>
<td>0.04 to −0.04°C</td>
<td>25</td>
</tr>
<tr>
<td>−0.05 to −0.09°C</td>
<td>20</td>
</tr>
<tr>
<td>−0.10 to −0.14°C</td>
<td>15</td>
</tr>
<tr>
<td>−0.15 to −0.19°C</td>
<td>10</td>
</tr>
<tr>
<td>−0.20 to −0.24°C</td>
<td>5</td>
</tr>
<tr>
<td>≤−0.25°C</td>
<td>0</td>
</tr>
</tbody>
</table>

Infant Warmer System Specifications

Electrical

Power Requirements:

120 V, 50/60 Hz Model: 115 V ± 10%, 6.6 Amps.
220 V, 50/60 Hz Model: 220 V ± 10%, 3.7 Amps.
230 V, 50/60 Hz Model: 230 V ± 10%, −6%, 3.4 Amps.
240 V, 50/60 Hz Model: 240 V ± 10%, 3.3 Amps.
100 V, 50/60 Hz Model: 95 V ± 10%, 8.2 Amps.

All models designed to conform to BSI 5724, IEC 601-1, UL544, CSA 22.2, SEMKO and TUV requirements.

Heater Output:

All models:

540 watts ± 5% at maximum % power setting.
Average Energy at Mattress Level at maximum % power setting:
20 mw/cm² for Model 5000 & Series 4000.
34 mw/cm² for Model 2001 & Series 3000.

Recommended Bed Level:

27 ± 2 inches (69±5 cm) from bottom of heater module.

WARNING: Bed-to-heater spacing which differs from the specified 27 ± 2 inches (69±5 cm) will result in incorrect operation and may affect the patient’s condition.
For your convenience, on Model 3000, 3100 and 3500 the proper bed-to-heater spacing is indicated by a label located on the right aluminum upright (as viewed from the front).

Line Voltage Compensation:

Input line voltage is monitored and the heater drive is adjusted to compensate for variations in the line voltage. This ensures a stable heater output despite input line voltage fluctuations.

Circuit Breaker:

Rated Current: 7.5 A.

Trip Point: 9.45 A Minimum.

Type: Manual Resetting.

Model: Airpax Snapak.

Isolation voltage

2500 Vrms 60 Hz from the patient probe to the ac phase and neutral lines for one minute.

WARNING: The patient probe is not isolated from earth ground. Any additional equipment used with the Ohmeda Infant Warmer System must comply with UL 544, CSA 22.2, IEC 601, and VDE 750.

Leakage current

With ground wire open or connected and measured at an exposed metal surface, less than 100 microamperes on 100 V and 120 V units (200 microamperes on 220 V, 230 V and 240 V units).

Ground resistance

Less than 0.1 ohms

IEC 601-1 Specifications

- Type of protection against electric shock: Class 1
- Degree of protection against electric shock: Type B
- Mode of Operation: Continuous
- Protection against hazards of explosion: Not Protected
- Protection against ingress of liquids: Not Protected

Controller

Electronics:

Microprocessor-based control system.

Self-test functions are performed at power up and during normal operation.

Power Control Method:

Proportional heat control with zero-voltage switching to minimize radiated and conducted EMI.

Observation Light:

Nominal illuminance output: 100 foot candles at center of mattress.

Estimated lamp life: 3,000 hours.
Appendix

Temperature Sensing System:

Range: 30 - 42°C
Accuracy: ±0.3°C
Resolution: ±0.1°C
Probe interchangeability: ±0.1°C
Probe Model Number: LA003 or LA005

Elapsed Timer:

60 minute elapsed timer with hold mode and Apgar tones.

Manual Mode Heat Selector Range:

All models:

0 to 540 watts in 20 increments of 5% each.

Servo Mode Control Range:

(all models except the 2001 international)

35.0 to 37.5°C in increments of 0.1°C.

Alarms

Multiple audio tones:

Operator prompt tone.*
Alternating single tone.*
Alternating two tone.*

*For a more detailed description of the audible alarms see section 3.1D

Overhead Alarm Light:

Large alarm light located on the front of the heater assembly for easy visual identification.

Probe Failure Alarm:

The alternating two tone alarm is active only in the servo mode.
Activates when the skin temperature probe:

1. Fails electrically due to an open or short circuit, or
2. Is disconnected from the Warmer.
3. Probe senses temperature outside the 30 - 42°C range.

When this alarm condition exists:

1. The heater is turned off and
2. The patient temperature display flashes “HH.H” or “LL.L”.

Patient Temp. Alarm:

This single tone alarm activates in the servo mode when the difference between the patient temperature and the control temperature is greater than 1°C (can be adjusted to 0.5°C by qualified service person).
Alarm cancels when the patient temperature returns to within 0.8°C of the control temperature.
System Failure Alarm:

This alternating, two tone alarm cannot be silenced.

Alarm activates and turns the heater off if any of the following occurs:

1. The analog-to-digital converter calibration drifts by more than 0.3°C.
2. The heater solid state relay fails.
3. The microprocessor fails or -
4. The self check functions fail on power-up.

Note: Excessive EMI in the hospital environment can trigger the system failure alarm. Note the error code, if any, and switch off the unit. Wait ten seconds and switch the power back on. If the system fail alarm recurs, remove the warmer from use.

Check Patient Alarm:

Manual Mode: Single tone alarm activates if the heater has been energized at greater than 25% heat for 12 continuous minutes.

Servo mode: Alarm activates when the heater has been at full power for 12 continuous minutes.

Alternating two tone alarm activates after 3 minutes if the Check Patient Alarm is not silenced.

Power Failure Alarm:

Single tone alarm activates if the line power is interrupted. No LEDs illuminate.

A rechargeable maintenance-free nickel cadmium battery powers the audio alarm and the microprocessor for up to 10 minutes with a fully charged battery. If power is restored within 10 minutes, the mode of operation and the set point are recalled.

Heat Off Alarm:

The Light-Emitting-Diode (LED) indicator activates when the heater is in the side position.

The audio alarm activates after the heater has been in the side position for 5 minutes.

Environmental Specifications

Operating Temperature Range: 22 to 40°C (72 to 104°F).
Transport and Storage Temperature Range: -25 to 60°C (-13 to 140°F).
Transport, Operating and Storage Pressure Range: 500 to 1060 kPa
Operating and Storage Relative Humidity Range: 0 to 95%.
Electromagnetic Compatibility (EMC)

All models meet the following standards:

- ANSI C63.16-1991 Electrostatic Discharge 25kV
- IEC 62A - Draft standard for Medical Electrical Equipment, EMC
- IEC 801-2 Electrostatic Discharge
- IEC 801-3 Radiated Susceptibility (3V/m) Level 2
- IEC 801-4 Conducted Fast Transient Level 3
- IEC 801-5 Conducted Surge Immunity Level 3
- IEC 801-6 Conducted Susceptibility Level 3
- CISPR 11 B Radiated or Conducted Emissions

Mechanical (Without Accessories)

Overall Dimensions:

<table>
<thead>
<tr>
<th>Model number</th>
<th>Height in./cm</th>
<th>Depth in./cm</th>
<th>Width in./cm</th>
<th>Minimum Wt** lbs/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>73/185</td>
<td>41/104</td>
<td>26/66</td>
<td>210/96</td>
</tr>
<tr>
<td>3000</td>
<td>73/185</td>
<td>45/114</td>
<td>26/66</td>
<td>165/70</td>
</tr>
<tr>
<td>3050†</td>
<td>11*/28</td>
<td>33/84</td>
<td>18/46</td>
<td>40/18</td>
</tr>
<tr>
<td>3100</td>
<td>60*/152</td>
<td>33/84</td>
<td>21.5/55</td>
<td>75/34</td>
</tr>
<tr>
<td>3150</td>
<td>60*/152</td>
<td>36/91</td>
<td>21.5/55</td>
<td>110/50</td>
</tr>
<tr>
<td>3300</td>
<td>73/185</td>
<td>41/104</td>
<td>26/66</td>
<td>210/96</td>
</tr>
<tr>
<td>3500†</td>
<td>73/185</td>
<td>40.5/103</td>
<td>24.5/62</td>
<td>228/102</td>
</tr>
<tr>
<td>4000</td>
<td>73/185</td>
<td>52/132</td>
<td>30.5/77</td>
<td>175/80</td>
</tr>
<tr>
<td>4300†</td>
<td>73/185</td>
<td>45/114</td>
<td>30.5/77</td>
<td>222/101</td>
</tr>
<tr>
<td>4400</td>
<td>72-80/183-203</td>
<td>45/114</td>
<td>30.5/77</td>
<td>200/91</td>
</tr>
<tr>
<td>5000</td>
<td>72-80/183-203</td>
<td>45/114</td>
<td>32/81</td>
<td>210/96</td>
</tr>
</tbody>
</table>

* Height of equipment itself, height from floor will vary on application.
† Includes bassinet.

**Drawers not included; for stationary drawers add 56 lbs (25 kg), for rotating drawers add 70 lbs (32 kg).

Mattress dimensions:

<table>
<thead>
<tr>
<th>Model number</th>
<th>Width in./cm</th>
<th>Length in./cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>3000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3050</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3150</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>3300</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>3500</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>4000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4300</td>
<td>23.2/59</td>
<td>29.2/74</td>
</tr>
<tr>
<td>4400</td>
<td>23.2/59</td>
<td>29.2/74</td>
</tr>
<tr>
<td>5000</td>
<td>23.2/59</td>
<td>29.2/74</td>
</tr>
</tbody>
</table>
Appendix

Casters

<table>
<thead>
<tr>
<th>Model number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>5" (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
<tr>
<td>3000</td>
<td>5" (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
<tr>
<td>3050</td>
<td>—</td>
</tr>
<tr>
<td>3100</td>
<td>—</td>
</tr>
<tr>
<td>3150</td>
<td>—</td>
</tr>
<tr>
<td>3300</td>
<td>5' (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
<tr>
<td>3500</td>
<td>Warmer- 2" (5 cm) dia., 2 locking, 4 non locking</td>
</tr>
<tr>
<td></td>
<td>Bassinet- 5" (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
<tr>
<td>4000</td>
<td>5" (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
<tr>
<td>4300</td>
<td>5" (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
<tr>
<td>4400</td>
<td>5" (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
<tr>
<td>5000</td>
<td>5" (13 cm) dia., 2 locking, 2 non locking</td>
</tr>
</tbody>
</table>

† Dimensions for both the stationary and rotating drawer packages are the same.

Drawers†

<table>
<thead>
<tr>
<th>Model number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>3 drawers- 15" x 15.5" x 4" (39 x 39 x 10 cm)</td>
</tr>
<tr>
<td>3000</td>
<td>—</td>
</tr>
<tr>
<td>3050</td>
<td>—</td>
</tr>
<tr>
<td>3100</td>
<td>—</td>
</tr>
<tr>
<td>3150</td>
<td>3 drawers- 15" x 15.5" x 4" (39 x 39 x 10 cm)</td>
</tr>
<tr>
<td>3300</td>
<td>3 drawers- 15" x 15.5" x 4" (39 x 39 x 10 cm)</td>
</tr>
<tr>
<td>3500</td>
<td>1 drawer- 12" x 15" x 3" (30 x 39 x 8 cm)</td>
</tr>
<tr>
<td></td>
<td>2 drawers - 12" x 15" x 6" (30 x 39 x 15 cm)</td>
</tr>
<tr>
<td>4000</td>
<td>—</td>
</tr>
<tr>
<td>4300</td>
<td>3 drawers- 15" x 15.5" x 4" (39 x 39 x 10 cm)</td>
</tr>
<tr>
<td>4400</td>
<td>3 drawers- 15" x 15.5" x 4" (39 x 39 x 10 cm)</td>
</tr>
<tr>
<td>5000</td>
<td>3 drawers- 15" x 15.5" x 4" (39 x 39 x 10 cm)</td>
</tr>
</tbody>
</table>

Bed duty cycle (Elevating models only)

20 seconds on
15 minutes off

Bed tilt positions

3500 ± 8° in increments of 4°
All other models ± 10° continuously adjustable

3500 Bassinet

Material:

Select oak and oak veneer. Optional custom stain colors are available.

Storage:

Three Drawer storage opening from either side or the front of the unit, depending on the model ordered.
Accessories

Accessories include the following (see also Section 6/Illustrated Parts):

Air/Oxygen Yoke and Regulator:

Pin indexed oxygen yokes accommodate two E size oxygen cylinders.
Additional yoke accommodates one E-size cylinder of compressed air.
Air and oxygen pipeline fittings.
Regulators: 52 ± 2 psig (358 ± 14 kPa).
Cylinder pressure gauges: 0 to 3000 psig (0 to 20700 kPa).

Oxygen Yoke and Regulator:

Pin indexed yokes accommodate two E size oxygen cylinders.
Oxygen pipeline fittings.
Regulator: 52 ± 2 psig (358 ± 14 kPa).
Cylinder pressure gauge: 0 to 3000 psig (0 to 20700 kPa).

Rail Mounted Accessories:

⚠️ **WARNING:** Overloading the shelves can affect the stability of the unit.
Limit the load to 20 lbs. (9 kg) per instrument shelf, mounted to a single upright, and 50 lbs. (23 kg) per monitor shelf, mounted between the uprights.

⚠️ **WARNING:** Limit the load of accessories to 50 pounds (23 kg) per side on the Warmer to ensure stability. Accessories should not be mounted more than 56 inches (142 cm) above the floor. For models 3000 and 3500, limit the load of accessories to 20 pounds (9 kg) maximum per side mounted no more than 44 inches (112 cm) above the floor.

⚠️ **WARNING:** Due to the increased height of units with the ECMO option installed, a tipping hazard may exist. Limit the total accessory load to 50 lbs. (23 kg), no more than 25 lbs. (11 kg) per side.

System 2001/3000/3300 Monitor Shelf:

Dimensions 12 x 26 inches (30 x 58 cm)
Load limit: 50 lbs (22 kg)

System 4000/5000 Monitor Shelf:

Dimensions 12 x 30.5 inches (30 x 77 cm)
Load Limit: 50 lbs (22 kg)

Instrument shelf:

Dimensions 12 x 12 inches (30 x 30 cm)
Load limit: 20 lbs (9 kg)

Oxygen flowmeter with DISS fittings: 0 to 15 LPM

Air flowmeter with DISS fittings: 0 to 15 LPM
Appendix

Airway Manometer: -20 to +100 centimeters of water

IV pole

Gas manifold with 1/8 inch NPT fitting

3.5 (9 cm) inch utility post

Three Drawer Storage Accessory:
(for all models with beds - stationary or rotating)
Drawers 15 x 15.5 x 4 inches (38 x 39 x 10 cm)
930 cubic inches per drawer (14,820 cm³ per drawer)

WARNING: Overloading the drawers can affect the stability of the unit. Limit the load to 10 lbs. (4.6 kg) per drawer.

Utility Post, 22 Inch (0217-5376-800)

1 inch (2.5 cm) diameter x 22 inch (56 cm) long post

Provides a rigid vertical mounting space for stack mounting of equipment. The post should be mounted as low as possible to ensure the stability of the Warmer.

Vacuum Manifold with DISS Adapters

Two DISS vacuum adapters are mounted on a standard manifold block. The locations of these adapters can be changed to any of the other tapped holes in the block to meet special requirements.

Vacuum Bottle Slide Bracket

The standard vacuum bottle slide can be mounted on either upright.

Ventilator Mounting Post

The vertical mounting post is a non-locking 1 inch diameter shaft which pivots in an 8.5 inch (22 cm) radius from the upright. One end of the shaft extends 14 inches (36 cm) while the other extends 6.5 inches (16 cm). Ventilators, humidifiers, blenders or other user hardware can be pivoted into optional position.
Appendix

Radiant Energy Distribution

This table lists typical average radiant energy distribution across the patient bed surface for informational purposes only.

<table>
<thead>
<tr>
<th>Zone Average</th>
<th>Mattress Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2001 and Series 3000 units†</td>
<td>34</td>
</tr>
<tr>
<td>Model 5000 and Series 4000 units</td>
<td>22</td>
</tr>
</tbody>
</table>

Typical Radiant Energy Level on the Mattress Surface

†The radiant energy level values of older models will be less than those shown; units prior to those with HCA serial numbers had a 440 Watt heater.

Infant Zone - 15" (38 cm) wide
Mattress - Model 2001/Series 3000
Mattress - Model 5000/Series 4000

Thermalink Option Specifications

Serial data

RS-232 Connector

WARNING: The computer or RS-232 monitor's user program must continuously check the data link. The program should constantly verify connection to the warmer controller and check for updated data.

Note: In the event of power failure, all serial communication will cease until power is restored.

The Nurse Call and the serial data output share the same female, nine pin, d-type connector (DB9F).

Pin 2: Receive Data (warmer input)
Pin 3: Transmit Data (warmer output)
Pin 5: Gnd (Signal Ground)

Cable requirements

The user interface cable must have capacitance less than 1500 pF. It should be a shielded cable such as a Belden 9611 with AMP shielding kit 748046-1 and ferrule 747579-8.
Data transmission

The warmer continuously sends data from the time that it is first powered up. Note that the warmer serial data transmission can be controlled through the serial port. Data output stops when the warmer receives a <cntrl>S (XOFF) and resumes when it receives a <cntrl>Q (XON).

Data format

1 start bit, 7 data bits (ASCII), 1 parity bit (odd), 1 stop bit, 1200 baud, full duplex.

Serial data has the format: start text character, "<stx>"; IWS header, "IW"; software version; data string; checksum characters; carriage return, "<cr>"; line feed, "<lf>"; end of text character, "<etx>". Data elements are separated by spaces, " ". Each String contains 53 characters:

Sample data:

<stx>IW0500_35.52_XX.XX_P_00085_36.50_00001000_E014_11
<lf><etx>

Data for discussion (use the following table):

<stx>IWxxxx_pt.pt.xx.xx_m_ppppp_pc.pc_alrmleds_code_ck
<lf><etx>

<stx>
Start of text character (ASCII 2) or CTRL B; indicates a string of data will follow.

IWxxxx
IW means the data is from the Infant Warmer; xxxx is the software version in the unit, e.g. 0500 for version 5.00.

pt.pt
This is the patient temperature in degrees centigrade. The patient temperature will always be sent even if it is outside the normal display range. Temperatures less than or equal to 1.00°C indicate an open or a disconnected probe. Any temperature greater than or equal to 50°C is a shorted probe.

xx.xx
Reserved for future use.

m
This is the mode of operation. P means servo control mode. A means manual control mode. Always check the mode of operation before evaluating the patient control temperatures.

ppppp
Percentage of nominal power defined as % of heater wattage.

pc.pc
In the servo control mode, this is the patient control temperature set with the . . and . switches in degrees centigrade.

alrmleds
This series of bits represents the alarm LEDs. If an LED is illuminated, the corresponding bit is set to 1 (alarm active). If there is no alarm, the bit is set to 0. Checking the bits from right to left is the same as checking the alarm LEDs from top to bottom:
Appendix

This is the error code that appears in the control temperature display during a system failure alarm (e.g. E014). If the system is operating normally (no system failure), zeroes replace the error code (e.g. E000).

This is the two byte ASCII representation of the byte that when added to the sum of all the ASCII data bytes in the string equals zero. Note that all over flows are dropped and the sum of the data bytes DOES NOT INCLUDE the <stx>, checksum, <etx>, <cr>, or <lf> characters or the parity bit of each byte.

Carriage return character.

Line feed character.

End of transmission character (ASCII 3) or CTRL B.

Nurse Call specifications

Contact ratings
Maximum resistive load: 4 VA
Maximum DC switching voltage: 100 Vdc
Maximum switching current: 0.25 A
Maximum carrying current: 0.50 A.

Connector
The Nurse Call contacts and the serial data output share the same female, nine pin, d-type connector (DB9F).

Pin 6: Closed contact under normal conditions, i.e. power on, no alarm (recommended configuration)
Pin 1: Common contact
Pin 9: Open contact under normal conditions, power on, no alarm

These contacts are not powered. They only provide closure.

Table A-1
Nurse Call signals

<table>
<thead>
<tr>
<th>Warmer Status</th>
<th>Nurse Call Signal Pins 1&6</th>
<th>Nurse Call Signal Pins 1&9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Alarm</td>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>Power switch off or power fails</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>Nurse Call cable disconnected</td>
<td>Open</td>
<td>Open</td>
</tr>
</tbody>
</table>
Appendix

WARNING: If you use the normally open Nurse call connection, a disconnected Nurse Call cable DOES NOT trigger a remote alarm.

Note: Any interruption of warmer power (deliberately switching off the warmer, accidentally unplugging the power cord, etc.) triggers a Nurse Call alarm.

Installing wall mounted units

WARNING: Carefully follow these installation instructions. Failure to do so may result in serious injury to the operator or patient.

The model 3050, 3100, and 3150 wall mounted warmers were designed for locations where permanent, infant radiant warmers attached directly to the room wall are desired. To adequately install these models, pre-planning at the architectural design phase is required.

The following instructions describe the manufacturer's recommended method of installation in new construction. Use only the Ohmeda hardware provided to mount the model 3050, 3100, and 3150. The installation should be approved by the appropriate State and Local authorities. Deviation from these recommendations or attempts to retrofit existing construction should only be undertaken by professionals experienced in structural design, who in turn are wholly responsible for the structural integrity of the mounting method they devise.

Pre-Installation Preparation

A pattern of two (2) Extra Duty Drywall Studs (STE-20 gauge) and one (1) 4" x 1½" (10 x 4 cm) Drywall Track (16 gauge) at 16 inch (41 cm) centers form the basic "rough in" for installing each IWS 3050 unit. See Figure A-1. Verify that the studs and track are securely fastened together at 12 inch intervals and to both the floor and ceiling tracks with #10 sheet metal screws.
Warmer Installation

After the wall is finished and the room is completed you are ready to install the warmer.

The distance from the warmer heater head to the bassinet or bed mattress surface is critical for proper operation of the warmer. This distance must be 27 inches, ±2 inches (69±5 cm). Before installing the model 3050 or 3100, you must determine the bed surface height that will be used (for your convenience, a bed height label is provided to attach to the wall to aid in visually aligning the bassinet/bed surface).

1. Locate the stud edges by pre-measurement or by using a stud finder. Find the center of the drywall track 3¾ inches (86 mm) over from the stud edge. See Figure A-2.

2. Remove the hinge bracket from the warmer by removing the (2) hinge pins (one on either side) that secure the bracket to the warmer heater head.

![Figure A-2](image)

Figure A-2
Warmer mounting overhead view

39" (99 cm) 16" O.C.

Mounting Anchors

Hinge Bracket

Heater Assembly

3. Utilizing a level, position the hinge bracket on the wall. The bottom edge of the heater mounting bracket on the model 3050 and 3100 must be 27 ± 2 inches (69±5 cm), inches from the bed surface of the mattress that will be used. See Figure A-3. The model 3150 integral bed warmer already comes with 27 ± 2 inch (69±5 cm) bed-to-heater spacing.

4. Use the hinge bracket as a template to mark the mounting holes on the wall.

5. Use a 3/4 inch (19 mm) diameter metal cutting hole saw to drill (4) holes through the dry wall and through metal drywall tracks behind the wall.

Note: For proper ventilation and access allow at least 4" clearance around the heater assembly.
WARNING: When installing wall mounted units, to achieve adequate structural strength all four holes must engage tracks. Should the hole saw miss a track do not proceed. Consult the project engineer for further direction.

WARNING: Enclosing the heater assembly inside a cabinet may prevent proper ventilation and may create a fire hazard. If the heater is enclosed in a cabinet, it must be equipped with a power cut-off device that prevents operation while the cabinet is closed.

Figure A-3
Heater to bed distance

6. Perform steps A through C to secure the (4) Toggler® anchor bolts in the wall. See Figure A-4.

 A. Hold the metal channel flat alongside the plastic straps and slide the channel through the hole in the wall and track.

 B. With one hand, hold the ring so the metal channel rests flush behind the wall. Slide the plastic cap along straps with the other hand until the flange of the cap is flush with the wall.

 C. Place your thumb between the straps, and push from side to side, snapping off the straps level with the flange of the cap.
7. Mount the hinge bracket on the wall with the flat washers, split ring washers and screws provided. See Figure A-5. Tighten the screws with approximately 80 lb/in of torque.

Note: The screws provided (3/8 - 16 UNC, 2 ½" long) are for installations in 1/2 inch or 5/8 inch thick drywall. For applications involving double thicknesses of drywall, longer screws will be required. To properly mount the warmer, at least 2 ½ screw threads must be engaged.

Verify that the bracket is level and the distance to the bed surface is 27 inches, ± 2 inches (69±5 cm).

⚠️ **WARNING:** Keep hands clear of the hinge area when installing a wall mounted heater assembly. A pinch hazard exists.

⚠️ **WARNING:** Heater assembly weighs approximately 30 lbs (14 kg). Proper installation may require two people. Due to the weight of the 3100 and 3150 units, approximately 75 lbs (34 kg), proper installation will require two people.

8. Mount the warmer by inserting the back of the unit into the hinge bracket mounted on the wall, then securing it by tapping in the (2) hinge pins. Verify that the heater assembly is rigidly secured to the wall, is level, and is parallel to the floor.

9. For the model 3050, attach the “proper bed to heater spacing” label provided with the unit to the wall so that the bottom line of the label is 25 inches (74 cm) from the lower edge of the hinge bracket.

⚠️ **WARNING:** Bed-to-heater spacing which differs from the specified 27± 2 inches (69±5 cm) will result in incorrect operation and may affect the patient’s condition. For your convenience, a label has been provided for attachment to the wall to identify the the proper bed-to-heater spacing.

For the model 3100 or 3150 perform steps 10 through 14. For the model 3050 skip to step 15.
Figure A-5
Mounting the warmer

10. Position the lower mounting bracket on the wall. Use the lower hinge bracket as a template to mark the mounting holes on the wall for the lower bracket.

11. Remove the warmer from the wall by tapping out the (2) hinge pins from the upper bracket.

12. Remove the lower hinge bracket from the warmer by removing the (2) hinge pins (one on each side) that secure the bracket to the warmer.

13. Repeat steps 5, 6 and 7 to properly install the lower mounting bracket.

14. Mount the warmer by inserting the back of the unit into the upper hinge bracket mounted on the wall, then securing by tapping in the (2) hinge pins. Secure the warmer to the lower mounting bracket by tapping in the (2) hinge pins. Verify that the heater assembly and side rails are rigidly secured to the wall and that the heater is level and is parallel to the floor.

WARNING: Perform Checkout Procedures before placing the unit in operation.
Warranty

This Product is sold by Ohmeda under the warranties set forth in the following paragraphs. Such warranties are extended only with respect to the purchase of this Product directly from Ohmeda or Ohmeda's Authorized Dealers as new merchandise and are extended to the first Buyer thereof, other than for purpose of resale.

For a period of twelve (12) months from the date of original delivery to Buyer or to Buyer's order, but in no event for a period of more than two years from the date of original delivery by Ohmeda to an Ohmeda Authorized Dealer, this Product, other than its expendable parts, is warranted to be free from functional defects in materials and workmanship and to conform to the description of the Product contained in this operation manual and accompanying labels and/or inserts, provided that the same is properly operated under conditions of normal use, that regular periodic maintenance and service is performed and that replacements and repairs are made in accordance with the instructions provided. This same warranty is made for a period of thirty (30) days with respect to the expendable parts, including but not limited to the reusable Ohio skin temperature probe. The foregoing warranties shall not apply if the Product has been repaired other than by Ohmeda or in accordance with written instructions provided by Ohmeda, or altered by anyone other than Ohmeda, or if the Product has been subject to abuse, misuse, negligence, or accident.

Ohmeda's sole and exclusive obligation and Buyer's sole and exclusive remedy under the above warranties is limited to repairing or replacing, free of charge, at Ohmeda's option, a Product, which is telephonically reported to the nearest Ohmeda Regional Service Office and which, if so advised by Ohmeda, is thereafter returned with a statement of the observed deficiency, not later than seven (7) days after the expiration date of the applicable warranty, to the designated Ohmeda Regional Service Office during normal business hours, transportation charges prepaid, and which, upon Ohmeda's examination, is found not to conform with the above warranties. Ohmeda shall not be otherwise liable for any damages including but not limited to incidental damages, consequential damages, or special damages.

There are no express or implied warranties which extend beyond the warranties here in above set forth. Ohmeda makes no warranty of merchantability or fitness for a particular purpose with respect to the product or parts thereof.
USA Customer Service
Ohmeda Inc
Ohmeda Drive
PO Box 7550
Madison WI 53707-7550
Tel 800 345 2700
Fax 608 221 4384

USA Technical Support
Ohmeda Inc
Ohmeda Drive
PO Box 7550
Madison WI 53707-7550
Tel 800 345 2755
Fax 608 222 9147

USA Service and
Distribution Center
Ohmeda Inc
7750 The Bluffs NW
Austell GA 30001
Tel 800 345 2755
Fax 800 345 2770

Canada
Customer Service
and Service Center
Ohmeda
5865 McLaughlin Rd
Mississauga Ontario
L5R 1B8 Canada
Tel 905 568 9533
Fax 905 568 9799
Telex 0698362

International
Europe, Africa, Middle East
Ohmeda House
71 Great North Rd
Hatfield Herts
AL9 5EN England
Tel 44 707 263570
Fax 44 707 260191
Telex 915128

Latin America, Caribbean
Ohmeda
9200 Dadeland Blvd
Suite 610
Miami FL 33156
Tel 305 670 9338
Fax 305 670 4834

Asia/Pacific
Ohmeda
No 199 Yishun Avenue 7
Singapore 2776
Tel 65 753 6311
Fax 65 753 1817

International
Customer Service and
Technical Support
Ohmeda House
71 Great North Rd
Hatfield Herts
AL9 5EN England
Tel 44 707 263570
Fax 44 707 260191
Telex 918179

United Kingdom
Ohmeda House
71 Great North Rd
Hatfield Herts
AL9 5EN England
Tel 44 707 263570
Fax 44 707 260065
Telex 918179

France
Ohmeda SA
Parc De Pissaloup
8 Avenue Jean D' Alembert
78190 Trappes
France
Tel 33 1 30 68 60 00
Fax 33 1 30 68 60 01

Germany
Ohmeda
Langemarckplatz 3
Postfach 2880
D 8520 Erlangen
Germany
Tel 49 91 31 81 01 0
Fax 49 91 31 81 01 11

Spain
Ohmeda
C/Manuel Tovar 26
28034 Madrid
Spain
Tel 34 1 358 16 76
Fax 34 1 358 12 84

Italy
Ohmeda
Via Caracciolo 33
20090 Trezzo sul Naviglio
Milan
Italy
Tel 39 2 445761
Fax 39 2 4455614
Telex 314479 I

Sweden
BOC Ohmeda AB
Nordic
PO Box 631
Östra Sandgatan 12
S 251 06 Helsingborg
Sweden
Tel 46 42 178800
Fax 46 42 178747

Netherlands
Ohmeda BV
Rembrandtlaan 1A
3729 BG Bilthoven
Netherlands
Tel 31 30 289 399
Fax 31 30 284 867

Japan
Ohmeda & NEC San-ei Ltd
No 21 Maru YA Bldg
2 16 11 Kaname-cho
Toshima-ku
Tokyo 171
Japan
Tel 81 3 3973 4055
Fax 81 3 3973 9102
Ohio® Infant Warmer Systems

Service Manual

Models
2001
3000
3050
3100
3150
3300
3500
4000
4300
4400
5000
This manual replaces service manuals stock number:

6600-0083-000 Dated 4/89 or earlier
6600-0034-000 Dated 03/88 or earlier
6600-0006-000 Dated 08/88 or earlier

and service manual addenda:

6600-0130-000
6600-0111-000
6600-0096-000
6600-0098-000
6600-0095-000
6600-0219-000

This service manual contains information on servicing all models of the Ohmeda Infant Warmer System (see model descriptions).

Information on servicing the ThermaLink option, which may be ordered as a factory installed option or field installed on units with software revision 5.0 or higher, is also included in this manual.

This manual also includes information detailing electrostatic discharge (ESD) shielding and grounding improvements that have been made to all Infant Warmer System (IWS) models. Improvements have also been added to reduce IWS susceptibility to power line conducted and radiated electromagnetic interference (EMI). ESD and EMI are types of interference which may cause an undesired response in electronic equipment.

To minimize the potential for these types of undesired responses, older units will require ESD shielding when the controller board is replaced. Order kit number 6600-0360-800 for all English models (see page 1-11 for other language kits). If you are replacing control board you must have ESD shielding in place. To confirm that your IWS unit has shielding already in place, remove the controller cover. The large silver foil control board shield should be the first thing you see. Refer to Figure 7-1.

⚠️ WARNING: Do not install the control board without ESD shielding in place. Failure to do so may result in hazardous ESD induced failures.

IWS models shipped with Serial Number starting with HCA or higher have an electronic controller common to all models. This change was made to simplify servicing all future IWS models. Also, to comply with international standards, the heater assembly power supply and cable harness have been modified. To facilitate servicing of units manufactured prior to these changes, the theory of operation sections of the previous power supply boards have been included:

6600-0179-700IWS Model 2001/3000/3300 and 3500
6600-0181-700IWS Model 5000, 115V English
6600-0183-700IWS Model 5000, 220/240V International

This document is not to be reproduced in any manner, nor are the contents herein to be disclosed to anyone, without the express authorization of the Product Service Department, Ohmeda, Ohmeda Drive, Madison, Wisconsin, 53707, USA, or Ohmeda, 71 Great North Road, Hatfield, Herts, AL9 5EN, England.

Copyright 1993 BOC Health Care Inc
Important

The information contained in this service manual pertains only to those models of products which are marketed by Ohmeda as of the effective date of this manual or the latest revision thereof. This manual was prepared for exclusive use by Ohmeda service personnel in light of their training and experience and the availability to them of proper tools and test equipment. Consequently, Ohmeda provides this manual to its customers purely as a business convenience and for the customer's general information only without warranty of the results with respect to any application of such information. Furthermore, because of the wide variety of circumstances under which maintenance and repair activities may be performed and the unique nature of each individual's own experience, capacity, and qualifications, the fact that a customer has received said information from Ohmeda does not imply in any way that Ohmeda deems said individual to be qualified to perform any such maintenance or repair service. Moreover, it should not be assumed that every acceptable test and safety procedure or method, precaution, tool, equipment or device is referred to within, or that abnormal or unusual circumstances may not warrant or suggest different or additional procedures or requirements.

This manual is subject to periodic review, update and revision. Customers are cautioned to obtain and consult the latest revision before undertaking any service of the equipment.

⚠️ CAUTION: Servicing of this product in accordance with this service manual should never be undertaken in the absence of proper tools, test equipment and the most recent revision of this service manual which is clearly and thoroughly understood.

⚠️ This static control precaution symbol appears throughout this manual. When this symbol appears next to a procedure in this manual, static control precautions MUST be observed. Use the static control work station (Stock No. 0175-2311-000) to help ensure that static charges are safely conducted to ground and not through static sensitive devices.

Technical Competence

The procedures described in this service manual should be performed by trained and authorized personnel only. Maintenance should only be undertaken by competent individuals who have a general knowledge of and experience with devices of this nature. No repairs should ever be undertaken or attempted by anyone not having such qualifications.

Genuine replacement parts manufactured or sold by Ohmeda must be used for all repairs.

Read completely through each step in every procedure before starting the procedure; any exceptions may result in a failure to properly and safely complete the attempted procedure.
Model Descriptions

2001 IWS (international)

3000 IWS

3050 IWS

3100 IWS

3150 IWS

3300 IWS

3500 IWS

4000 IWS

4300 IWS

4400 IWS

5000 IWS
Model Descriptions

All models of the Ohmeda Infant Warmer System provide a controlled source of radiant heat for infants and pediatric patients. The control system uses a micro-processor and provides both manual and servo modes of operation (except for the 2001 International, which is manual mode only).

The model 2001 International has an integral infant bed and is a manual mode only warmer designed for short term attended care in the OR and L&D.

The wall mounted 3050, 3100 and 3150 models are available to accommodate specific architectural requirements in the NICU, L&D, LDR and LDRP room. The 3050 is a heater head only, the 3100 is a heater and dove tail rails, and the 3150 includes a heater, rails and integral bed.

The model 3300 has an integral bed for infants and is intended for procedures and long term care in the Nursery and L&D.

The model 3000, 3500 and 4000 are free standing Warmers which can be used over a variety of infant bassinets in the general nursery, over post-operative patients, during patient feeding, and in any other application where controlled radiant heat is required.

The 3500 system also has a detachable bassinet for infants, and is intended for procedures and long term care in the Nursery, L&D, LDR and LDRP Rooms.

The model 4300, 4400 and 5000 have a larger size bed than the model 3300 and are intended for surgical procedures and long term care in the Nursery and L&D Rooms. Both the 5000 and 4400 have an elevating pedestal to raise and lower the bed-to-floor height. The model 4400 has a narrower foot print than the 5000 warmer. The model 4300 is a non-elevating version of the 4400.

<table>
<thead>
<tr>
<th></th>
<th>Small Heater/Bed</th>
<th>Large Heater/Bed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 Series</td>
<td>3000 Series</td>
</tr>
<tr>
<td>Free Standing</td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>Wall mounted, heater head only</td>
<td></td>
<td>3050</td>
</tr>
<tr>
<td>Wall mounted heater with rails</td>
<td></td>
<td>3100</td>
</tr>
<tr>
<td>Wall mounted heater with rails and bed</td>
<td></td>
<td>3150</td>
</tr>
<tr>
<td>Free standing with integral bed</td>
<td>2001 Series</td>
<td>3300</td>
</tr>
<tr>
<td>Elevating pedestal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Detachable bassinet and wood grain finish standard.
Definitions

Note: A Note provides additional information to clarify a point in the text.

Important: An Important statement is similar to a note but used for greater emphasis.

CAUTION: A Caution statement is used when the possibility of damage to the equipment exists.

WARNING: A Warning statement is used when the possibility of injury to the patient or the operator exists.

Symbols

⚠️ Attention! Consult the manual for more information.

🔌 Type B equipment.

-ground Functional Earth Terminal

-ground Protection Earth Terminal

▲ Increase % Power or Control Temperature

▼ Decrease % Power or Control Temperature

setFlash Alarm Silence

Alternating Current (AC)

Static Control Precaution
Table of Contents

About this manual revision ... i

Important ... ii

Technical Competence ... ii

Model Descriptions .. iii

Definitions ... v

List of Illustrations .. xiii

Precautions ... xvii

Warnings .. xvii

Cautions .. xx

1/Functional Description .. 1-1

1.1 Control Board 6600-0218-700 .. 1-1
1.2 Control Board 6600-0048-700 .. 1-11
1.3 Display Board ... 1-18
1.4 Power Supply Board .. 1-20
 1.4.1 Power Supply Board 6600-0330-700 1-20
 1.4.2 Power Supply Board 6600-0179-700 1-25
 1.4.3 Power Supply Board 6600-0181/183-700 1-28
1.5 ThermaLink Option .. 1-31

2/Setup and Checkout Procedure .. 2-1

2.1 Setup ... 2-1
2.2 Checkout Procedure ... 2-1
 2.2.1 Mechanical Checkout Procedure ... 2-1
 A. Overall Appearance .. 2-1
 B. Heater Rotation .. 2-2
 C. Mechanical Checks ... 2-2
 D. Warmer/Bassinet Interlock (model 3500 only) 2-3
 E. Warmer/Bassinet unlock (model 3500 only) 2-3
 F. Accessory Checks ... 2-3
 G. Wall Mount Check Out ... 2-4
 2.2.2 Control Unit Checkout Procedure .. 2-5
 A. Control Unit Check .. 2-5
 B. Elapsed Timer Check .. 2-7
 C. Observation Light Check .. 2-7
 D. Raise and Lower Bed Switch Check 2-7
 E. Interlock Switch Check ... 2-8
 F. Power Failure, Memory Test and Battery Test 2-8
 G. Calibration Check .. 2-9
Table of Contents

3/Infant Warmer Modifications ... 3-1
 3.1 Converting Units for Operating Room Use 3-1
 A. Disassembly for Reversal 3-1
 B. Ribbon Cable Preparation 3-1
 C. Reversing the Display 3-2
 D. Control Unit Reassembly 3-3
 3.2 Changing Patient Temperature Alarm Limits 3-3
 3.3 Lowering Heater and Bed Height 3-4
 A. Control Module Removal 3-4
 B. Heater and Bed Height Adjustment 3-5
 C. Control Module Replacement 3-6

4/Calibration and Adjustments 4-1
 4.1 Controller Calibration (Software Rev. 04.01 or Higher) 4-1
 4.1.1 Control Unit Access 4-2
 4.1.2 Power Supply Board Voltages 4-2
 4.1.3 Display Brightness Check 4-3
 4.1.4 Alarm Volume .. 4-4
 4.1.5 Analog to Digital Converter (ADC) Calibration 4-5
 4.1.6 Line Voltage Compensation 4-7
 4.2 Controller Calibration (Prior to Software Revision 04.01) ... 4-8
 4.2.1 Power Supply Board Voltages 4-9
 4.2.2 Display Brightness Check 4-10
 4.2.3 Alarm Volume .. 4-11
 4.2.4 Analog to Digital Converter (ADC) Calibration 4-12
 4.2.5 Line Voltage Compensation 4-13
 4.2.6 Safety Circuit Test (Prior to Software Rev. 03.11) 4-14
 4.2.7 Safety Circuit Test (Revision 03.11 Software) 4-15
 4.2.8 Test Loop ... 4-16
 Controller Unit Testing Separate from Warmer 4-17
 4.3 Gas Regulator Check and Adjustment 4-17
 4.4 Electrical Safety Check 4-18
 A. Leakage Current Check 4-18
 B. Ground Resistance Check 4-19
 4.5 Bed Motor Raise and Lower Test 4-19

5/Repair and Disassembly .. 5-1
 5.1 Heater Module Repairs 5-1
 A. Heater Housing Disassembly 5-1
 B. Heater Replacement 5-2
 C. Heater Housing Assembly 5-3
 D. Alarm Lamp Replacement 5-4
 E. Observation Lamp Replacement 5-5
 5.2 Control Module Repairs 5-6
Table of Contents

A. Control Board Removal ... 5-6
B. Control, Power Supply, and ThermaLink
 Board Replacement ... 5-7
C. Display Module Disassembly 5-10
D. Display Module Assembly 5-11
E. Control Module Replacement 5-13
F. Battery Replacement .. 5-14
G. Circuit Breaker Reset .. 5-15

5.3 Bed Platform Repairs - Small and Large Bed Models 5-15
A. Side Panel Replacement ... 5-15
B. Side Panel Repairs ... 5-15
C. Bed Platform Disassembly 5-16
D. Bed Platform Assembly .. 5-16
E. Hydraulic System Removal 5-18
F. Hydraulic System Installation 5-19

5.4 Model 3500 Bassinet-Bed Platform Repairs 5-20
A. Side Panel Replacement ... 5-20
B. Side Panel Repairs ... 5-20
C. Bed Platform Disassembly 5-21
D. Bed Platform Assembly .. 5-22

5.5 Model 3500 Bassinet Drawer Removal 5-22

5.6 Elevating Base Disassembly and Repair 5-23
A. Electric Motor/Jack-Shaft
 Disassembly and Reassembly 5-23
B. Motor Replacement ... 5-27
C. Jack Replacement .. 5-28
D. Capacitor Replacement ... 5-28
E. Power Cord Replacement .. 5-29
F. Column Guide Lubrication 5-29
G. Elevating Base Reassembly 5-30

5.7 Caster Replacement ... 5-31
A. Caster Replacement (Except Model 3500) 5-31
B. Model 3500 Warmer Caster Replacement 5-32
C. Model 3500 Bassinet Caster Replacement 5-32

5.8 Oxygen/Air Yoke Manifold Repairs 5-33
A. General Safety Guidelines 5-34
B. General Maintenance Procedures 5-34
C. Gauge Replacement .. 5-35
D. Gauge Lens Replacement .. 5-36
E. Strainer/Tee Handle Replacement 5-36
F. Leak Testing the System 5-36
G. Yoke Check Valve Replacement 5-37
H. High Pressure Regulator
 Replacement and Adjustment 5-37
I. Pneumatic Troubleshooting 5-40

6. Troubleshooting and Testing 6-1

6.1 Self Test Functions (Revision 4.01 Software) 6-1
 6.1.1 Power Up Testing .. 6-1
 6.1.2 On Line Testing ... 6-1
Table of Contents

6.1.3 On Demand Testing .. 6-2
 A. Calibration Routines ... 6-2
 B. Switch Activated Displays 6-3
 C. Self Test Loop .. 6-4
 D. ThermaLink Communication Option Self Test 6-5
6.2 Self Test Functions (Prior to Revision 4.01 Software) 6-5
 6.2.1 Power Up Testing .. 6-5
 6.2.2 On Line Testing ... 6-6
 6.2.3 On Demand Testing ... 6-7
 6.2.4 Self Test Loop ... 6-8
6.3. Troubleshooting Error Codes 6-9
 A. E01, Instruction Test Failure 6-9
 B. E02, ADC High Calibration Failure 6-10
 C. E03, ADC Low Calibration Failure 6-10
 D. E04, Checksum Failure .. 6-10
 E. E05, RAM Test Failure ... 6-10
 F. E06, Port 1 (Prior to 04.01 Software only) 6-11
 G. E07, ADC Converter Failure 6-11
 H. E08, Hardware Watchdog Timer
 (Rev. 01.00 Software only) 6-11
 I. E09, Heater Control (Prior to 04.01 Software only) 6-11
 J. E10, Line Voltage Out Of Range 6-11
 K. E12, Heater Not Switching On
 (Rev. 04.01 Software or Higher) 6-12
 L. E13, Heater Not Switching Off
 (Rev. 04.01 Software or Higher) 6-12
 M. E14, Alarm Oscillator Failure
 (Rev. 04.01 Software or Higher) 6-12
 N. E15, Software Upset RAM Error
 (Rev. 04.01 Software or Higher) 6-13
 O. E16, Safety Relay Not Opening Properly
 (Rev. 04.01 Software or Higher) 6-13
 P. E17, Software Upset (Rev. 04.01 Software or Higher) ... 6-13
 Q. E19, Software Upset (Rev. 04.01 Software or Higher) ... 6-14
 R. E25, Hardware Watchdog Circuit Has Tripped
 (Software Rev. 03.11 only) 6-14

Illustrated Parts Lists .. 7-1

7.1 Infant Warmer Controller Assembly-1 (All Models) 7-1
7.2 Infant Warmer Controller Assembly-2 (All Models) 7-3
7.3 Infant Warmer Controller Assembly-3
 (2001, 3000, 3300, 35000 w/o HCA) 7-5
7.4 Infant Warmer Controller Assembly-4
 (5000 and all Models with HCA) 7-7
7.5 Infant Warmer Controller Assembly-5 (All Models) 7-9
7.6 ThermaLink Option Assembly 7-11
7.7 Infant Warmer Frame Assembly (3000/3300/4000/5000) 7-13
7.8 Base Assembly (3000/3300/4000/4300) 7-15
7.9 Infant Warmer Frame Assembly (5000/4400) 7-17
7.10 Elevating Base Assembly - (5000/4400) 7-19
Table of Contents

7.11 Model 3500 Frame Assembly .. 7-21
7.12 Heater Connections ... 7-23
7.13 Heater Assembly .. 7-25
7.14 Infant Warmer Heater Wiring ... 7-27
7.15 Infant Warmer Assembly .. 7-29
7.16 Small Bed Assembly
 (Model 2001 and 3000 Series except 3500) 7-31
7.17 Large Bed Assembly (Model 5000 and 4000 Series) 7-33
7.18 Bed Assembly .. 7-35
7.19 Bedside Assembly ... 7-37
7.20 X-ray Tray Assembly .. 7-39
7.21 Bassinet Bed Assembly (3500) ... 7-41
7.22 Bassinet Assembly (3500) ... 7-43
7.23 Drawer Assembly ... 7-45
7.24 Rotating Drawer Assembly ... 7-47
7.25 Air/Oxygen Yoke and Regulator Assy.1- Regulator 7-49
7.26 Air/Oxygen Yoke and Regulator Assy.2- Manifold Block 7-51
7.27 Oxygen Yoke and Regulator Assy. 1- Regulator 7-53
7.28 Oxygen Yoke and Regulator Assy. 2- Manifold Block 7-55
7.29 Instrument Shelf .. 7-56
7.30 Monitor Shelf ... 7-57
7.31 3.5 Inch Utility Post ... 7-58
7.32 20 Inch Utility Post ... 7-59
7.33 IV Pole ... 7-60
7.34 Ventilator Mounting Post ... 7-61
7.35 Airway Manometer ... 7-62
7.36 Manifold Assembly ... 7-63
7.37 Flowmeter Assembly ... 7-63
7.38 Vacuum Manifold Assembly ... 7-64
7.39 Oxygen Manifold .. 7-64
7.40 Slide Assembly .. 7-65
7.41 Bird Dovetail Assembly ... 7-66
7.42 Control Board Layout, prior to 4.00 software 7-66
7.43 Control Board Layout, 4.00 software or higher 7-68
7.44 Power Supply Board Layout - Common controller HCA units 7-70
7.45 Power Supply Board Layout - model 5000 without HCA 7-72
7.46 Power Supply Board Layout - 2001 and Series 3000 without HCA 7-74
7.47 Display Board Layout .. 7-76
7.48 TheraMaLink Board Layout .. 7-78
7.49 Wall mounted units .. 7-80
EMI Noise Suppression Kits ... 7-81

8/Schematics ... 8-1
8.1 Control Board Schematic, 4.00 software or higher 8-1
8.2 Control Board Schematic, prior to 4.00 software 8-2
8.3 Power Supply Schematic -units with HCA serial numbers 8-4
8.4 Power Supply Board Schematic - IWS 5000 without HCA 8-5
8.5 Power Supply Board Schematic - 2001 and Series 3000 without HCA 8-6
8.6 Display Board Schematic .. 8-7
Table of Contents

8.7 ThermaLink Board Schematic ... 8-8
8.8 Wiring Diagram- units with HCA serial numbers 8-9
8.9 Wiring Diagram - 5000 without HCA serial numbers 8-10
8.10 Wiring Diagram - 2001 and Series 3000 w/o HCA serial numbers 8-11

Appendix ... A-1
 A.1 Test Equipment and Reference Tables A-1
 A. Test Equipment and Special Tools A-1
 B. Temperature Conversion Chart A-1
 C. Patient Probe Characteristics A-2
 D. Servo Mode Algorithm A-3
 A.2 Infant Warmer System Specifications A-3
 A. Electrical Specifications A-3
 B. IEC 601-1 Specifications A-4
 C. Performance Specifications A-4
 D. Environmental ... A-6
 E. EMC Specifications ... A-6
 F. Mechanical Specifications A-7
 G. Heater Specifications A-10
 A.3 ThermaLink Option Specifications A-12
 A. Serial data .. A-12
 B. Nurse Call Specifications A-14
 A.4 Accessory Service Procedures A-15
 A. Drawer Accessory Kit A-16
 B. IWS 3300-APS Drawer Adapter kit A-17
 C. Disassembling and servicing rotating drawer pkg. ... A-17
 D. O₂ Yoke and Regulator Assembly Kit A-19
 E. Air/O₂ Yoke and Regulator Assembly Kit A-20
 F. Installing the X-ray tray A-21
 A.5 Installing wall mounted units A-23
List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Control board block diagram</td>
<td>1-3</td>
</tr>
<tr>
<td>2-1</td>
<td>Typical IWS control and display panel</td>
<td>2-6</td>
</tr>
<tr>
<td>3-1</td>
<td>Turning the display board</td>
<td>3-2</td>
</tr>
<tr>
<td>3-2</td>
<td>Flipping the display</td>
<td>3-3</td>
</tr>
<tr>
<td>3-3</td>
<td>Accessing control board switches</td>
<td>3-4</td>
</tr>
<tr>
<td>5-1</td>
<td>Removal of back cover from heater assembly</td>
<td>5-1</td>
</tr>
<tr>
<td>5-2</td>
<td>Heater housing assembly</td>
<td>5-2</td>
</tr>
<tr>
<td>5-3</td>
<td>Alarm light replacement</td>
<td>5-4</td>
</tr>
<tr>
<td>5-4</td>
<td>Observation lamp cover removal</td>
<td>5-5</td>
</tr>
<tr>
<td>5-5</td>
<td>Observation lamp replacement</td>
<td>5-6</td>
</tr>
<tr>
<td>5-6</td>
<td>Control module assembly</td>
<td>5-7</td>
</tr>
<tr>
<td>5-7</td>
<td>Control board and power supply board assembly</td>
<td>5-8</td>
</tr>
<tr>
<td>5-8</td>
<td>Display module assembly</td>
<td>5-11</td>
</tr>
<tr>
<td>5-9</td>
<td>Display board assembly</td>
<td>5-12</td>
</tr>
<tr>
<td>5-10</td>
<td>Ribbon cable grounding diagram</td>
<td>5-13</td>
</tr>
<tr>
<td>5-11</td>
<td>Side panel replacement</td>
<td>5-15</td>
</tr>
<tr>
<td>5-12</td>
<td>Side panel assembly</td>
<td>5-16</td>
</tr>
<tr>
<td>5-13</td>
<td>Bed platform assembly</td>
<td>5-17</td>
</tr>
<tr>
<td>5-14</td>
<td>Hydraulic system assembly</td>
<td>5-18</td>
</tr>
<tr>
<td>5-15</td>
<td>Hydraulic tubing installation</td>
<td>5-20</td>
</tr>
<tr>
<td>5-16</td>
<td>Bed platform pivot rod, spacer and collar assy</td>
<td>5-21</td>
</tr>
<tr>
<td>5-17</td>
<td>Bottom view of 5000 IWS</td>
<td>5-24</td>
</tr>
<tr>
<td>5-18</td>
<td>Top Cut-away internal side view elevating system</td>
<td>5-25</td>
</tr>
<tr>
<td>5-19</td>
<td>Cut-away; cable and wiring connections</td>
<td>5-26</td>
</tr>
<tr>
<td>5-20</td>
<td>Gearbox and jack-shaft assembly</td>
<td>5-27</td>
</tr>
<tr>
<td>5-21</td>
<td>Motor and gearbox assembly</td>
<td>5-28</td>
</tr>
<tr>
<td>5-22</td>
<td>Oxygen manifold maintenance</td>
<td>5-33</td>
</tr>
<tr>
<td>5-23</td>
<td>Applying Teflon Tape</td>
<td>5-35</td>
</tr>
<tr>
<td>5-24</td>
<td>O₂ Manifold assembly</td>
<td>5-35</td>
</tr>
<tr>
<td>5-25</td>
<td>Manifold assembly removal</td>
<td>5-38</td>
</tr>
<tr>
<td>5-26</td>
<td>High pressure regulator</td>
<td>5-39</td>
</tr>
<tr>
<td>7-1</td>
<td>Infant warmer controller assembly 1</td>
<td>7-1</td>
</tr>
<tr>
<td>7-2</td>
<td>Infant warmer controller assembly 2</td>
<td>7-3</td>
</tr>
<tr>
<td>7-3</td>
<td>Infant warmer controller assembly 3</td>
<td>7-5</td>
</tr>
<tr>
<td>7-4</td>
<td>Infant warmer controller assembly 4</td>
<td>7-7</td>
</tr>
<tr>
<td>7-5</td>
<td>Infant warmer controller assembly 5</td>
<td>7-9</td>
</tr>
<tr>
<td>7-6</td>
<td>ThermaLink Option Assembly</td>
<td>7-11</td>
</tr>
<tr>
<td>7-7</td>
<td>Infant warmer frame assy (3000,3300,4000,5000)</td>
<td>7-13</td>
</tr>
<tr>
<td>7-8</td>
<td>Base assembly (3000, 3300, 4000, 4300)</td>
<td>7-15</td>
</tr>
<tr>
<td>7-9</td>
<td>Infant warmer frame (4400,5000)</td>
<td>7-17</td>
</tr>
<tr>
<td>7-10</td>
<td>Elevating base assembly (4400,5000)</td>
<td>7-19</td>
</tr>
<tr>
<td>7-11</td>
<td>Model 3500 frame assembly</td>
<td>7-21</td>
</tr>
</tbody>
</table>
List of Illustrations

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 7-12</td>
<td>7-23</td>
</tr>
<tr>
<td>Figure 7-13</td>
<td>7-25</td>
</tr>
<tr>
<td>Figure 7-14</td>
<td>7-27</td>
</tr>
<tr>
<td>Figure 7-15</td>
<td>7-29</td>
</tr>
<tr>
<td>Figure 7-16</td>
<td>7-31</td>
</tr>
<tr>
<td>Figure 7-17</td>
<td>7-33</td>
</tr>
<tr>
<td>Figure 7-18</td>
<td>7-35</td>
</tr>
<tr>
<td>Figure 7-19</td>
<td>7-37</td>
</tr>
<tr>
<td>Figure 7-20</td>
<td>7-39</td>
</tr>
<tr>
<td>Figure 7-21</td>
<td>7-41</td>
</tr>
<tr>
<td>Figure 7-22</td>
<td>7-43</td>
</tr>
<tr>
<td>Figure 7-23</td>
<td>7-45</td>
</tr>
<tr>
<td>Figure 7-24</td>
<td>7-47</td>
</tr>
<tr>
<td>Figure 7-25</td>
<td>7-49</td>
</tr>
<tr>
<td>Figure 7-26</td>
<td>7-51</td>
</tr>
<tr>
<td>Figure 7-27</td>
<td>7-53</td>
</tr>
<tr>
<td>Figure 7-28</td>
<td>7-55</td>
</tr>
<tr>
<td>Figure 7-29</td>
<td>7-56</td>
</tr>
<tr>
<td>Figure 7-30</td>
<td>7-57</td>
</tr>
<tr>
<td>Figure 7-31</td>
<td>7-58</td>
</tr>
<tr>
<td>Figure 7-32</td>
<td>7-59</td>
</tr>
<tr>
<td>Figure 7-33</td>
<td>7-60</td>
</tr>
<tr>
<td>Figure 7-34</td>
<td>7-61</td>
</tr>
<tr>
<td>Figure 7-35</td>
<td>7-62</td>
</tr>
<tr>
<td>Figure 7-36</td>
<td>7-63</td>
</tr>
<tr>
<td>Figure 7-37</td>
<td>7-63</td>
</tr>
<tr>
<td>Figure 7-38</td>
<td>7-64</td>
</tr>
<tr>
<td>Figure 7-39</td>
<td>7-64</td>
</tr>
<tr>
<td>Figure 7-40</td>
<td>7-65</td>
</tr>
<tr>
<td>Figure 7-41</td>
<td>7-65</td>
</tr>
<tr>
<td>Figure 7-42</td>
<td>7-66</td>
</tr>
<tr>
<td>Figure 7-43</td>
<td>7-68</td>
</tr>
<tr>
<td>Figure 7-44</td>
<td>7-70</td>
</tr>
<tr>
<td>Figure 7-45</td>
<td>7-72</td>
</tr>
<tr>
<td>Figure 7-46</td>
<td>7-74</td>
</tr>
<tr>
<td>Figure 7-47</td>
<td>7-76</td>
</tr>
<tr>
<td>Figure 7-48</td>
<td>7-78</td>
</tr>
<tr>
<td>Figure 7-49</td>
<td>7-80</td>
</tr>
<tr>
<td>Figure 8-1</td>
<td>8-1</td>
</tr>
<tr>
<td>Figure 8-2a</td>
<td>8-2</td>
</tr>
<tr>
<td>Figure 8-2b</td>
<td>8-3</td>
</tr>
<tr>
<td>Figure 8-3</td>
<td>8-4</td>
</tr>
<tr>
<td>Figure 8-4</td>
<td>8-5</td>
</tr>
<tr>
<td>Figure 8-5</td>
<td>8-6</td>
</tr>
<tr>
<td>Figure 8-6</td>
<td>8-7</td>
</tr>
<tr>
<td>Figure 8-7</td>
<td>8-8</td>
</tr>
<tr>
<td>Figure 8-8</td>
<td>8-9</td>
</tr>
</tbody>
</table>
List of Illustrations

Figure 8-9 Wiring Diagram - 5000 without HCA 8-10
Figure 8-10 Wiring Diagram - 2001 and Series 3000 8-11

Figure A-1 Drawer assembly .. A-15
Figure A-2 APS drawer adaptation kit A-16
Figure A-3 Yoke and regulator assembly A-19
Figure A-4 Yoke and regulator assembly A-20
Figure A-5 Tray installation ... A-21
Figure A-6 Bed panel decals ... A-22
Figure A-7 Wall cross section ... A-23
Figure A-8 Overhead view .. A-24
Figure A-9 Heater to bed spacing A-24
Figure A-10 Anchor installation .. A-25
Figure A-11 Wall mounting ... A-26
Precautions

⚠️ Warnings

Do not install the control board without ESD shielding in place. Failure to do so may result in hazardous ESD induced failures.

After completing a repair, the appropriate calibration procedure must be performed. After completing any portion of the calibration and adjustments procedures, perform the Checkout Procedure to make sure the Infant Warmer System is in proper operating condition. In addition, a final electrical safety check and leakage current test must be performed. If the unit fails any steps of the Checkout Procedure it must be removed from service and repaired. Record the information for future reference.

Do not perform the Checkout Procedure (Mechanical and Control Unit) while a patient occupies the warmer.

Use extreme care while performing calibration and adjustment procedures, or while working on the Infant Warmer System with power connected. An electrical shock hazard does exist; be certain to observe all safety precautions.

Bed to heater spacing which differs from the specified 27 inches ± 2 inches (69 ± 5 cm) will result in incorrect operation and may adversely affect patient condition.

On wall mounted units, never place a patient in the bed when the heater is in the service position. Never leave the unit unattended in the service position or with either pin removed.

Overloading the shelves can affect the stability of the unit. Limit the load to 20 lbs. (9 kg) per instrument shelf, mounted to a single upright, and 50 lbs. (23 kg) per monitor shelf, mounted between the uprights.

Limit the load of accessories to 50 pounds (23 kg) per side on the Warmer to ensure stability. Accessories should not be mounted more than 56 inches (142 cm) above the floor. For models 3000 and 3500, limit the load of accessories to 20 pounds (9 kg) maximum per side mounted no more than 44 inches (112 cm) above the floor.

Due to the increased height of units with the ECMO option installed, a tipping hazard exists. Limit the total accessory load to 50 lbs. (23 kg), no more than 25 lbs. (11 kg) per side of the infant warmer.

Overloading the drawers can affect the stability of the unit. Limit the load to 10 lbs. (4.6 kg) per drawer.

Do not place any accessories or other objects directly over the bed surface. This may block radiant energy and lead to cooling of the infant.

Do not place items on top of the heater assembly. Items placed on top of the heater assembly can fall and injure the patient, and prevent adequate ventilation of the heater assembly.
Precautions

Regularly inspect the bed side panel latching mechanism, and the bedside locking mechanism on the model 3500, to ensure proper operation.

Disconnect the power to the warmer and allow the heat tube to cool before cleaning of replacement to avoid the possibility of a burn.

When lowering or lifting the Infant Warmer System to and from the floor for inspection or repair, use two people for safety. Always ensure that you lay the unit on its right side (as viewed from the front) when laying the unit down. The heater/lamp housing does not lock and pivots to the left for access.

Disconnect the warmer power cord and allow the unit to cool before replacing the observation or alarm light. The lamp normally operates at a high temperature.

Due to the size and weight of the warmer at least two people are required to replace a caster.

Before any disassembly or repair disconnect the power supply, gas pipeline supply connections, remove any gas cylinders and remove any accessories from the uprights.

The replacement heater tube must match your unit. Earlier units have 440 Watt Heaters. Newer units, with serial number beginning with HCA, have a 540 Watt heater. Installing the new 540 Watt heater tubes in the older units without HCA serial numbers may shorten the life of the power supply board. Check the serial number located on the back panel of the display module against the parts listed in 7/Illustrated Parts to verify you have ordered the correct replacement part.

When disassembling the elevating base, observe the following safety precaution to avoid electrical shock hazard from high voltage. Safely discharge the capacitor prior to removing any connectors.

When servicing the elevating bed column, depending on the position of the upper column in relation to the lower column, the springs could be heavily or lightly tension loaded. Use care when releasing the springs.

Do not use oil or oil bearing materials on or near the regulator. Oils and greases oxidize readily and, in the presence of oxygen, they will burn violently. The air or oxygen regulators or any regulator parts must be discarded if contaminated with oil or grease.

Only competent individuals trained in the repair of high pressure gas equipment should attempt to service it. Unqualified repairs may result in serious injury or equipment damage.

On Model 4400 warmers factory equipped with drawers, if the drawers are removed and not re-installed, a leg weight must be installed in the right leg of the unit to ensure stability before the warmer can be placed in service.
Precautions

Enclosing the heater assembly inside a cabinet may prevent proper ventilation and may create a fire hazard. If the heater is enclosed in a cabinet, it must be equipped with a power cut-off device that prevents operation while the cabinet is closed.

The 3050 heater assembly weighs approximately 30 lbs (14 kg). Proper installation may require two people. Due to the weight of the 3100 and 3150, the 3100 weighs approximately 75 lbs. (34 kg) and the 3150 weighs approximately 110 lbs. (50 kg), proper installation will require two people.

Use of electrosurgical units or other electrical field radiating equipment can affect the operation of the warmer. Keep patient probe lead as far away as possible from electrosurgical cables. Do not allow excess electrical cables to be laid on the warmer table. Use of electrosurgical units or other instruments which radiate electrical fields can cause indirect heating, by several tenths of a degree of the thermistor probe due to absorbed electrical energy. When used in this manner, operate the warmer in manual mode for maximum safety.

Never oil or grease oxygen equipment unless a lubricant that is made and approved for this type of service is used. Oils and grease oxidize readily, and in the presence of oxygen, will burn violently. *Vac Kote is the oxygen service lubricant recommended (Stock No. 6700-0092-200).

When servicing an oxygen manifold, use only new Ohmeda parts as shown in this manual. Because of the high pressure gas application, it is essential that you never substitute parts from another manufacturer or use parts that are not clean for oxygen service.

When replacing gauges, verify that pressure range of the replacement gauge is the same as the one you are replacing, and that the correct gas is shown.

The patient probe is not isolated from earth ground. Any additional equipment used with the Ohmeda Infant Warmer System must comply with UL 544, CSA 22.2, IEC 601, and VDE 750.

The computer or RS-232 monitor’s user program must continuously check the data link. The program should constantly verify connection to the warmer controller and check for updated data.

Keep hands clear of the hinge area when installing a wall mounted heater assembly. A pinch hazard exists.

*Vac Kote is a trademark of the Ball Corporation.
Precautions

⚠️ Cautions

Servicing of this product in accordance with this service manual should never be undertaken in the absence of proper tools, test equipment and the most recent revision of this service manual which is clearly and thoroughly understood.

✱ This static control precaution symbol appears throughout this manual. When this symbol appears next to a procedure in this manual, static control precautions must be observed. Use the static control work station (Stock No. 0175-2311-000) to help ensure that static charges are safely conducted to ground and not through static sensitive devices. The Velostat material is conductive. Do not place electrically powered circuit boards on it.

Detailed drawings and procedures for more extensive repairs are included herein solely for the convenience of users having proper knowledge, tools, and test equipment, and for service representatives specially trained by Ohmeda. No repair should ever be undertaken or attempted by anyone not having such qualifications.

When removing cables, always grasp the connector on the sides and gently remove the cable connector from the board. This will prevent weakening of the cable assembly. Never remove the connector by pulling on the cable.

When servicing the bed hydraulic system, the tubing must not be stretched, pinched or kinked during reassembly. If the tubing is pinched, the bed will not tilt and damage and oil leaks may result.

During heater rod removal or replacement, hold terminal to ensure no strain is placed on the element.

Yoke check valves are not intended to provide a leak free seal; always use a yoke plug (part number 6600-0399-500) and a fresh cylinder gasket to seal an unused yoke.

Use only one cylinder gasket per yoke. Using more than one gasket could cause a cylinder gas leak.

To prevent the drawers from opening unintentionally while moving the detached bassinet, move it from the front only.

Open cylinder valves S-L-O-W-L-Y to avoid damaging the regulators.

Insulation on the electrical wiring can deteriorate with age. Check for brittle or deteriorated insulation on the power cord and all other electrical wires.

On elevating models, do not continue run the motor at upper and lower limit positions; equipment damage may result.

The back panel and display panel may drop down when the bottom cover mounting screws are removed. Be sure to secure the panels with tape before disassembly.
IWS models shipped with Serial Number HCA have a electronic controller common to all models. This change was made to simplify servicing future IWS models. Also, to comply with international standards, the heater assembly, power supply and cable harness have been modified.

The warmer electronics consist of a microcontroller printed circuit board (PCB), a display PCB and a power supply PCB. Section 1.1 provides a detailed functional description of the microcontroller PCB. Section 1.3 provides a detailed functional description of the display PCB. Section 1.4.1 provides a detailed functional description of the power supply PCB.

To facilitate service of IWS product manufactured prior to these changes, sections on the theory of operation of the previous control board electronics PCBs have been included in section 1.2. Sections 1.4.2 and 1.4.3 are included to provide functional details of power supply designs used in earlier revision IWS product. A functional description of the ThermaLink option is provided in section 1.5.

1.1 Control Board (6600-0218-700)

This is a functional description for the IWS controller board, Service Stock No. 6600-0223-700, which is used in all IWS models with Software Revision 4.01 or higher. Refer to Section 8 for a detailed circuit diagram.

The control board regulates Infant Warmer operation. The board is designed around the 8032 microcontroller. The 8032 features: 256 bytes of RAM memory; 32 I/O lines configured as four parallel ports; three counter timers; a six source, two priority nested interrupt; a programmable serial I/O port; and an integral oscillator.

The control board also contains a UV erasable EPROM, an oscillator circuit, a line frequency monitoring circuit, a watchdog alarm circuit, a multiplexer, an analog to digital converter, two on-board I/O expanders, and an audible alarm circuit. A third I/O expander on the display board tells the microcontroller when a controller switch is pressed.

Figure 1-1 presents a block diagram of the control board. The microcontroller’s bi-directional data bus accesses the EPROM through a transparent octal latch. Circuitry attached to the microcontroller generates the 6 MHz system clock. A line frequency signal from the power supply board clocks one of the microcontroller timers to identify the power frequency (for use in the heater control algorithm) and to check for power failure.
Functional Description

The watchdog timer uses an RC circuit to verify that the microcontroller is operating properly and executing all software routines. If the watchdog circuit fails to receive the expected pulse, it times out. This opens the safety relay to shut off the heater, interrupts the microcontroller, and sounds the high priority alarm. At power up, the watchdog pulse is briefly suppressed to test the high priority (alternating two tone) alarm and the safety relay.

A multiplexer connects the analog signals to the ADC converter through an operational amplifier. Two of the signals test the ADC calibration. The remaining two are used to measure patient temperature and to sense the mains voltage. The line voltage compensation circuit tells the microcontroller what percent of the expected voltage input (nominal voltage) is actually available. For example, if the heater receives a higher voltage than nominal, it produces more heat and needs to be on for fewer cycles. The patient temperature probe provides data for the servo mode control parameter and the display panel.

I/O expanders transfer information between the microcontroller and the rest of the unit. One I/O expander controls ADC conversions. It also monitors the heater status, whether or not the heater assembly is in the X-ray position, proper audible alarm function, and closes the safety relay at power up. A second I/O expander provides the watchdog pulse; issues commands for alarm circuitry, bed position (elevating units only), observation light control, and normal heater control; and checks the position of the internal switches. Data and clock information for the display pass directly from the microcontroller to a third I/O expander located on the display board.
*Watchdog circuit produces feedback signal for microcontroller.

Figure 1-1 Control Board Block Diagram
1/Functional Description

1.1.1 Microcontroller

The 8032 microcontroller operates at a clock speed of 6 MHz. Grounding the EA line configures the microcontroller to execute instructions from the EPROM (U9). Four parallel ports link the microcontroller to other control board circuits.

Ports 0 and 2 send address bits to the EPROM. Port 0 also reads data from the EPROM. While port 0 transfers data, an octal latch (U10) continues to address the EPROM. Address bits from port 0 are latched into U10's outputs on the High to Low transition of the ALE signal.

Note: The ALE signal (U11 pin 30) has a 1 MHz frequency (approximately 0.33 μsecs On and 0.67 μsecs Off) with a 6 MHz system clock.

Port 1 communicates with the three I/O expanders. Bits 5-7 enable the individual I/O expanders. Sending a logic Low on one (and only one) of these outputs enables the corresponding I/O expander. Bits 0-3 hold instructions to be executed by the enabled I/O expander on the High to Low transition of bit 4.

Port 3 performs miscellaneous functions:

- Line 3.0 & 3.1 Receive and transmit serial data to the optional ThermaLink Interface.
- Line 3.2 (INT0) monitors power frequency (50 or 60 Hz). See Section 1.1.2, Line Frequency Circuit.
- Line 3.3 (INT1) interrupts the microcontroller if the watchdog circuit times out. See Section 1.1.3, Watchdog Circuit.
- Lines 3.4 and 3.5 respectively send serial data to and clock the display driver (display board).

1.1.2 Line Frequency Circuit

The line frequency circuit converts a 60 or 50 Hz sinusoidal signal into a square wave that clocks the heater control software and checks for power failure.

The line frequency signal originates with a nominal 8 Vac from a transformer secondary that is routed through the power supply board. The line frequency circuit half rectifies the ac signal (CR1) and passes it through a Schmitt trigger NAND gate (U7B) to generate the final pulse. Because the NAND gate does not respond until the input exceeds 1.9 Vdc, the pulse duty cycle is slightly higher than 50%.
1.1.3 Watchdog Timer

Note: Unlike earlier versions of the control board, the watchdog pulse continues during all high priority alarms except those for software upset and system failure.

I/O expander U1 pulses a retrigerable, monostable multivibrator (U5A). During normal operation, another watchdog pulse arrives before the end of the U5A's output pulse (0.263 second duration). This keeps the timer output High.

If there is a software upset, the watchdog pulse stops and the multivibrator output goes low. This causes the safety relay to open, interrupts the microcontroller, and activates the audible alarm circuit:

- The safety relay is opened by inverting the watchdog timer's Q output (High = alarm). Note that holding U8A's other input Low configures it as an inverter.

- To interrupt the microcontroller, the watchdog timer's Q output is gated with two unused address lines (U8C and U4B).

- To activate the audible alarm circuit, the watchdog timer's Q output and the high priority alarm command line are NAND gated (U7A).

During the power up test, the watchdog pulse is briefly interrupted to check the watchdog circuit, the safety relay and the audible alarm.

1.1.4 Analog to Digital Converter

A multiplexer connects analog monitoring signals to the ADC through an op-amp. Both the multiplexer and the ADC converter are controlled through an I/O expander.

A. Multiplexer (MUX)

The multiplexer (U12) is a MC14051B with eight normally open switches and a common output terminal. Only four of the switches are used. To select a signal for conversion, the microcontroller toggles the multiplexer control lines (pins 11A, 10B, and 9C) through I/O expander U2. The selected signal is connected to the common output and applied to an operational amplifier (U15A) that subtracts approximately 0.368 mV (calibrated by adjusting R52, ADC High Adjust). The operational amplifier output is tied to the ADC input through a 75 kΩ resistor.

Control inputs to the multiplexer are as follows:
1/Functional Description

<table>
<thead>
<tr>
<th>Control Inputs</th>
<th>On Switches</th>
<th>Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td>X0</td>
<td>13 calibration value 25.05°C</td>
</tr>
<tr>
<td>0 0 0</td>
<td>X1</td>
<td>14 calibration value 37.97°C</td>
</tr>
<tr>
<td>0 0 1</td>
<td>X2</td>
<td>15 line voltage monitor</td>
</tr>
<tr>
<td>0 1 0</td>
<td>X3</td>
<td>12 unused</td>
</tr>
<tr>
<td>0 1 1</td>
<td>X4</td>
<td>01 patient probe</td>
</tr>
<tr>
<td>1 0 0</td>
<td>X5</td>
<td>05 unused</td>
</tr>
<tr>
<td>1 0 1</td>
<td>X6</td>
<td>02 unused</td>
</tr>
<tr>
<td>1 1 0</td>
<td>X7</td>
<td>04 unused</td>
</tr>
</tbody>
</table>

Note: Because the multiplexer's inhibit line is tied Low, it does not affect switch selection.

B. Analog to Digital Converter (ADC)

The ADC, U3, operates asynchronously, continuously converting analog voltage inputs into a number of counts between 0 and 3999 (BCD format). The conversion rate is set by an internal oscillator whose frequency is determined by the external components R1 and C10. The exact oscillator frequency is not critical and may vary by ±15% from the nominal 400 kHz. The oscillator frequency may be measured on pin 18 (U3). With a nominal 400 kHz clock frequency, the ADC completes approximately three conversions a second.

The ADC communicates with the microcontroller through I/O expander U2. The ADC data latch is permanently enabled by tying pin 19 (DLE) Low. The start conversion and conversion complete signals synchronize the data conversion, which proceeds as follows:

1. The start conversion pulse from the microcontroller triggers a new conversion, prematurely ending any conversion in progress.

2. The conversion complete output goes Low on the falling edge of the start conversion pulse. It returns to a High level when the ADC completes the conversion. The Low to High transition prompts the microcontroller to read the ADC output.

3. The first set of data (from the prematurely terminated cycle) is discarded since there is no way to determine if it represents an entire conversion.

4. The microcontroller waits until the new conversion cycle has been completed.

5. The data is read by the microcontroller, converted to temperatures or voltage percentages and stored in RAM.

The BCD data is output on data lines 2^0 to 2^3 (U3 pins 23, 24, 3, and 4 respectively) in accordance with the coded digit select signals applied to the ADC.
digit select inputs D0 and D1 (U3 pins 20 and 21 respectively). The digit select
codes are summarized below:

ADC Control Inputs

<table>
<thead>
<tr>
<th>DLE*</th>
<th>D0</th>
<th>D1</th>
<th>Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>0 (LSD)^</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>3 (MSD)#</td>
</tr>
</tbody>
</table>

* Signal is tied Low.
^ Least Significant Digit (e.g., 2 in 3992)
Most Significant Digit (e.g., 3 in 3992)

C. ADC Reference Voltage

The ADC uses an adjustable reference voltage of 2.0 Vdc (test point 10), generated
from an LM-10. The LM10’s internal reference source provides a 200 mV
supply that is amplified to a nominal 1.08 Vdc by the reference buffer portion of
the LM-10 (U14B, test point 8). The operational amplifier portion of the LM-10
adjusts the voltage to the required 2.0 Vdc. The initial 1.08 Vdc is fixed, but
the final reference voltage can be adjusted using R44, ADC Low Adjust.

D. ADC Inputs

Patient Temperature Probe

The patient temperature probe uses a negative temperature coefficient ther-
mistor in series with a 5.76 kΩ resistor to generate a signal that is linearly
proportional to the temperature. The 1 Vdc supply used by the probe is gener-
ated by the internal 200 mV reference on the LM-10 (U14B), the same 1 Vdc
source used to generate the ADC reference voltage.

<table>
<thead>
<tr>
<th>Probe Temp.</th>
<th>Equivalent Resistance</th>
<th>Voltage Signal*</th>
<th>Op amp out (ADC input)*</th>
<th>ADC Counts*</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>12526 Ω</td>
<td>728 mV</td>
<td>355 mV</td>
<td>2581</td>
</tr>
<tr>
<td>25°C</td>
<td>10000 Ω</td>
<td>675 mV</td>
<td>303 mV</td>
<td>2201</td>
</tr>
<tr>
<td>30°C</td>
<td>8037 Ω</td>
<td>621 mV</td>
<td>248 mV</td>
<td>1806</td>
</tr>
<tr>
<td>35°C</td>
<td>6500 Ω</td>
<td>566 mV</td>
<td>193 mV</td>
<td>1407</td>
</tr>
<tr>
<td>40°C</td>
<td>5289 Ω</td>
<td>513 mV</td>
<td>140 mV</td>
<td>1013</td>
</tr>
</tbody>
</table>

* All voltages and ADC counts are approximate.
1/Functional Description

Calibrate High Resistor

This signal is generated by a voltage divider network (R27 and R30) with a resistance equal to that of the patient probe at a temperature of 37.97°C. The circuit uses the same 1 Vdc supply as the patient probe. During normal operation, the microcontroller checks the converted value of this signal to check for any drift in the ADC reference voltage. If the converted value differs from the expected value by more than 0.3 °C for one minute, System Failure Error 02 triggers.

Calibrate Low Resistor

This signal is generated by a voltage divider network (R26 and R29) with a resistance equal to that of the patient probe at a temperature of 25.05 °C. The circuit uses the same 1 Vdc supply as the patient probe. During normal operation, the microcontroller checks the converted value of this signal to check for any drift in the operational amplifier that adjusts the ADC input. If the converted value differs from the expected value by more than 0.3 °C for one minute, System Failure Error 03 triggers.

Line Voltage Compensation

Knowing the actual operating voltage allows the microcontroller to maintain the desired level of heater output for line voltage fluctuations up to ±10%.

The line voltage compensation signal is generated on the power supply board and passes through the same amplifier network as the patient probe and the calibration high and low signals. The initial line voltage compensation circuit can be adjusted on the power supply board independent of the ADC. Refer to Section 4.6, Line Voltage Compensation, for details.

<table>
<thead>
<tr>
<th>% Nominal</th>
<th>Voltage (Pwr. Sply. Brd)*</th>
<th>Op amp out (ADC input)*</th>
<th>ADC Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>600 mV</td>
<td>232 mV</td>
<td>1600</td>
</tr>
<tr>
<td>100%</td>
<td>660 mV</td>
<td>292 mV</td>
<td>2000</td>
</tr>
<tr>
<td>110%</td>
<td>720 mV</td>
<td>352 mV</td>
<td>2400</td>
</tr>
</tbody>
</table>

* Approximate values.

^ Measured at power supply board test point 11 or the multiplexer input.

1.1.5 Audible Alarm Circuit

The alarm circuit consists of an audio transducer (LS1) and two timers. During a low priority alarm, the microcontroller sends a 1 Hz square wave to the reset pin of timer U6A through I/O expander U1 and NAND gate U7C, producing a 2 kHz (one second On, one second Off) alarm.
1/Functional Description

During a high priority or a watchdog alarm, the NAND gated output of the high priority alarm and the watchdog alarm (U7C) activates both timers with the first timer feeding a 1 Hz square wave to the control line of the second. A 1 mΩ resistor changes the output frequency, producing an alternating two tone alarm.

If both a low and a high priority alarm are in progress, U7C suppresses the low priority alarm to keep both timers active.

The alarm circuit allows volume (R37) and frequency adjustments (R38). You can measure the actual alarm frequency at test point 1. During a high priority alarm, the microcontroller monitors this signal through I/O expander U2 to verify alarm execution.

1.1.6 Heater Control

A. Calculating Heater Cycles

The heater control routine uses the concept of proportional control. This means that all levels of heater output are given as a percentage of the maximum heater output, defined as the amount of heat produced when the heater is switched on for 50 cycles a second at 100% of its nominal line voltage.

Proportional heater control uses a three step routine:

- Step 1: Adjust the defined, maximum heater output for the actual line voltage: at higher voltages, fewer cycles/sec are required to deliver maximum heat; at lower voltages, more cycles are required to deliver maximum heat.

<table>
<thead>
<tr>
<th>Actual Voltage</th>
<th>Maximum Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>103.5V (90% nominal)</td>
<td>60 cycles/sec</td>
</tr>
<tr>
<td>115V (100% nominal)</td>
<td>50 cycles/sec</td>
</tr>
<tr>
<td>126.5V (110% nominal)</td>
<td>40 cycles/sec</td>
</tr>
</tbody>
</table>

Refer to Section 1.4, Analog to Digital Converter, for more information about the line voltage compensation signal used to measure the voltage.

- Step 2: Determine what percentage of the maximum heater output is required:

In the manual mode, you directly set the percentage of the maximum heater output on the bar graph. In the servo mode, the controller calculates the difference between the patient temperature and the control temperature (or the patient temperature gradient, PTG) and adjusts the heater output.
Step 3: Calculate the number of cycles:

Number of cycles = Max Heat (step 1) x %max heat (step 2)

B. Monitoring Heater Cycles

An opto-isolator circuit across the heater relay generates the monitoring signal for the microcontroller. The opto-isolator (power supply board component U3) generates a logic low which is inverted on the control board. The final signal (High = heater On) is sampled by the microcontroller through I/O expander U2 and also runs the heater status LED (light = heater On). Because of the duty cycle, the LED flickers instead of pulsing as it did on the previous boards.

C. Signals That Override Normal Heater Control

Watchdog alarms, raise and lower bed switch activation, interlock switch status, and self tests (transparent to the user) can override normal heater controls:

- During a watchdog alarm, watchdog pulses stop and the watchdog timer opens the safety relay through U8A.

- When the raise or lower bed switches are active, the microcontroller temporarily shuts down the heater to limit current. Although these switches are only labeled on elevating IWS models, they are present on all IWS units and will switch Off the heat if activated.

- When the interlock switch is open, the microcontroller assumes that the controller is in the X-ray position and shuts down the heater.

- At power up, the microcontroller closes the safety switch through I/O expander U2 by setting the safety relay line Low. The line remains Low as long as power is switched On.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Test Points and Logic Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater control</td>
<td>U1 pin 16; High = On</td>
</tr>
<tr>
<td>High priority alarm</td>
<td>U1 pin 18; Low = alarm</td>
</tr>
<tr>
<td>Watchdog alarm</td>
<td>U5A pin 13; Low = alarm</td>
</tr>
<tr>
<td>Raise bed switch</td>
<td>U1 pin 14; High = raise bed</td>
</tr>
<tr>
<td>Lower bed switch</td>
<td>U1 pin 15; High = lower bed</td>
</tr>
<tr>
<td>Interlock switch</td>
<td>U2 pin 15; High = heater in X-ray position</td>
</tr>
<tr>
<td>Safety relay</td>
<td>U2 pin 17; Logic Low except during system fails alarm</td>
</tr>
<tr>
<td>Heater status</td>
<td>U2 pin 14; High = On (LED lights)</td>
</tr>
</tbody>
</table>

Note: To maximize safety relay life, relay function is only tested at power up by allowing the watchdog timer to time out.
1/Functional Description

1.2 Control Board (6600-0048-700)

This is a functional description for the control board in Infant Warmer System units prior to Software Revision 4.01. Refer to Section 8 for a detailed circuit diagram. When replacing this board, order controller service kit:

- 6600-0360-800 EMI Noise Suppression Kit for English IWS Models
- 6600-0360-801 EMI Noise Suppression Kit for French IWS Models
- 6600-0360-802 EMI Noise Suppression Kit for Spanish IWS Models
- 6600-0360-803 EMI Noise Suppression Kit for German IWS Models
- 6600-0360-804 EMI Noise Suppression Kit for Spanish IWS 2001 Models
- 6600-0360-805 EMI Noise Suppression Kit for French IWS 2001 Models
- 6600-0360-806 EMI Noise Suppression Kit for English IWS 2001 Models

Each controller service kit includes EMI shielding to minimize susceptibility of the replacement controller board to Electrostatic discharge, power line conducted and radiated electromagnetic interference. See 7/Illustrated parts for kit contents.

⚠️ WARNING: Do not install the control board without ESD shielding in place. Failure to do so may result in hazardous ESD induced failures.

To confirm that your IWS unit has shielding already in place, remove the controller cover. The large silver foil control board shield should be the first thing you see. Refer to Figure 7-1.

The control board contains electronic circuitry involved with the measurement, control, computation, memory, logic, and decision making functions of the Infant Warmer System. The principal IC on this board is the 8031 single component, 8-bit microcontroller. The 8031 has: an internal read/write memory (RAM) of 128 bytes, 32 I/O lines configured as four 8-bit parallel ports, two 16-bit timers, a five source two priority nested interrupt, a programmable serial I/O port, and an on-chip oscillator with clock circuitry. The program memory is stored in a 2764, 64k bit (8k x 8), or a 27128 128K bit (16k x 8) UV EPROM. An octal transparent latch (74LS373) is connected to address inputs of the EPROM to permit the use of the bi-directional data bus port of the microcontroller for addressing the EPROM and receiving program instructions.

Four ICs with a network of precision resistors are used to interface temperature measured to the microcontroller. The temperature sensor, calibration resistors, or line voltage scaler are selected by an MC14051B 8 Channel Multiplexer. An LM-10 precision reference with adjustable reference buffer, and on-board operational amplifier furnishes a stable reference supply. This is required by the temperature measurement circuits and the ADC 3711 Analog to Digital Converter. An 8243 I/O expander is used to interface the microcontroller with the multiplexer and the A/D converter.

The control board is also equipped with several ICs that form the triac watchdog circuit, watchdog timer, and the audio alarm tone generator. The audio transducer for the alarm signals and its driver circuit are also included on the control board.

Detailed operation of the circuits listed in the preceding paragraph is explained in the following sections.
1/Functional Description

1.2.1 Microcontroller

The control system is located in the 8031 microcontroller. It operates at a clock speed of 6MHz and can be verified by measuring the frequency at the Address Latch Enable (ALE) pin to be 1 MHz (On = 0.33 μsec and Off = 0.67 μsec). The EA pin is grounded which enables the 8031 to execute instructions from an external memory device.

When the microcontroller performs a read instruction from EPROM, the low order address (8 bits) is output from Port 0 while the high order address (6 bits) outputs from Port 2. (Note: Bit 6 is configured only to provide expansion compatibility with a fully programmed 27128 EPROM). The ALE pin goes High allowing the LS373 to appear transparent between the EPROM and the microcontroller. After the ALE output goes Low, the low order address is latched to the outputs of the D flip flops within the LS373. This allows the EPROM to remain addressed by the microcontroller, and return 8 bits of data while using only two ports.

Port 1 of the 8031 is used to communicate to the three 8243 I/O expanders. Bits 5-7 are connected to the Chip Select (CS) line of the first, second, and third respective I/O expanders. Providing a Low signal on one and only one of the outputs activates the corresponding IC. Bits 0-3 hold the instruction to be carried out by an 8243 when the enable bit 4 transitions between High and Low.

Port 3 is used to perform remaining tasks required by the control system. Connections 3.0 and 3.1, (receive and transmit respectively), are used in conjunction with the serial interface chips so that communication to an external microcomputer is possible. Connection INT0/P3.2 is a line frequency interrupt line that is used to aid in timing subroutines found within the system software. Connection T0/P3.4 sends serial data to the display driver while connection T1/P3.5 provides clocking to the driver.

1.2.2 Line Frequency

The line frequency circuit converts the 60 or 50 Hz sinusoidal line voltage signal into a square wave signal. The output of the circuit is used to clock the 4020B counter (U9) and to provide a low frequency clock source for the system software. The 1N4001 diode (CR1) half-wave rectifies the 8 Vac (nominal) signal which is divided by potential divider R45/R16 and inputted to the Schmitt trigger NAND gate (U8, pin 5). With one line tied High, the output of the trigger will be inverted. Since the gate will not respond until the input exceeds 1.9 Vdc minimally, the duty cycle of the output will be slightly more than 50%.
1/Functional Description

1.2.3 Heater Status

The Heater Status function signals the microcontroller and the safety circuitry as to whether or not the heater is On or Off. The input to the Schmitt trigger (U8, pin 13) is High if the heater is Off and Low if the heater is On. Small glitches appear when the heater is On. Consult the Functional Description of the power supply board for further explanation. The output of the NAND gate is inverted because one input is tied High.

1.2.4 Hardware TRIAC Test

The 4020B 14 bit binary counter, U9, counts at a rate equal to the line frequency and responds to the negative edge of the clock pulse. The clock signal is received from a Schmitt trigger NAND gate, pin 6 of U8. The counter resets when the 74LS123 retriggerable one shot flip flop outputs a High level pulse on the Q output line. With CLR tied High and A tied Low, the counter will reset when B of the 74LS123, U3, is High at a time equal to (Q5 + (Q13) + (Q14) or after 12304 counts (Q5 = 16, Q13 = 4096, Q14 = 8192). Approximately 6.19 µsec. later the output of the one shot will return to its initial Low state.

Q13 and Q14 of the 4020B are tied to a 2 input NAND gate (U2, pins 1 and 2) which will go High after 12288 counts. After 8 counts Q4 of the counter goes High. Q4 is tied to the CLR pin of D flip flop U1. When CLR goes High, the output of Q1 (U1 pin 5) is allowed to equal the input D on the next positive edge of the clock pulse. Therefore the output at pin 5 will update after 9 counts. After 12288 counts (3.4133 minutes on 60 Hz units, or 4.096 minutes for 50Hz units) the signal at the D input of the flip flop goes High. This signal is also input to the microcontroller through the I/O expander U4. The software will then switch Off the heat. Nine counts later the High input on D is clocked to the output Q. The heater status (Off-Low, On-High) sent from the Schmitt trigger NAND gate pin 11 of U8 is always present at the input of U2 pin 5. If the heater is still On after 9 counts, the output of the NAND gate pin 6 of U2 will clock the second D flip flop. The outputs of the flip flops switch - Q goes High and NOT Q goes Low. A Low on NOT Q sets off the audio alarm and drops out the non-resettable safety relay causing the heater to switch Off.

1.2.5 Heater Status LED

A heater status LED is located on the control board for troubleshooting. The LED can be seen through the rear of the controller assembly cover. When the status line from the Schmitt trigger is High, (heater On) the transistor Q2 switches On causing the LED to emit light. If heat is Off, the LED is Off.
1/Functional Description

1.2.6 Watchdog Timer

A watchdog timer is used to "check" that the microcontroller is working properly. After every cycle through the system software the microcontroller sends a Low pulse to the A input of U3, a 74LS123. The RC network connected to the RxCx and Cx pins create a time constant, \(t = 0.45 \times R \times C = 0.263 \) seconds. If a pulse is not received at the input before the time constant expires, the output will go Low. The high priority alarm will then be activated due to the microcontroller failure. Note when the microcontroller detects a high priority alarm condition, pulses to the watchdog circuit stop.

1.2.7 Alarm Tone Generator and Control Circuits

The alarm circuit consists of an alarm tone generator and control circuitry for high or low priority alarm conditions. Under a no alarm condition the 7556 timers are both inactive, (reset lines Low).

1.2.8 Low Priority Alarm

Under normal operating conditions the input to U8 pin 9 is High. When the microcontroller detects a low priority alarm, a 1 Hz square wave is output to U8 pin 9. The timer activates, causing a 2 kHz audio output. This results in a one second On, one second Off audio alarm. The 2 kHz signal is adjusted within \(\pm 100 \) Hz by R38. The volume of the audio alarm is adjusted by R37. This should be adjusted fully CCW for maximum volume.

1.2.9 High Priority Alarm

The high priority alarm is activated if the microcontroller quits sending pulses to the watchdog timer. This occurs when a high priority alarm condition is detected or if the microcontroller fails. The high priority alarm is also activated if the hardware triac test circuitry detects a failed triac. Both timers become active with one timer feeding a 1 Hz signal to the control line of the second. The 1 M\(\Omega \) resistor changes the output frequency of the second timer to produce a warbling effect (two tone alternating alarm). If high and low priority alarms are both On, the output of the NAND gate overrides the low priority signal, keeping both timers active.

1.2.10 Analog to Digital Converter

Temperatures are measured using a negative temperature coefficient thermistor that is calibrated for specific resistance values and interchangeability. Analog voltage signals inversely proportional to temperature are derived from a voltage divider network consisting of a 5.76k\(\Omega \) \(\pm 0.1 \% \) resistor in series with the temperature sensor. The voltage source for the measuring circuit is ob-
1/Functional Description

tained from the LM-10's internal precision reference source of 200 mV amplified to a nominal 1.0 Vdc by the reference buffer of the LM-10. The Op-amp portion of the LM-10 provides an adjustable reference of 2.0 Vdc nominally, which is required by the A/D converter, U6. In addition to the patient probe, there are three other voltage divider networks on the control board. Two have fixed output and are used for calibration check points of the A/D system at 25.0 and 37.9 °C. The third divider network is unused.

A separate input to the control board A/D circuit comes from the line voltage monitor network located on the power supply board.

The outputs of all the voltage dividing networks are connected to individual switch input terminals of U13, the MC14051B Analog Multiplexer. The MC14051B contains eight normally open switches with a common output terminal. The common output of the MUX (pin 3) is tied through R9 to the analog input (pin 9) of the A/D converter. The microcontroller selects which sensor is to be measured by toggling the control lines, pin 11(A), pin 10(B), and pin 9(C) of the MUX via the 8243 #2, U5. The following table shows the digital codes used to select the individual switches of the MUX:

<table>
<thead>
<tr>
<th>Control Inputs</th>
<th>ON Switches</th>
<th>Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td>X0</td>
<td>13 calibration value 25.0 °C</td>
</tr>
<tr>
<td>0 0 0</td>
<td>X1</td>
<td>14 calibration value 37.9 °C</td>
</tr>
<tr>
<td>0 0 1</td>
<td>X2</td>
<td>15 line voltage monitor</td>
</tr>
<tr>
<td>0 1 0</td>
<td>X3</td>
<td>12 unused</td>
</tr>
<tr>
<td>0 1 1</td>
<td>X4</td>
<td>01 patient probe</td>
</tr>
<tr>
<td>1 0 0</td>
<td>X5</td>
<td>05 unused</td>
</tr>
<tr>
<td>1 0 1</td>
<td>X6</td>
<td>02 unused</td>
</tr>
<tr>
<td>1 1 0</td>
<td>X7</td>
<td>04 unused</td>
</tr>
</tbody>
</table>

Note: Inhibit terminal (pin 6) of the MUX has no effect on the switch selection because it is tied Low through R19 (200 Ω).

The ADC 3711, U6, uses a pulse modulation analog to digital conversion technique. The conversion rate is set by the frequency of an internal oscillator whose frequency is determined by the external components R4 and C14. The exact oscillator frequency is not critical and may vary by ±15% from the nominal 400 kHz. The oscillator frequency may be measured on pin 18 of U6. With a nominal 400 kHz clock frequency, conversions within the ADC 3711 will take place at an approximate rate of 3 per second.

The ADC 3711 will output BCD data on demand in accordance with the coded digital signals applied to the digit select inputs D0 and D1, pins 20 and 21 respectively. The data latch enable is tied Low, therefore, the BCD data of the A/D converter will be output to the microcontroller through 8243 #2 in conformance to the following codes that are applied to the digit select inputs:
Functional Description

<table>
<thead>
<tr>
<th>D0</th>
<th>D1</th>
<th>Selected Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>Digit 0 LSD</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>Digit 1</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>Digit 2</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Digit 3 MSD</td>
</tr>
</tbody>
</table>

Note: The magnitude of the selected digit is present at pins 3, 4, 23 and 24.

The ADC 3711 is continuously converting the analog voltage present at its input to a number of counts between 0 and 3999 (BCD format). Therefore, the start conversion, input at pin 7, and the conversion complete, output at pin 6, are mis-named. The start conversion input only controls the transfer of information from the internal counter to the digital latches. The conversion complete output goes to a logic Low on the rising edge of the start conversion pulse which is issued by the microcontroller. The conversion complete will go to a logic High sometime later when the new conversion information has been transferred to the display latches. The start conversion pulse may occur at any time in the conversion cycle because the microcontroller is running asynchronously to the A/D clock. Therefore, the amount of time from the start to finish will vary. The maximum time difference between the start conversion and conversion complete pulses in this application is about 300 msec.

The operation of the temperature and line voltage measurement circuits can be summarized as follows:

The analog voltage signal derived from a voltage divider network and a precision reference source is directed to the input of the A/D converter through an eight channel analog multiplexer. For the line voltage measurement, the voltage source is obtained from the rectified, filtered, and unregulated output of the power transformer. Switch selection is software controlled by the microcontroller which toggles the A, B, and C input lines of the multiplexer.

The analog voltage is converted in the ADC 3711 to a digital signal in four digit BCD format (0 to 3999 counts). The microcontroller sends a start conversion pulse to the ADC 3711 which then starts to update the digital data in the output latches. When all of the counts have been internally transferred, the A/D converter toggles the conversion complete output line. The microcontroller then reads the individual BCD digits using coded signals to the digit select lines of the A/D converter.

1.2.11 ADC Calibration

The A/D converter is calibrated by connecting a 5900 ± 0.1% Ω resistor to the patient probe jack and placing the DIP switch on the control board in the following position:
1/Functional Description

Switch #1 Open (Off)
Switch #2 Open (Off)
Switch #3 Open (Off)
Switch #4 Closed (On)

Potentiometer R44 on the control board is then adjusted until the elapsed time display reads exactly 1122. With the DIP switches in the given position the patient temperature display will read out the actual patient temperature, even if it is outside of the normal range, and the control temperature display will read out the percent of nominal line voltage.

During operation, the calibration of the A/D conversion system may be checked by pressing and holding the hidden switch located above the ALARM SILENCE SWITCH on the control panel. After 2 seconds, the patient temperature display should read 25.0°C and the control temperature display should be 37.9°C. The elapsed timer should read the applied line voltage, expressed as a percentage of the nominal voltage, ± 2%.

1.2.12 Heat Control Routine

A. Calculating Heater Cycles

Proportional control of the heater power is obtained by varying the number of full heat cycles of ac current delivered to the heater. To allow for line voltage compensation and still have at least 20 discrete levels of heat, a proportioning range of 0 to 60 full heat cycles is used. In other words, at very low line voltages, 100% heat will be output by having the heat On for 60 full cycles out of a possible maximum of 60. Similarly, at this low line voltage 90% heat is obtained by having the heat On for 54 out of 60 cycles.

B. Manual Mode Heat Control

In the “manual” mode of operation, the heat output is determined by the bar-graph setting selected by the operator. There are 20 steps on the bar-graph so each step represents a 5% heat increment. To accomplish the desired compensation for line voltage variations, the maximum number of heat cycles is calculated based on the last measurement of the power line voltage. For 115 Vac nominal units, a line voltage of 106 Vac or less will increase the maximum number of heat cycles to 60. At greater than 125 Vac the maximum number of heat cycles is limited to 40 cycles out of a possible 60. Therefore, the number of cycles of current furnished to the heater in the manual mode is determined by multiplying the maximum for the line voltage present by the bar-graph setting. For example: assume the line voltage is 115 Vac (maximum number of cycles On = 50) and the bar-graph setting is 30%; the number of heat cycles to be output will be 0.3 times 50 = 15 cycles. Under these conditions the heat will be On for 15 cycles and Off for 45 cycles, this sequence will continue until the line voltage changes or the setting is changed on the bar-graph.
1/Functional Description

C. Servo Mode Heat Control

In the "servo" mode, the heater power is controlled by comparing the patient's skin temperature to the selected value of control temperature. The difference between the control temperature and the patient temperature is referred to as "PTG" (patient temperature gradient). A positive PTG indicates a patient is cooler than the control temperature and a negative PTG occurs when the patient temperature is higher than the control temperature. Based on the magnitude and sign of the PTG, a software look-up table is used to find the percent heat required. The percent heat is then converted to the appropriate number of bar-graph steps and then the selected amount of heat is output by the same process used in the manual mode.

A hardware circuit is used to interrupt the microcontroller once every cycle of the ac power line. During the interrupt routine, two registers are decremented to keep track of the heater On and Off cycles. One register is used for counting the number of cycles in one second (60) and another register is loaded on every sixtyth count with the number of heat cycles to be output. A flag is set whenever this register is not zero, the heat is On only when this flag is set.

D. Monitoring Heater Cycles

The operation of the heat control software and the heat output hardware are repeatedly tested during operation of the warmer. An opto-isolator connected with a series resistor directly across the heater terminals is used to monitor heater power supply voltage. The output of the opto-isolator is fed into a Schmitt trigger, which outputs directly to an input port of the microcontroller. Therefore, the microcontroller can verify if the heat is actually On when it is supposed to be On. If not, a system fail alarm will be activated. Approximately every three minutes, an external hardware network (safety circuit) signals the microcontroller to switch Off the heat. This hardware also monitors the output of the Schmitt trigger (heater status line). If the heater power is not switched Off after a short delay, the hardware circuit will de-energize the "safety" relay to switch Off heater power and also initiate an alarm which cannot be silenced without switching the power Off.

1.3 Display Board (0631-5031-700)

This is a functional description for the Infant Warmer System Display Board. Refer to section 8 for a detailed circuit diagram.

The display board provides the interface between the operator and the control system. It displays the status of the unit, the patient status, and can also be used as a diagnostic aid. The operator controls the system by depressing the various switches on the front display. Operation of the display board is simplified with the use of two ICs: the 8243 I/O expander which is used in
conjunction with the switches; and the MM5451 (or MM5450) driver used in conjunction with the LED display.

Switch Decoding

The I/O expander, U1, is always enabled in the read mode because its sole purpose is to detect switch depressions. The 8243 is activated by the microcontroller sending a Low signal on the Chip Select (CS) line. A control word (4 bits) is latched from the input port 2 on the High to Low transition of the PROG pin. The word is decoded as follows:

<table>
<thead>
<tr>
<th>P23</th>
<th>P22</th>
<th>Instruction Code</th>
<th>P21</th>
<th>P20</th>
<th>Address Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Read</td>
<td>0</td>
<td>0</td>
<td>Port 4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Write</td>
<td>0</td>
<td>1</td>
<td>Port 5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>OR</td>
<td>1</td>
<td>0</td>
<td>Port 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AND</td>
<td>1</td>
<td>1</td>
<td>Port 7</td>
</tr>
</tbody>
</table>

As soon as the read instruction and the port address are decoded the corresponding port lines are set to a High impedance state and the input buffers within the 8243 are switched On. When a switch is depressed on the display, the respective line switches Low and is loaded into the input buffer. The Low to High transition on the PROG line terminates the read instruction and transfers information back to port 2. When the microcontroller sets the CS line High the 8243 is disabled.

LED Display Driver

The LED display driver, U2, controls the LED displays. The displays are multiplexed with a duty cycle of 20% and a refresh rate of 60 Hz. Data is input to pin 22 synchronously with the clock (pin 21). The first "1" bit activates the driver and 35 data bits will follow. After the 35th bit is loaded, the data is latched to provide direct output. Note that a logic High at the input switches the output Low and switches On the LED connected to the output (output is inverted).

Brightness Adjust

R9 is used to adjust the output current from U2 which in turn changes the brightness of the LEDs. R9 is adjusted to produce 3.30 ± 0.10 Vdc across R10 (3.3 V/221Ω ~15 ma). C6 is used to prevent oscillations at pin 19.

Multiplexing of Displays

Since there are not enough data bits to drive the entire display, the displays are divided into four sections. Bits 1-28 are used to supply the necessary information to each section. Bit 29 is unused. Bit 30 is tied to a 221Ω ± 1% resistor which is used for calibration. Bits 31-34 select which channel of the display is
activated by switching On a Darlington transistor. The Darlington provides a large gain so that a small drive current will sustain the large current draw from the LEDs. A string of 35 zeros are sent on the data line every fifth update cycle. The driver has a serial input and does not have a master reset. This string of zeros resets the driver in case an extra pulse was entered by a noise spike. The basic circuit for one LED segment consists of the 5 Vdc LED supply (reduced to 4.3 Vdc by a series 1N4001 diode), a Darlington switch to enable the supply to the LED group, and the MM5451 driver to select a low voltage return for the segment (if selected).

1.4 Power Supply Board

1.4.1 Power Supply Board (6600-0012/0013-850)

This is a functional description for the IWS Common Controller Power Supply Board, Service Stock No. 6600-0012-850, which is used in all IWS models manufactured with Serial Number HCA. Refer to section 8 for a detailed circuit diagram.

The power supply board provides circuitry for control and monitoring of high voltage devices and for power to the control and display boards. The board is equipped with three jumpers that allow configuration for the common controller used with all units with Serial Number HCA, or for older model 5000 units (Power Supply Board Service Stock Number 6600-0013-850). The jumpers are configured at the factory and should not be changed by field service personnel. Also found on the board is a line voltage sensing circuit that provides an indication of line voltage to the microcontroller.

The control circuits for the line voltage devices on the power supply board are functionally identical; they all require a TTL High signal from the control board to turn On the desired device. Line voltage devices are turned On using mechanical or solid state relays. Use of these devices allows high voltage control with commensurate high voltage/low voltage electrical isolation.

The heater is controlled from the power supply board by using a board mounted current source to drive a chassis mounted solid state relay. The heater circuit also contains a mechanical relay capable of removing power from the heater in the event of a system failure.

The regulator circuits provide a 5 Vdc supply to the display board in addition to 5Vdc and +9 Vdc to the control board. A NI-CAD battery supplies 9 Vdc and 5 Vdc standby power in the event of power loss. Standby power of 9 Vdc is used to activate the transducer alarm, while the 5 Vdc supply gives power to the microcontroller and associated integrated circuits.

5 Volt LEDs

A nominal voltage of 8 Vac is input to the power supply board at J11 pins 2 and 4. The line frequency is sent to the control board via J12 pin 2. The bridge rectifier CR2 and capacitor C11 provide filtered, unregulated 8 Vdc to the relays and the regulator. The 8 Vdc unregulated supply can be measured at TP-1. The unregulated supply must be a minimum of 6.8 Vdc for proper operation of the mechanical relay circuits.
1/Functional Description

The output of regulator VR2 is 5 Vdc nominally and supplies power to drive the LED displays on the display board. The output is measurable at J12 pin 12 or TP-10. When the supply voltage is within 10% from nominal, the output should range between 4.8 and 5.2 Vdc with a load of 500 ma. The maximum allowable ripple voltage is 150 mV.

Line Voltage Sensing

A nominal voltage of 11 Vac from the transformer secondary is input to the power supply board at J11 pins 1 and 2. Bridge rectifier CR1 and C12 provide a full wave, filtered voltage of 12 Vdc. At nominal line voltage, resistor R3 is adjusted to yield an output of 0.6 Vdc at J12 pin 11 or at TP-11. This voltage is then used by the microcontroller to compensate for fluctuations in line voltage.

9 Volt Standby

Variable resistor R4 adjusts the output of regulator VR3 to provide 9.6 ± 0.1 Vdc. This voltage charges the NI-CAD battery and supplies the input voltage to the 5 Vdc standby regulator.

5 Volt Standby

When line voltage is available, current flows from the output of VR3 and through CR5 to provide 9.0 ± 0.2 Vdc to the input of VR4. This voltage can also be found at J12 pin 3 and TP-12. Regulator VR4 outputs a voltage of 5.0 ± 0.2 Vdc to J12 pin 14 and TP-9 with a maximum ripple voltage of 150 mV.

When a line power loss occurs, the 7.2 Vdc NI-CAD battery maintains an output voltage to J12 pin 3, TP-12 and VR4. The output of VR4 maintains 5.0 ± 0.2 Vdc until the input voltage of VR4 drops below 7.0 Vdc. When the input voltage falls below this minimum, the regulator operates at a voltage not less than 2.0 Vdc below the input voltage.

Observation Light & Motor Control

The control circuits for the motor control (elevating bed option) and the observation light are identical. The observation light and motor are inductive loads, therefore, a snubber circuit has been placed in parallel with each load to protect the mechanical relay contacts from large voltage spikes.

The transistor in the control circuit is used as a switch and has active states of saturated (On) or unbiased (Off). When a relay should be turned On, a logic high signal ≥2.4 Vdc is output from the controller board to the control circuit.
1/Functional Description

This logic High signal on the base of the transistor saturates the transistor and allows current to flow through the pull-up resistor, the coil of the relay, and the collector-emitter junction of the transistor to ground. As current flows through the coil of the relay, the relay energizes and closes the relay contacts. Closure of the relay contacts allows current flow through the load. When a logic Low signal is output from the controller board, the transistor is in the unbiased state and no current flows through the relay coil. In the Off state, the relay contacts are Open and current does not flow through the load.

Alarm Lights

The alarm lights are controlled by logic level voltages output from the controller board which ultimately turn the solid state relay On and Off. The high voltage side of the circuit has a snubber and a varistor to protect the solid state relay from high voltage spikes. The older design (i.e. 6600-0181/183-700) does not have a varistor installed.

The transistor in the control circuit is used as a switch and has active states of saturated (On) or unbiased (Off). A logic High signal ≥2.4 Vdc is output from the controller board to the control circuit to turn the alarm lights On. This logic high signal on the base of the transistor saturates the transistor and allows current to flow through the pull-up resistor, the solid state relay, and the collector-emitter junction of the transistor to ground. The solid state relay performs in a way similar to a triac. Therefore, as a control voltage and current is presented to the low voltage side of the solid state relay, the internal isolator-driver turns On with sufficient current to close the triac gate and allow current to flow on the high voltage side of the solid state relay. When the high voltage side of the solid state relay is closed, current flows through the load and the alarm lights turn On. When a logic Low signal is output from the controller board, the transistor is in the unbiased state and no current flows through the control side and the corresponding high voltage side of the solid state relay.

Heater Status and Control

The heater circuitry consists of a monitoring circuit, a controller for the heater, and a mechanical safety relay to turn off the heater in the event of a system failure.

The full wave bridge rectifier CR6 takes the ac signal supplied to the heater and provides full wave dc to the opto-isolator U3. If the heater is active, a full wave dc signal turns On the LED at the forward bias voltage level. When the LED is On, the transistor goes into saturation, causing the output at J12 pin 1 to go Low (about 0.3 Vdc). When the full wave signal is in the region of zero potential, there is insufficient forward bias voltage for the LED, turning Off the transistor and allowing capacitor C10 to charge. When sufficient forward bias voltage is present during the next half-cycle, the capacitor discharges. The output waveform consists of discrete voltage spikes caused by the charging
and discharging of the capacitor at every half cycle. If the heater is Off, the opto-isolator is Off, and presents a High level at J12 pin 1.

The heater control circuit uses a zero crossing opto-isolator triac driver to isolate the high and low voltage circuits. Operation of the heater control and other high voltage controls differ only in the use of the isolator and lack of a snubber circuit. When a logic High signal is present at the heater control circuit, the output of the isolator will not turn On until the ac signal of the heater crosses the zero potential from a negative voltage. After the input line from the microcontroller goes to a logic Low, heat will not turn Off until the first zero crossing preceded by the negative half cycle. This provides zero crossing control with 60 possible levels of heat. The time that the heater is On is dependent upon the line voltage and the percent heat desired (controllable in 5% increments).

Safety Relay

The safety relay circuit is used to turn Off the heater in the event of a failure which disallows heater control using the heater SSR. The transistor in the control circuit is used as a switch and has active states of saturated (On) or unbiased (Off). Under normal operating conditions, the safety relay is turned On during system boot when a logic high signal ≥2.4 Vdc is output from the controller board to the control circuit. This logic High signal on the base of the transistor saturates the transistor and allows current to flow through the pull-up resistor, the coil of the safety relay, and the collector-emitter junction of the transistor to ground. As current flows through the coil of the safety relay, the relay energizes and closes the relay contacts. Closure of the relay contacts allows current flow through the heater depending on the state of the heater SSR. When a logic Low signal is output from the controller board, the transistor is in the unbiased state and no current flows through the safety relay coil. In the Off state, the relay contacts are Open and current does not flow through the heater regardless of the state of the heater SSR.

Jumper & Test Point Description & Values

NOTE: Functions in italics indicate a signal present for common controller board configuration.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Signal Description</th>
<th>I/O Direction</th>
<th>Transition Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>J11-1</td>
<td>11 Vac secondary</td>
<td><-</td>
<td></td>
</tr>
<tr>
<td>J11-2</td>
<td>11 Vac secondary</td>
<td><-</td>
<td></td>
</tr>
<tr>
<td>J11-3</td>
<td>8 Vac secondary</td>
<td><-</td>
<td></td>
</tr>
<tr>
<td>J11-4</td>
<td>8 Vac secondary</td>
<td><-</td>
<td></td>
</tr>
<tr>
<td>J11-5</td>
<td>AUX 2 (power switch)</td>
<td><-</td>
<td></td>
</tr>
<tr>
<td>J11-6</td>
<td>AUX 1 (power switch)</td>
<td>-></td>
<td></td>
</tr>
<tr>
<td>J12-1</td>
<td>Heater status line</td>
<td>-></td>
<td>heat Off V > 1.9 Vdc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>heat On V < 1.4 Vdc</td>
</tr>
</tbody>
</table>

6600-0196-000 B 10/25/93 1-23
1/Functional Description

NOTE: Functions in italics indicate a signal present for common controller board configuration.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Signal Description</th>
<th>I/O</th>
<th>Transition</th>
<th>Direction</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>J12-2</td>
<td>Line frequency</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-3</td>
<td>Standby power</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-4</td>
<td>OBS light control</td>
<td><-</td>
<td>V-Low</td>
<td>V-High>2.4 Vdc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-5</td>
<td>Raise bed control</td>
<td><-</td>
<td>V-High>2.4 Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-6</td>
<td>Lower bed control</td>
<td><-</td>
<td>V-High>2.4 Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-7</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-8</td>
<td>Alarm light control</td>
<td><-</td>
<td>V-High>2.4 Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-9</td>
<td>Heater control</td>
<td><-</td>
<td>V-High>2.4 Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-10</td>
<td>Safety relay control</td>
<td><-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-11</td>
<td>Line voltage compensator</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-12</td>
<td>+5 LED</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-13</td>
<td>Display ground</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-14</td>
<td>+5 st</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-15</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12-16</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J13-1</td>
<td>Neutral from breaker</td>
<td><-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J13-2</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J13-3</td>
<td>Phase from breaker</td>
<td><-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J14-1</td>
<td>Neutral to heater SSR</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phase to heater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J14-2</td>
<td>Heat detect</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Neutral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J15-1</td>
<td>Neutral to obs light</td>
<td>-></td>
<td></td>
<td>(switched)</td>
<td></td>
</tr>
<tr>
<td>J15-2</td>
<td>Phase to obs light</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J16-1</td>
<td>Raise bed neutral</td>
<td>-></td>
<td></td>
<td>(switched)</td>
<td></td>
</tr>
<tr>
<td>J16-2</td>
<td>Lower bed neutral</td>
<td>-></td>
<td></td>
<td>(switched)</td>
<td></td>
</tr>
<tr>
<td>J16-3</td>
<td>Phase bed motor</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J17-1</td>
<td>Neutral to heater</td>
<td>-></td>
<td></td>
<td>(switched)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heat detect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J17-2</td>
<td>Neutral alarm light</td>
<td>-></td>
<td></td>
<td>(switched)</td>
<td></td>
</tr>
<tr>
<td>J17-3</td>
<td>Lamthouse Phase</td>
<td>-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alarm Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP-1</td>
<td>8 Vac unregulated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP-2</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- => off the board
- <- onto the board
1/Functional Description

TP-3 NC
TP-4 NC
TP-5 NC
TP-6 NC
TP-7 Control board ground
TP-8 NC
TP-9 +5.0 Vdc standby 5.0 ± 0.2 Vdc
TP-10 +5.0 Vdc LED supply 5.0 ± 0.2 Vdc
TP-11 Line voltage compensator 600mV at nom line in
TP-12 +9.0 Vdc standby 9.0 ± 0.2 Vdc

JP-1 Phase to safety relay (common controller)
JP-2 Neutral to safety relay
JP-3 Heat Detect to SSR/Heater (common controller)
JP-4 Phase to Heat Detect
JP-5 SSR to Neutral (common controller)
JP-6 SSR to Heat Detect

1.4.2 Power Supply Board (6600-0179-700)

This is a functional description for the IWS 2001/3000/3300/3500 Power Supply Board, Service Stock No. 6600-0180-700, used in units prior to the HCA serial number. Refer to Section 8 for a detailed circuit diagram.

The power supply board contains circuitry for the control and monitoring of voltage devices. The board also provides power to the control board and the display board. Also found on the board is a line voltage sensing circuit that provides an indication of line voltage to the microcontroller. The control circuits for each line voltage device on the power supply board are functionally identical with a logic High signal from the control board switching On the desired device. This is performed with an opto-isolator triac driver so low/line voltage circuits can interact but remain electrically isolated (2500 Vac dielectric). The heater is controlled from the supply board with an opto-isolator triac driver and triac. There is also a relay contact connected in series with the neutral to the heater triac. This is used to switch Off the heater if the heater triac fails or there is a failure on the control board. The regulator circuits provide a 5 Vdc supply to the display board, and 5 Vdc and 9 Vdc supplies to the control board. A NI-CAD battery supplies the 5 Vdc supply and a de-rated 9 Vdc supply for standby power, in the case of a power loss. Standby power of 9 Vdc is used to activate the transducer alarm, while the 5 Vdc supply provides power to the microcontroller and associated IC’s for memory retention purposes.

5 Volt LEDS

A nominal 8 Vac is input to the power supply board at J11 pins 3 and 4. The line frequency is also connected to the control board via J12 pin 2. The bridge
rectifier CR2 and capacitor C11 provide a filtered unregulated 8 Vdc to the relay, opto-isolators, and the regulator VR12. The 8 Vdc unregulated supply can be measured at TP-1. The unregulated supply must be a minimum of 7.32 Vdc for proper operation of the relay circuit. The output of regulator VR2 is nominally 5 Vdc and supplies power to drive the LEDs on the display board. The output is measurable at J12 pin 12 (TP-10). When the supply voltage is within 10% of nominal, the output voltage should be between 4.8 and 5.2 Vdc with a maximum load of 500 ma. The maximum allowable ripple voltage is 150 mV.

Line Voltage Sensing

A voltage of approximately 11 Vac from the transformer secondary is input to the board at J11 pins 1 and 2. Bridge rectifier CR1 and capacitor C12 provide a full wave, filtered voltage of approximately 12 Vdc. Resistor R3 is preset to produce an output of approximately 0.6 Vdc at J12 pin 11 (TP-11) when the line voltage is at the nominal value for the unit. The analog voltage signal at J12 Pin 11 connects to the control board and is fed into the A/D Converter, ADC 3711 (U6), via the multiplexer, MC14051B (U-13). The digital output of the A/D converter is input to the microcontroller where the software then adjusts the power to the heater to compensate for variations in line voltage.

9 Volt Standby

The output of regulator VR3 is adjusted by R4 to provide 9.0 ± 0.2 Vdc (TP12). This voltage is used for charging the NI-CAD battery, and supplying the input voltage to the 5 standby regulator.

5 Volt Standby

When line voltage is available, current flows from the output of VR3 and through CR5 to provide 9.0 ± 0.2 Vdc to the input of VR4, and to J12 pin 3 (TP-12). In turn, regulator VR4 outputs a voltage of 5.0 ± 0.2 Vdc to J12 pin 14 (TP-9) with a maximum ripple voltage of 150 mV. If power loss occurs with the unit switched On, the 7.2 Vdc NI-CAD battery maintains a de-rated output voltage of approximately 6.5 Vdc to pin 3 of J12 (TP-12). It also provides input to VR4. The output of VR4 only regulates to approximately 5.0 Vdc as the input voltage drops below 7.0 Vdc.

Observation Light and Alarm Lights

The control circuits for the observation light, and the alarm light are similar. The alarm circuit is a resistive load and does not have a snubber circuit in parallel with the load. The snubber circuit on the observation light supply protects the triac from large voltage spikes characteristic of inductive loads. If the control lines are logic Low, less than 0.45 Vdc, this keeps the Darlington switch, triac driver, and triac switched “Off”. The triac acts as a switch to the line voltage circuit, removing voltage from the load. When a device should be switched On, a logic High of 2.4 Vdc minimum is output to the corresponding Darlington switch. The Darlington switch switches On causing the LED of the
 Functional Description

isolator-driver to switch On. The isolator/driver output drives sufficient current to the triac gate, switching the triac On allowing the selected device to switch On.

Heater Status and Control

The heater circuitry consists of a monitoring circuit, a controller for the heater, and a relay to switch Off the heater in the event of a triac or system failure. The full wave bridge rectifier CR6 takes a sample (through R13) of the ac signal supplied to the heater and provides rectified dc to the opto-isolator U3. If the heater is On the dc output switches On the LED in the opto-isolator, except at voltage levels below the forward bias voltage. When the LED is On the transistor goes into saturation causing the output at J12 pin 1 to go Low (about 0.3 Vdc). When the heater is Off the dc signal is in the region of zero potential and there is insufficient forward bias voltage for the LED. This switches Off the transistor allowing capacitor C10 to charge causing J12 pin 1 to go high (5 Vdc). When the heater is switched On the LED switches the transistor On again, and the capacitor discharges. The Low output shows small glitches caused by the charge/discharge of the capacitor at every half cycle. The glitches are acceptable provided they do not exceed the trigger voltage of 1.4 Vdc for the 74LS132 on the Control Board.

The heater control circuit uses a zero crossing opto-isolator triac driver to isolate the line voltage from the low voltage circuits. Operation of the heater control and other line voltage controls differ only in the type of isolator used and the use of snubber circuits. When a logic High signal is sent to the heater control circuit from J12 pin 9 the output of the isolator will not switch On until the ac signal of the heater crosses the zero potential from a negative voltage. After the input line from the microcontroller goes Low, heat will not switch Off until the first zero crossing preceded by the negative half cycle. This provides zero crossing control of the heater switching. The time that the heater is On depends on the percent heat desired (controllable in 5% increments). The microcontroller also monitors the line voltage and adjusts the number of ac cycles that the heater is switched On. This provides heater compensation. If the line voltage is not at the nominal value, these two functions result in 60 levels of heat.

Relay

The relay circuit is used to switch Off the heater in the event of a triac or microcontroller failure. Under normal conditions the input line from J12 pin 10 is a logic High, 2.4 Vdc minimum. A logic High signal on the input from the control board switches On the Darlington switch causing the relay coil to energize and close the switch. If the Darlington switch input is a Low from the control board (0.5 Vdc max.), the Darlington switch switches Off and the relay contacts Open. The signal at J12 pin 10 comes from U1 on the control board.
which is a part of a logic/timing circuit independent of the microcontroller. A
minimum voltage of 7.2 Vdc is required to energize the relay coil. Therefore the
minimum allowable voltage for the 8 Vdc unregulated supply is 7.32 Vdc since
the Darlington switch has an internal voltage drop of 0.12 Vdc.

1.4.3 Power Supply Board (6600-0181/183-700)

This is a functional description for the Infant Warmer System Model 5000, 115
Vac and 220/240 Vac Power Supply Boards, Service Stock Numbers 6600-0182-
700 and 6600-0184-700, used in units prior tp the HCA serial number. Refer to
Section 8 for a detailed circuit diagram.

The power supply board contains circuitry for the control and monitoring of line
voltage devices. The board also provides power to the control board and the
display board. Also found on the board is a line voltage sensing circuit that
indicates line voltage magnitude to the microcontroller.

The control circuits for each line voltage device on the power supply board are
functionally identical, with a logic High signal from the control board switching
On the desired device. This is performed with an isolator so low/line voltage
circuits can interact but remain electrically isolated (2500 volt dielectric).

The heater is controlled from the supply board with a solid state relay switching
line voltage. There is also an electro-mechanical relay contact connected in
series with the neutral to the solid state relay. This is used to switch Off the
heater if the solid state relay fails or there is a failure on the control board.

The regulator circuits provide a 5 Vdc supply to the display board, and 5 Vdc and 9
Vdc supplies to the control board. A NI-CAD battery supplies the 5 Vdc supply, and a
derated 9 Vdc supply for standby power, in the case of a power loss. Standby power
of 9 Vdc is used to activate the transducer alarm, while the 5 Vdc supply provides
power to the microcontroller and associated IC’s for memory retention purposes.

5 Volt LEDs

A nominal 8 Vac is input to the power supply board at J11 pins 3 and 4. The line
frequency is also connected to the control board via J12 pin 2. The bridge recti-
fier CR2 and capacitor C11 provide a filtered unregulated 8 Vdc to the relay,
opto-isolators, and the regulator VR2. The 8 Vdc unregulated supply can be
measured at TP-1. The unregulated supply must be a minimum of 7.32 Vdc for
proper operation of the relay circuit.

The output of regulator VR2 is nominally 5 Vdc and supplies power to drive the
LED displays on the display board. The output is measurable at TP-10 (J12, Pin
12). When the supply voltage is within 10% of nominal, the output voltage
1/Functional Description

should be between 4.8 and 5.2 Vdc with a maximum load of 500 ma. The maximum allowable ripple voltage is 150 mV.

Line Voltage Sensing

A voltage of approximately 11 Vac from the transformer secondary is input to the board at J11 pins 1 and 2. Bridge rectifier CR1 and capacitor C12 provide a full wave, filtered voltage of approximately 12 Vdc. Variable resistor R3 is preset to produce an output of approximately 0.6 Vdc at J12 pin 11 (TP-11) when the line voltage is at the nominal value for the unit. The analog voltage signal at J12 Pin 11 connects to the control board and is fed into the A/D Converter, ADC 3711 (U6), via the multiplexer, MC14051B (U-13). The digital output of the A/D converter is input to the microcontroller where the measured value determines the duration of power pulses to the heater to compensate for variations in line voltage.

9 Volt Standby

The output of regulator VR3 is adjusted by R4 to provide 9.0 ± 0.2 Vdc (TP12). This voltage is used for charging the NI-CAD battery, and supplying the input voltage to the 5 Vdc standby regulator.

5 Volt Standby

When line voltage is available, current flows from the output of VR3 and through CR5 to provide 9.0 ± 0.2 Vdc to the input of VR4, and to J12 pin 3 (TP-12). In turn, regulator VR4 outputs a voltage of 5.0 ± 0.2 Vdc to J12 pin 14 (TP-9) with a maximum ripple voltage of 150 mV.

If power loss occurs while the unit switched On, the 7.2 Vdc NI-CAD battery maintains a derated output voltage of approximately 6.5 Vdc to pin 3 of J12 (TP-12). It also provides input to VR4.

Note: The output of VR4 only regulates to approximately 5.0 Vdc as the input voltage drops below 7.0 Vdc.

Heater Control and Status

The heater circuitry consists of a controller for the heater, a monitoring circuit, and a relay to switch Off the heater in the event of a relay or system failure.

The heater control circuit uses a solid state relay to isolate the line voltage from the low voltage circuits. Operation of the heater control and other line voltage controls differ only in the type of isolator used and the use of snubber circuits. When a logic High signal is sent to the heater control circuit from J12 pin 9 the output of the solid state relay will not switch On until the ac signal of the heater
Functional Description

crosses the zero potential from a negative voltage. After the input line from the microcontroller goes Low, heat will not switch Off until the first zero crossing preceded by the negative half cycle. This provides zero voltage crossing control of the heater switching. The time that the heater is On depends on the percent heat desired (controllable in 5% increments).

The microcontroller also monitors the line voltage and adjusts the number of ac cycles that the heater is switched On. This provides heater power compensation. If the line voltage is not at the nominal value, the combination of percentage power settings and power compensation can produce 60 durations of heater power pulses.

The full wave bridge rectifier CR6 takes a low voltage sample (through R13) of the ac signal supplied to the heater and provides rectified dc to the opto-isolator U3. If the heater is On the dc output switches On the LED in the opto-isolator, except at voltage levels below the forward bias voltage. When the LED is On the transistor goes into saturation causing the output at J12 pin 1 to go Low (about 0.3 Vdc). When the heater is Off the dc bridge output is in the region of zero potential and there is insufficient forward bias voltage for the LED. This switches Off the transistor allowing capacitor C10 to charge and causes J12 pin 1 to go high (5 Vdc). When the heater is switched On the LED switches the transistor On again, and the capacitor discharges. The low output shows small glitches caused by the charge/discharge of the capacitor at every half cycle. The glitches are acceptable provided they do not exceed the trigger voltage of 1.4 Vdc for the 74LS132 on the Control Board.

Relay

The relay circuit is used to switch Off the heater in the event of a triac or microcontroller failure. Under normal conditions the input line from J12 pin 10 is a logic High, 2.4 Vdc minimum. A logic High signal on the input from the control board switches On the FET causing the relay coil to energize and close the relay contacts. If the FET input is a Low from the control board, (0.5 Vdc max.) the FET switches Off and the relay contacts Open. The signal at J12 pin 10 comes from U1 on the control board which is a part of a logic/timing circuit independent of the microcontroller.

A minimum voltage of 7.2 Vdc is required to energize the relay coil. Therefore the minimum allowable voltage for the 8 Vdc unregulated supply is 7.32 Vdc, since the FET has an internal voltage drop of 0.12 Vdc.

Motor Up/Down Control

The bed up/down movement is controlled by separate raise bed or lower bed signals. When the raise bed or lower bed switch is selected, the logic High control signal (J12 pin 5 for raise and J12 pin 6 for lower) is buffered by an FET (U2 pin 5 for raise, U2 pin 3 for lower) which powers an opto-isolator. The output of the opto-isolator (U6 for raise, U5 for lower) triggers the triac gate (Q4 for
1/Functional Description

raise, Q3 for lower) which then switches the neutral supply for the motor. The motor is a combination inductive, capacitive and resistive load which requires a snubber network to minimize switching noise. This is achieved by R21/C17 for raise bed and R18/C16 for lower bed signals.

Note: When the bed is raised or lowered the heater control signal is inhibited, stopping heater power to minimize the units total current until the movement is completed.

Alarm Light Control

The alarm lights are controlled by a triac switching line voltage to the lamps. If the control lines are logic Low (less than 0.45 Vdc) the FET, triac driver, and triac remain switched Off. The triac acts as a switch to the line voltage circuit, removing voltage from the load.

When the lamps should be switched On, a logic High of 2.4 Vdc minimum is output to the corresponding U1, Pin 10 FET. The FET switches On, causing the LED of the isolator-driver (U8) to switch On. The isolator/driver output drives sufficient current to the triac gate, switching the triac (Q5) On, allowing the alarm lights to switch On. The alarm light is a resistive load and does not have a snubber circuit in parallel.

Observation Lamp Control

The observation lamp is controlled by a relay which switches line voltage to a transformer outputting 12 Vac to the lamp. The FET U1 pin 5 buffers the microcontroller signal and switches the control relay. The 12 Vac powers the observation lamp which is rated at 12 Volts, 50 watts.

1.5 ThermaLink Communication Option

The ThermaLink communications option allows direct output of serial data to various remote monitoring systems, such as a computer or commercial RS-232 monitor. This option is available on IWS models with software revision 5.00 or higher. Units with 4.01 software will require installation of 5.00 software, order kit no. 6600-0002-850 (Some 4.01 units have no J-9 connector, and will require a new control board). Units prior to 4.01 software will require installation of the EMI Noise Suppression Kit (see section 1.2), which includes 5.00 software.

The ThermaLink option board contains the electronic circuitry necessary to provide a 2500 VRMS isolated serial interface to meet the logic levels specified by EIA RS-232D and CCITT.V.28. Refer to section 8 for a detailed circuit diagram.

The MAX250 and MAX251 (U1 and U2), together with two 6N136 opto-couplers and transformer TR1, form an isolated RS-232 transmitter and receiver. The
Functional Description

MAX250 connects to the non-isolated or "logic" side of the interface, translating logic signals to and from the opto-couplers, while the MAX251 resides on the isolated or "cable" side, translating data between the opto-couplers and RS-232 line drivers and receivers. In addition to the opto-coupler drivers and receivers, the MAX250 also contains isolation transformer drive circuitry which supplies power to the isolated side of the interface, and the MAX251.

The transmit signal is input to the MAX250 driver (U1 pin 4) whose output (U1 pin 3) drives opto-coupler U4. The opto-coupler output (U4 pin 6) is then fed into the MAX251 driver (U2 pin 3).

The output of the MAX251 driver (U2 pin 12) is at the logic levels conforming to EIA RS-232D and CCITT V.28.

Conversely, the receive signal enters the MAX251 driver (U2 pin 10) and is stepped down to CMOS/TTL levels at U2 pin 5. This logic level drives optoisolator input (U3 pin 3) whose output is fed into U1 pin 10. The output (U1 pin 9) signal is then available to the control printed circuit board.

A slide switch SW1 is used as a "self test" for the RS-232 interface. In the closed position, the J30-1 transmit signal is sent through the MAX250/MAX251 transmitter and back into the receiver portions. The signal can be read at J30-2 and verified to be correct. Any external cable connection must be removed for this self test to function. CR1 and CR2 provide transient protection for MAX251. In normal operation SW1 should be in the open (OFF) position.

The nurse call signal is input at J30-5 as a TTL logic level. In the "no alarm" state, this signal is a logic high, which turns on Darlington Q1, energizing relay K1. This results in contact closure between J31-1 and J31-2. In the "alarm" state, J30-5 is a logic low, which turns off Q1, de-energizes K1 and results in contact closure between J31-2 and J31-3. K1 provides 2500 VRMS isolation between the relay coil inputs and contact outputs.
2.1 Setup

After removal from the shipping containers, inspect the Ohio Infant Warmer System and all accessory items for any signs of damage that may have occurred during shipment. File a damage claim with the shipping carrier if damage has occurred. Also confirm the presence of all accessory items or factory installed options as listed on the packing slip.

For Model 3050,3100 and 3150 wall mounted units, refer to the mounting instructions included in the Appendix.

2.2 Checkout Procedure

⚠️ WARNING: Do not perform the Checkout Procedure (Mechanical and Control Unit) while a patient occupies the warmer.

⚠️ WARNING: Perform this Checkout Procedure after servicing the warmer. Complete the Checkout in the Operation and Maintenance Manual before placing a patient in the Infant Warmer and between each use. If the unit fails any steps of the Checkout Procedure it must be removed from service and repaired.

Refer to the Troubleshooting Guide and the Disassembly and Repair Sections of this Service Manual. If an error code appears in the elapsed time display, refer to Section 6.3, Troubleshooting Error Codes. Refer servicing to qualified service personnel if the unit does not perform as specified.

2.2.1 Mechanical Checkout Procedure

A. Overall Appearance

1. Disconnect the power cord from the AC power source for the mechanical checks portion of this procedure.

2. Check the overall appearance of the warmer/bassinet system. There should be no obvious damage.

3. For the model 3500, separate the warmer from the bassinet.

4. For units with casters, check that all four casters are in firm contact with the floor and that the Infant Warmer moves freely.

For the model 3500, check that all six casters on the warmer move freely.

Note: On the 3500, it is possible that the two center casters may not be in contact with the floor at all times.
2/Setup and Checkout Procedures

5. Lock the two front casters and check that the warmer is held in place. On the 3500, lock the two rear casters and check that the warmer is held in place.

6. Examine the power cord for damage. Examine the power plug for loose or bent pins. Replace the power cord if the cord or plug is damaged.

⚠️ CAUTION: Insulation on electrical wiring deteriorates with age. Check for brittle or deteriorated insulation on power cord and all other electrical wiring.

7. For the model 3500, place the bassinet on a level surface. Check that all four casters are in firm contact with the floor and that the bassinet moves freely.

8. For the model 3500, lock the two front casters and check that the bassinet is held in place.

9. Examine the unit for objects placed on top of the heater assembly.

⚠️ WARNING: Do not place any accessories or other objects directly over the bed surface. This may block radiant energy and lead to cooling of the infant.

⚠️ WARNING: Do not place items on top of the heater assembly. Items placed on top of the heater assembly can fall and injure the patient, and prevent adequate ventilation of the heater assembly.

B. Heater Rotation

Rotate the heater to the side and then back to the normal position. Check for smooth rotation.

C. Mechanical Checks

1. Check the operation of the bed sides. The bed sides should operate smoothly and lock securely in place.

For the model 3500:

a. Unlock the ends by sliding the latch buttons outward to expose the red dots.

b. Check that the bed sides lower and raise smoothly.

c. Check that the ends lock by sliding the latch buttons to cover the red dots.

⚠️ WARNING: Regularly inspect the bed side panel latching mechanism, and the bedside locking mechanism on the model 3500, to ensure proper operation.
2/Setup and Checkout Procedures

2. Check the operation of the tilt mechanism. Verify that the bed platform operates smoothly and locks in normal, Trendelenburg and Fowler positions.

3. If the drawer package is installed, check that the 3 drawers open and close freely.

 On units with the rotating drawer package, push the corner and insure the drawer package moves freely left and right 90° and then seats in the detent position.

 △WARNING: Overloading the drawers can affect the stability of the unit. Limit the load to 10 lbs. (4.6 kg) per drawer.

4. For the model 3500 bassinet, remove the keys from the top drawer and lock it. Check that the drawer is securely held closed.

D. Warmer/Bassinet Interlock (model 3500 Only)

1. Lock the 3500 warmer’s two rear casters.

2. Align the bassinet with the warmer.

3. Push the bassinet over the alignment/locking track of the warmer.

4. Continue pushing the bassinet until its locking pin drops into the socket at the end of the alignment track. There should be an audible click when the pin drops into position.

5. Lightly push and pull the bassinet to verify that the two units are securely held together.

6. Unlock the two rear casters on the warmer and check that the combined unit moves smoothly.

E. Warmer/Bassinet Unlock (Model 3500 Only)

1. Verify that the two bassinet front casters are unlocked.

2. With the locking pin handle (located at the rear of the bassinet) raised, pull the bassinet forward until it is fully detached from the warmer.

 △CAUTION: To prevent the drawers from opening unintentionally while moving the detached bassinet, move it from the front only.

F. Accessory Checks

Perform these checks if they are applicable.
2/Setup and Checkout Procedures

1. Check that all accessories are mounted securely and that the load limits are not exceeded.

2. Check that all gas accessories are installed and operating properly. Check that the cylinders are mounted securely. Perform the leak check in section 5.8F.

 Check that the output from the regulator(s) is 52 ± 2 psig (4 bar in U.K.) with an approximate 500 cc/min flow rate (refer to section 4). If adjustment is required, refer to Section 4.3.

3. If an Ohmeda airway manometer will be used, verify that it reads 0 Kpa at atmospheric pressure. If it is necessary to zero the manometer, unscrew the plastic bezel. Turn the screw located below the 4 Kpa mark on the dial face until the needle reaches zero. It may be necessary to loosen the two lower adjustment screws, adjust the needle by turning the upper screw, and re-tighten the two lower screws. A final fine adjustment may be necessary after the two lower screws are tightened. Be sure the lower screws are tight before using the manometer. Replace the bezel. Check that the manometer registers positive and negative pressures, and is not damaged or loose.

4. Where applicable, perform the checkout procedures detailed in the Operation and Maintenance Manuals for the accessories.

 WARNING: Overloading the shelves can affect the stability of the unit. Limit the load to 20 lbs. (9 kg) per instrument shelf, mounted to a single upright, and 50 lbs (23 kg) per monitor shelf, mounted between the uprights.

 WARNING: Limit the load of accessories to 50 lbs. (23 kg) per side of the infant warmer. Accessories should not be mounted more than 56 inches (142cm) above the floor. For models 3000 and 3500, limit the load of accessories to 20 pounds (9kg) maximum per side mounted no more than 44 inches (112cm) above the floor.

 WARNING: Due to the increased height of units with the ECMO option installed, a tipping hazard exists. Limit the total load of accessories to 50 lbs. (23 kg), no more than 25 lbs. (11 kg) per side of the infant warmer.

G. Wall Mount Check Out Models 3050, 3100 and 3150

1. Verify that the heater assembly is rigidly secured to the wall and is level.

 Note: To access the control unit and display module for service procedures, hinge pins may be removed on one side or the other, allowing the warmer to pivot away from the wall to the service position.

2. Check that all hinge pins are in place and fully inserted with the pin heads at the top of the hinge.
2/Setup and Checkout Procedures

⚠️ **WARNING:** In the service position, never place a patient in the bed when the heater is in the service position. Never leave the unit unattended in the service position or with either pin removed.

![Wall mount pin insertion](image)

Figure 2-1 Wall mount pin insertion

2.2.2 Control Unit Checkout Procedure

A. Control Unit Check

1. Connect the Infant Warmer power cord to an appropriate power source. Refer to the rating plate on the Warmer System for the proper voltage needed. Switch the power On and verify the following on the Control Panel (Figure 2-2):

 a. The alternating two tone audible alarm sounds and all displays and indicators are lit for approximately two seconds.

 b. The software version appears in the elapsed time display.

 Note: During this time the controller also performs self check functions. If the controller detects a failure, the alarm stays on and service is required.

 c. The manual mode indicator is lit.

 Note: The IWS 2001 International does not have a manual mode indicator.

 d. Operator prompt tones sound and the % power display flashes.

2. Adjust the heat output with the increase (▲) and decrease (▼) touch switches to attain the high and low limits as indicated by the % power display.

 Note: Steps 3 through 8 do not apply to the model 2001 international.

3. Connect the skin temperature probe to the warmer.

4. Press the mode switch to place the warmer in the servo mode and verify the following:
Figure 2-2 Typical Infant Warmer System Control and Display Panel

Note: An alternating two tone alarm, a flashing overhead alarm light and the patient temperature display flashing “LL.L” may occur here if the skin temperature probe is below 30°C. Warm the probe with your fingers or silence the alarm.

a. The servo mode indicator is lit.

b. An operator prompt tone sounds and the control temperature display flashes 36.5°C.

5. Press the increase (▲) touch switch and verify that the maximum servo control temperature attainable is 37.5°C.

Note: A patient temperature alarm occurs if the difference between the patient temperature and the control temperature is greater than 1°C (the alarm can be adjusted to 0.5°C by a qualified service person. Refer to Section 3.2, Changing the Patient Temperature Alarm Limits, for details).

6. Press the decrease (▼) touch switch and verify that the minimum servo control temperature attainable is 35.0°C.

7. Disconnect the skin temperature probe. Verify the following:
 a. The probe failure indicator light is lit.
 b. There is alternating two tone alarm.
2/Setup and Checkout Procedures

c. The overhead alarm light is lit.

d. The patient temperature display flashes “HH.H”.

8. Press the alarm silence switch and verify the following:
 a. The probe failure indicator light is lit.
 b. The audible alarm is silenced.
 c. The overhead alarm light is lit.
 d. The patient temperature display indicates “HH.H”.
 e. After one minute, the alternating two tone alarm sounds, the overhead alarm flashes and the patient temperature display flashes “HH.H”.

9. Switch to the manual mode and set the heat at 25% power.

B. Elapsed Timer Check

1. Press the Start/Hold touch switch to activate the elapsed timer. Verify that the timer starts operating.

2. Press the On/Off touch switch for the Apgar tones. Verify that the indicator light for the Apgar tones is extinguished.

3. Press the On/Off touch switch for the Apgar tones again. Verify that the indicator light for the Apgar tones is lit.

4. Press the Start/Hold touch switch. Verify that the present elapsed time is held.

5. Press the Start/Hold touch switch and verify that the timer updates to the current elapsed time and the Apgar tones continue to sound at the specified times (at 1 minute and at every 5 minute interval after the elapsed timer has started).

6. Press the Reset touch switch and verify that the timer indicates “00:00”. If the elapsed timer is not used for approximately two minutes, the display switches off.

C. Observation Light Check

Press the Light On/Off touch switch. Verify that the observation light functions.
2/Setup and Checkout Procedures

D. Raise and Lower Bed Switch Check (Elevating Models Only)

⚠️CAUTION: Do not continue to run the motor at the upper and lower limit positions; equipment damage may result.

1. Press the raise bed touch switch and verify that the bed raises to a maximum of 46 1/2 inches (118 cm) off the floor.

2. Press the lower bed touch switch and verify that the bed lowers to a minimum of 38 1/2 inches (98 cm) off the floor.

E. Interlock Switch Check

1. Place the Infant Warmer in the manual mode at 25% power output.

2. Rotate the heater assembly 90° to the side. Verify that the heater Off indicator light is On and the % power display indicates 0% heat.

3. Rotate the heater assembly to the normal operating position. Verify that the heat Off indicator light is Off and the % power display indicates 25%.

F. Power Failure, Memory Test and Battery Test
 (For model 2001 international see next page)

1. Operate the unit in the manual mode with the heat set in the “pre-heat” range for a minimum of one hour to charge the battery.

 Note: The battery must be fully charged to pass the ten minute test or partially charged to pass the two minute test. If the battery is defective, replace it with an Ohmeda NI-CAD rechargeable battery. There is no maintenance required for the battery. The battery has a two year replacement schedule.

⚠️CAUTION: Replace only with Ohmeda NI-CAD rechargeable Battery (Stock No. 0690-1000-130).

2. Disconnect the patient temperature probe.

3. Place the warmer in the servo mode.

4. Silence the probe failure alarm.

5. Set the control temperature at 37.0°C.

6. Remove the warmer power plug from the power source for two minutes. Do not switch the power Off. The power failure alarm should sound for two minutes.
Note: If the power failure alarm is tested for ten minutes, the warmer must be connected to the correct power source and operated in the manual mode at the 0% heat setting for 24 hours to recharge the battery before allowing a patient to occupy the warmer.

Note: The power failure alarm will not operate if the circuit breaker trips.

7. Reconnect the warmer to the power source. Verify the following:
 a. The warmer is operating in the servo mode.
 b. The control temperature is 37.0°C.
 c. The audio power failure alarm is Off.

Power Failure, Memory and Battery test for 2001 International model

1. Select 25% heater power.

2. Remove the warmer power plug from the power source for two minutes. Do not switch the power OFF. The power failure alarm should sound for two minutes.

3. Reconnect the warmer to the power source and verify the following:
 a. The heater is operating at 25% power.
 b. The audio power failure alarm is off.

G. Calibration Check

1. Press and hold the Start/Hold touch switch for five seconds.

2. Check the values in the display fields:
 a. The patient temperature reads 25.0 ± 0.3°C.
 b. The control temperature reads 37.9 ± 0.3°C

 Note: IWS 2001 International units do not have a control temperature display.

 c. The elapsed time display reads ten times % nominal line voltage ± 2%.

 Note: Measure the outlet voltage and read the corresponding percent of your unit’s nominal voltage from the following table. The outlet voltage selects the row and the unit’s nominal voltage sets the column. For example, if the line voltage measures 110 Vac for a 115 Vac nominal unit, the % nominal voltage is 95% and 950 ± 20 will appear in the elapsed time display.
2/Setup and Checkout Procedures

<table>
<thead>
<tr>
<th>Line (Outlet) Voltage</th>
<th>% Nom. Line Voltage x10</th>
</tr>
</thead>
<tbody>
<tr>
<td>95V Nom.</td>
<td>115V Nom.</td>
</tr>
<tr>
<td>86</td>
<td>104</td>
</tr>
<tr>
<td>87</td>
<td>105</td>
</tr>
<tr>
<td>88</td>
<td>106</td>
</tr>
<tr>
<td>89</td>
<td>107</td>
</tr>
<tr>
<td>90</td>
<td>109</td>
</tr>
<tr>
<td>91</td>
<td>110</td>
</tr>
<tr>
<td>92</td>
<td>111</td>
</tr>
<tr>
<td>93</td>
<td>112</td>
</tr>
<tr>
<td>94</td>
<td>113</td>
</tr>
<tr>
<td>95</td>
<td>114</td>
</tr>
<tr>
<td>96</td>
<td>115</td>
</tr>
<tr>
<td>97</td>
<td>116</td>
</tr>
<tr>
<td>98</td>
<td>117</td>
</tr>
<tr>
<td>99</td>
<td>118</td>
</tr>
<tr>
<td>100</td>
<td>119</td>
</tr>
<tr>
<td>101</td>
<td>120</td>
</tr>
<tr>
<td>102</td>
<td>121</td>
</tr>
<tr>
<td>103</td>
<td>122</td>
</tr>
<tr>
<td>104</td>
<td>123</td>
</tr>
<tr>
<td>105</td>
<td>124</td>
</tr>
</tbody>
</table>

3.† Check the RS-232 circuitry. Short pins 2 and 3 of the RS-232/Nurse Call connector. Press the Apgar Tones switch while powering up the unit. Release the switch when a continuous alarm sounds. If the RS-232 option is functioning, the temperature displays will cycle to a frame that shows "rs 232 PASS". Conversely, if the RS-232 circuitry is not functioning or is not installed, the temperature displays will cycle to frame that shows "rs 232 FAIL". Turn off the unit to exit this test mode. Remove short from pins 2 and 3.

4.† Check the Nurse Call circuitry by rotating the heater to the X-ray position to trigger a heater off alarm. Under the "no alarm" condition, verify contact closure between pins 1 and 6 and no contact closure between pins 1 and 9 of the RS-232/Nurse Call connector. Under the alarm condition, verify contact closure between pins 1 and 9 and no contact closure between pins 1 and 6.

†Option available only on units with software revision 5.00.
This section describes how to reconfigure standard warmers to meet special clinical needs.

3.1 Converting Units for Operating Room Use

Reversing the display module's display panel allows an anesthesiologist to monitor patient temperature. If this operating room conversion is desired, follow the next steps.

A. Disassembly for Reversal

1. Remove all 4 mounting screws from the bottom of the display module and set them aside.

2. Disassemble the display module, performing steps 1 through 7 in section 5.2C - "Display Module Disassembly".

3. Remove both the control board and power supply boards, performing all the steps in section 5.2B - "Control Board Removal" and "Power Supply Board Removal".

For units with Software Revision 4.01 or higher, perform steps 4 through 6.

4. Thread the shielded display ribbon cable out of the slot in the top of the display module. Set aside the 2 spring clips that secure it to the shield. See Figure 5-10.

5. Remove the nuts and washer that secure the display board to the ESD shield. Remove the ground wire, if present.

6. Separate the display board from the ESD shield, but leave the ribbon cable connected to the display board.

B. Ribbon Cable Preparation

(Only for units with Software Revision 4.01 of higher)

1. Peel back the foil ESD shielding wrapped around the ribbon cable, taking care not to tear it.

2. Untwist the bend in the ribbon cable, so that the cable lies flat.

3. Re-wrap the foil ESD shielding around the cable, taking care to keep the shielding as close to the control board end connector as possible.
3/Warmer Modifications

![Diagram of display module parts](image)

Figure 3-1 Turning the Display Board

C. Reversing the Display

For units prior to Software Revision 4.01, omit steps 1 through 6.

1. Place 2 flat washers on each of the display board stand-offs.

2. Attach the assembled display board and display panel to the ESD shield, turning them 180° as shown in Figure 3-1, so that the display panel assembly stand-offs fit the second set of holes in the shield. Figure 5-10 shows the ground wire attached to the top left stand-off. Reattach the ground wire (if present) to the bottom right stand-off as shown in Figure 3-2.

3. Thread the flattened ribbon cable through the rectangular slot formed by the folded-in flaps of the control board ESD shield and through the matching slot in the shield.

4. Thread the display board ribbon cable through the slot in the top of the display module and the slot in the control board shield. Pull any slack in the ribbon cable back up into the control unit, so that the end of the cable's foil wrapped shielding shows in the middle of the slot in the folded-in flaps. See Figure 3-2.

5. Flip over the reassembled display board, display panel assembly and display ESD shield, and slide it into the slot in the back of the display module top, so the display panel faces back, away from the warmer bed. The ribbon cable will now pass in front of the unshielded side of the display board, not behind it as it would in standard display module orientation.

6. Figure 5-5 shows the ribbon cable secured to the ESD shield with both spring clips on the right side of the cable. Re-secure the ribbon cable with a spring clip on either side of where the cable passes through the rectangular slot in the display board ESD shield. See Figure 3-2.
3/Warmer Modifications

7. Slide the rear panel into the slot in the front of the display module top, so that it faces toward the warmer bed.

8. Reattach the display board ground wire (if present) to the fastons on the rear display panel. Verify that the 2 spring clips that secure the display board ESD shield to the display module top cover, and the 2 spring clips that hold the display ribbon cable to the ESD shield, are still firmly in place.

9. Reinstall the bottom cover of the display module. Be careful not to overtighten the 4 cover mounting screws.

![Diagram of display module and its components]

Figure 3-2 Flipping the display

D. Control Unit Reassembly

1. Install the power supply board, performing all the steps in 5.2B- "Power Supply Board Installation".

2. Install the control board, performing all the steps in 5.2B - "Control Board Installation".

3. Complete Section 2.2.2 control unit checkout procedure prior to putting the unit back in service

3.2 Changing Patient Temperature Alarm Limits

(See Figure 3-3)

The patient temperature alarm occurs if the difference between the patient temperature and the control temperature is greater than 1°C. This procedure allows that difference to be adjusted to 0.5°C.
3/Warmer Modifications

Note: This procedure does not apply to IWS 2001 International units, which are manual mode only warmers and do not have patient temperature alarms.

1. Disconnect the power cord from the AC power source.

2. Remove the control cover. Fold down the ESD shield (if present) to access the control board.

3. If the dipswitch on the control board has 8 switches, set switch 4 to ON. If the dipswitch has 4 four switches, set 1 and 2 ON, and 3 and 4 OFF.

4. Bend the ESD shield (if present) back up into place.

5. Replace the 2 cover screws for the control unit cover.

6. Complete Section 2.2.2 control unit checkout procedure prior to putting the unit back in service.

![Diagram of control board and switches]

Figure 3-3 Accessing Control Board Switches

3.3 Lowering Heater and Bed Height

(Non-elevating Models Only)

A. Control Module Removal

(See Figure 5-6)

1. Disconnect the warmer power cord from the AC power source.

2. Remove the two center mounting screws from the bottom of the display module.
3/Warmer Modifications

3. Remove the two mounting screws for the control unit cover and remove the cover. Fold the ESD shield, if present, down away from the control board.

4. Disconnect the two connectors, J17 and the three pin chassis connector for the observation light to the right of the power board. Squeeze the locking tabs on the rear of the plug to disengage the lock mechanism.

5. Loosen the four corner mounting screws for the control unit and carefully remove the control module. Place the control unit on a flat surface so it rests on the transformers.

B. Heater and Bed Height Adjustment

1. To adjust bed height, remove the eight mounting screws on the back of the lower cross bar extrusion, remove the rear cover plate, and set them aside.

2. Loosen the ground screw(s) on the inside left and right hand sides of the lower and upper cross bar extrusions.

3. On the lower cross bar extrusion, loosen the upper and lower nuts of the left and right locking lug assemblies. Carefully adjust the bed height by moving the lower cross bar down until the desired floor to bed mattress height is achieved.

4. On the lower cross bar extrusion, retighten the upper and lower nuts of the left and right locking lug assemblies and torque to 125 ± 5 lb-in.

5. To adjust heater height, loosen the upper and lower nuts of the left and right locking lug assemblies on the upper cross bar extrusion. Carefully adjust the heater height by moving the upper cross bar down until the distance from the heater grill to center of the bed mattress is 27 ± 2 in. (69 ± 5cm).

WARNING: Bed to heater spacing which differs from the specified 27 inches ± 2 inches (69 ± 5cm) will result in incorrect operation and may adversely affect patient condition.

6. On the upper cross bar extrusion, retighten the upper and lower nuts of the left and right locking lug assemblies and torque to 125 ± 5 lb-in.

7. Retighten the ground screws on the inside left and right hand sides of the lower and upper cross bar extrusions and torque to 25 ± 5 lb-in.

8. Replace the rear cover plate on the back of the lower cross bar extrusion and tighten in place using the eight mounting screws set aside in step 1 above.
3/Warmer Modifications

C. Control Module Replacement

(See Figure 5-6)

1. Carefully place the control module in position and tighten the four mounting screws for the control unit.

2. Reconnect the two connectors, J17 and the three pin chassis connector to the right of the power board to the power supply board.

3. Hold the display module in position and replace the two inside mounting screws on the bottom.

4. Bend the ESD shield (if present) back up into place.

5. Place the control unit cover in position and replace the two mounting screws.

6. Perform the electrical safety and the calibration procedures in Section 4. Perform the checkout procedures detailed in Section 2.2.
IWS models shipped with Serial Number HCA or higher have a electronic controller common to all models. This change was made to simplify servicing future IWS models, to incorporate changes necessary to comply with international standards, and to minimize susceptibility to EMI.

All IWS units with software revision 4.01 or higher have controller board identified by the presence of an eight position dip switch. Refer to Section 4.1 for calibration and adjustment of this controller board.

To facilitate service of IWS product with a controller board software revision prior to 4.01 (Control Board Part No. 6600-0048-700), a separate section on Calibration and Adjustment has been included. This older controller board is identified by the four position dip switch. Refer to Section 4.2 for calibration and adjustment of Infant Warmers with this controller board.

⚠️ WARNING: Use extreme care while performing calibration and adjustment procedures, or while working on the Infant Warmer System with power connected. An electrical shock hazard does exist; be certain to observe all safety precautions.

⚠️ CAUTION: Use the Static Control Work Station (Stock No. 0175-2311-000) to help ensure that static charges are safely conducted to ground. The Velostat material is conductive. Do not place electrically powered circuit boards on it.

Note: The audio alarm will sound for about 2 seconds whenever powering up the unit.

Note: Warm up the unit for 5 minutes before making these adjustments.

4.1 Controller Calibration (Software Revision 04.01 or higher)

⚠️ This section is to be used for calibration and adjustment of Infant Warmer Systems with Software Revision “4.01” or higher (i.e. control board service stock number 6600-0223-800). Refer to Section 8 for detailed circuit diagrams.

The controller board contains an eight position dip switch. The state or configuration of each switch position may change, i.e. On or Off, during the calibration procedure, depending on the adjustment procedure. The function of
4/Calibration and Adjustments

Each switch position and the normal state is given below:

<table>
<thead>
<tr>
<th>Function</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTG Alarm 1.0 °C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PTG Alarm 0.5 °C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS-232 Normal Mode</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RS-232 Reserved</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Normal Operation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Service Loop/</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS 232 Diagnostics Mode</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A/D Calibration Loop</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RS-232 Diagnostics Mode</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

X = no effect (but should remain in “Off” position) 0 = Off 1 = On

4.1.1 Control Unit Access

1. Disconnect the power cord for the Infant Warmer System from the wall outlet.

2. Remove the mounting screws for the controller cover. Remove the controller cover.

3. Fold the ESD shield down (if present), away from the controller board.

4. Note the positions of the test switch S1 located on the control board before performing the operations in this section. Be sure to replace the test switch to these original positions before returning the unit to service.

4.1.2 Power Supply Board Voltages

1. All eight positions on test switch (S1) should be Off.

2. Connect the controller assembly to an appropriately rated power source (listed voltage ± 10%), and switch the power switch On.

 Note: You will go through the normal start up routine. Patient temperature alarms may trigger.

3. Check that the following dc voltages are present at the test connector (T1) located on the control board. Voltages should be within the tolerances specified; otherwise follow the recommended corrective action:

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Reading</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP7 Ground (common)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TP3 (9.0 Vdc ST.)</td>
<td>9 ± 0.2 Vdc</td>
<td>adjust R4 on Power Supply PCB</td>
</tr>
<tr>
<td>TP4 (5.0 Vdc LEDS)</td>
<td>5 ± 0.3 Vdc</td>
<td>replace Power Supply PCB</td>
</tr>
<tr>
<td>TP5 (5.0 Vdc ST.)</td>
<td>5 ± 0.3 Vdc</td>
<td>replace Power Supply PCB</td>
</tr>
</tbody>
</table>
4/Calibration and Adjustments

4. If no corrective actions are required, continue with Section 4.1.3, Display Brightness, at step 2.

4.1.3 Display Brightness Check

Note: The display brightness is pre-calibrated at the factory and should only require adjustment if replacing a component on the display board.

Test Procedure

1. All eight positions on controller board test switch (S1) should be Off. Connect the controller assembly to an appropriately rated power source and switch the power switch On.

2. Hold the Alarm Silence switch down for five seconds.

3. Check that all the displays are illuminated and are of uniform brightness.

Note: IWS 2001 International units do not have a control temperature display, servo mode indicator, or probe failure indicator.

4. If the displays are acceptable proceed to Section 4.1.4, Alarm Volume, at step 2. If the displays are not illuminated adequately proceed with the adjustment procedure.

Adjustment Procedure

△ CAUTION: The back panel and display panel may drop down when the bottom cover mounting screws are removed. Be sure to secure the panels with tape before disassembly.

1. Switch the power switch Off and unplug the unit.

2. Tape the display panel and back panel to the top cover.

3. Remove the four outside corner mounting screws from the bottom of the display panel. Do not remove the two inside mounting screws. Remove the bottom display cover by sliding it down.

4. Fold out the bottom edge of the ESD shield to access the display board. Connect a digital voltmeter across R10, located on the bottom edge of the display board.

5. Connect the controller assembly back to the appropriately rated power source.

6. Depress and hold down the Start/Hold switch while you switch the power
4/Calibration and Adjustments

switch On to enter the ADC calibration routine. "CAL" appears in the patient temperature display and "AdC" appears in the control temperature display.

7. Adjust R9 on the display board until the voltage across R10 is 3.30 ± 0.2 Vdc.

8. Switch the power switch Off and then back On and verify that all segments of all displays are illuminated and are of uniform brightness.

9. Switch the power switch Off.

10. Fold the edge of the ESD shield back into place. Replace the bottom of the display panel using the four screws previously removed.

11. Continue with Section 4.1.4, Alarm Volume, at step 2.

4.1.4. Alarm Volume

Note: The alarm volume and frequency are pre-calibrated at the factory and should only require adjustment if a related control board component is replaced.

Test Procedure

1. All eight positions on controller board test switch (S1) should be Off. Switch the Infant Warmer On.

2. Activate the alarm by selecting the servo mode and unplugging the patient probe, or alternatively, hold down the Alarm Silence switch for five seconds (IWS 2001 International models). You should hear an intermittent tone for the first 30 seconds, followed by an alternating two tone alarm.

3. Ensure the alarm tone and volume are at the desired levels. Verify that the audio alarm level is adequate in a location with a background noise level of 55 dBA max. If the audio alarm level is acceptable, continue with Section 4.1.5, Analog to Digital Converter Calibration, at step 3. If the audio alarm level is unacceptable, continue with the adjustment procedure.

Adjustment Procedure

1. Switch the power switch Off.

2. All eight positions on controller board test switch (S1) should be Off. Depress and hold down the Start/Hold switch while you switch the power switch On to enter the ADC calibration routine.

3. Verify that the frequency at pin 1 of the control board test connector is 2 kHz

4/Calibration and Adjustments

± 0.1 kHz. Adjust R38 on the control board as required to achieve the desired sound level.

Note: If test equipment is not available for checking the 2 kHz frequency, adjust R38 for maximum sound level.

4. Verify that R37 on the control board is set fully CW (maximum volume).

5. Continue with Section 4.1.5, Analog to Digital Converter Calibration.

4.1.5 Analog to Digital Converter (ADC) Calibration

1. Switch the power switch Off.

2. All eight positions on controller board test switch (S1) should be Off. Connect the controller assembly to an appropriately rated power source and switch the power switch On and allow the unit to stabilize for 5 minutes.

3. Connect the following resistances to the patient jack and verify the patient temperature readings:

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Setting</th>
<th>Patient Temperature Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5496 Ω ± 0.1%</td>
<td>I2</td>
<td>39.0 ± 0.1 degrees</td>
</tr>
<tr>
<td>7060 Ω ± 0.1%</td>
<td>I3</td>
<td>33.0 ± 0.1 degrees</td>
</tr>
<tr>
<td>5900 Ω ± 0.1%</td>
<td>I7</td>
<td>37.3 ± 0.1 degrees</td>
</tr>
<tr>
<td>6190 Ω ± 0.1%</td>
<td>I11</td>
<td>36.2 ± 0.1 degrees</td>
</tr>
</tbody>
</table>

4. Depress the Apgar Start/Hold switch for five seconds.

5. Verify that the correct values appear for the cal low and cal high resistors:

 Patient temp: 25.0 ± 0.3°C (cal low signal; 1 decimal place)
 Control temp: 37.9 ± 0.3°C (cal high signal; 1 decimal place)

 Note: Only the cal low reading appears on IWS 2001 International units, which do not have a control temperature display.

6. If the displayed values are within tolerances, continue with Section 4.1.6, Line Voltage Compensation. Otherwise, record if the temperatures differ from their target values by more than a half degree centigrade and continue with the adjustment procedure.

Adjustment Procedure

Note: If the unit is cold, let it operate for five minutes before starting this adjustment.
4/Calibration and Adjustments

1. Switch the power switch Off.

2. Depress and hold down the Start/Hold switch while you switch the power switch On to enter the ADC calibration routine.

3. Connect a resistance of 5900 Ω ± 0.1% to the patient probe connector.

 Note: 5900 Ω ± 0.1% is switch setting I7 on the temperature simulator box.

4. If the temperature displays in the calibration check differed from the target values by less than half a degree centigrade, continue with step 5. Otherwise:
 a. Connect a voltmeter between pins 10 and 7 of the control board test connector.
 b. Set the voltage at TP10 to 2.000 Vdc by adjusting R44.
 c. Connect the voltmeter between pins 9 and 7 of the control board test connector.
 d. Set the voltage at TP9 to 0.368 Vdc by adjusting R52. Then, disconnect the voltmeter.

5. Connect a resistance of 5900 Ω ± 0.1% to the patient probe connector. Adjust R52 to obtain a reading of 37.37 ± 0.02°C in the elapsed time display.

 Note: The decimal point does not appear. Although the tolerance is ± 0.02°C, the readings should be adjusted as closely as possible to the nominal value; the ± 0.02°C allows for variation in measured temperature due to system noise, etc.

6. Connect a resistance of 7686 Ω ± 0.1% to the patient probe connector. Adjust R44 to obtain a reading of 31.09 ± 0.02°C in the elapsed time display.

 Note: 7686 Ω ± 0.1% is switch setting I1 on the temperature simulator box.

7. Repeat steps 5 and 6 until no further adjustment is required.

8. Switch the power switch Off, wait 5 seconds and switch the power switch back On.

9. Connect the following resistances to the patient probe connector and verify the correct temperature readings appear in the patient temperature display.
4/Calibration and Adjustments

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Switch Setting</th>
<th>Patient Temperature Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5496 Ω ± 0.1%</td>
<td>(I2)</td>
<td>39.0 ± 0.1 degrees</td>
</tr>
<tr>
<td>7060 Ω ± 0.1%</td>
<td>(I3)</td>
<td>33.0 ± 0.1 degrees</td>
</tr>
<tr>
<td>5900 Ω ± 0.1%</td>
<td>(I7)</td>
<td>37.3 ± 0.1 degrees</td>
</tr>
<tr>
<td>6190 Ω ± 0.1%</td>
<td>(I11)</td>
<td>36.2 ± 0.1 degrees</td>
</tr>
</tbody>
</table>

Note: The resistance values shown above are available on the Temperature Simulator. The switch positions are listed in parentheses.

10. Continue with Section 4.1.6, Line Voltage Compensation.

4.1.6. Line Voltage Compensation

⚠️ **WARNING:** Use extreme care while performing calibration and adjustment procedures, or while working on the Infant Warmer System with power connected. An electrical shock hazard does exist; be certain to observe all safety precautions.

Test Procedure

1. Switch the power switch Off.

2. All eight positions on test switch (S1) should be Off.

3. Use a Digital Volt Meter and measure the line voltage at the wall outlet.

4. Connect the controller assembly to an appropriately rated power source and switch the power switch On.

5. Read the corresponding percent of your unit’s nominal voltage from the following table. The outlet voltage selects the row and the unit’s nominal voltage selects the column. For example, if the line voltage measures 110 Vac for a 115 Vac nominal unit, the % nominal voltage is 95% and 950 ± 20 should appear in the elapsed time display in step 7.

Note: Record this value from the table for later use.
4/Calibration and Adjustments

<table>
<thead>
<tr>
<th>95V Nom.</th>
<th>115V Nom.</th>
<th>220V Nom.</th>
<th>230/240V Nom.</th>
<th>% Nominal (Nom.) Line Voltage x10 (Elapsed time display)</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>104</td>
<td>199</td>
<td>217</td>
<td>900±20</td>
</tr>
<tr>
<td>87</td>
<td>105</td>
<td>201</td>
<td>219</td>
<td>910±20</td>
</tr>
<tr>
<td>88</td>
<td>106</td>
<td>203</td>
<td>221</td>
<td>920±20</td>
</tr>
<tr>
<td>89</td>
<td>107</td>
<td>205</td>
<td>224</td>
<td>930±20</td>
</tr>
<tr>
<td>90</td>
<td>109</td>
<td>207</td>
<td>226</td>
<td>940±20</td>
</tr>
<tr>
<td>91</td>
<td>110</td>
<td>210</td>
<td>229</td>
<td>950±20</td>
</tr>
<tr>
<td>92</td>
<td>111</td>
<td>212</td>
<td>231</td>
<td>960±20</td>
</tr>
<tr>
<td>93</td>
<td>112</td>
<td>214</td>
<td>233</td>
<td>970±20</td>
</tr>
<tr>
<td>94</td>
<td>113</td>
<td>216</td>
<td>236</td>
<td>980±20</td>
</tr>
<tr>
<td>95</td>
<td>115</td>
<td>220</td>
<td>240</td>
<td>1000±20</td>
</tr>
<tr>
<td>96</td>
<td>117</td>
<td>223</td>
<td>243</td>
<td>1010±20</td>
</tr>
<tr>
<td>97</td>
<td>118</td>
<td>225</td>
<td>245</td>
<td>1020±20</td>
</tr>
<tr>
<td>98</td>
<td>119</td>
<td>227</td>
<td>248</td>
<td>1030±20</td>
</tr>
<tr>
<td>99</td>
<td>120</td>
<td>229</td>
<td>250</td>
<td>1040±20</td>
</tr>
<tr>
<td>100</td>
<td>121</td>
<td>232</td>
<td>253</td>
<td>1050±20</td>
</tr>
<tr>
<td>101</td>
<td>122</td>
<td>234</td>
<td>255</td>
<td>1060±20</td>
</tr>
<tr>
<td>102</td>
<td>124</td>
<td>236</td>
<td>257</td>
<td>1070±20</td>
</tr>
<tr>
<td>103</td>
<td>125</td>
<td>238</td>
<td>260</td>
<td>1080±20</td>
</tr>
<tr>
<td>104</td>
<td>126</td>
<td>240</td>
<td>262</td>
<td>1090±20</td>
</tr>
<tr>
<td>105</td>
<td>127</td>
<td>243</td>
<td>265</td>
<td>1100±20</td>
</tr>
</tbody>
</table>

6. Depress the Start/Hold switch for five seconds.

7. Verify that the value in the elapsed time display equals the percent of nominal voltage read from the table in step 5.

8. If the displayed values are within tolerances, continue with Section 4.3, Oxygen/Air Regulator Checks and Adjustments. Otherwise, continue with the adjustment procedure below.

Adjustment Procedure

1. Switch the power switch Off.

2. Depress and hold down the Reset switch while you switch the power switch On to enter the % Line Voltage Calibration routine.

3. Slowly adjust R3 on power supply board as required until the elapsed time display equals the value read from the table in step 5 of the test procedure.

4. Continue with Section 4.3, Oxygen/Air Regulator Checks and Adjustments.

4.2 Controller Calibration (Prior to Software Revision 04.01)

This section has been included to facilitate service of IWS product with controller board with a Software Revision prior to 4.01. Refer to Section 8 for a detailed circuit diagram.
This controller board is identified by the presence of a four position dip switch; controller boards with software revision 4.01 or higher have an eight position dip switch. This board is no longer available. If this board fails the calibration and adjustment section, the board should be replaced. When replacing this board order controller service kit:

6600-0360-800 EMI Noise Suppression Kit for English IWS Models
6600-0360-801 EMI Noise Suppression Kit for French IWS Models
6600-0360-802 EMI Noise Suppression Kit for Spanish IWS Models
6600-0360-803 EMI Noise Suppression Kit for German IWS Models
6600-0360-804 EMI Noise Suppression Kit for Spanish IWS 2001 Models
6600-0360-805 EMI Noise Suppression Kit for French IWS 2001 Models
6600-0360-806 EMI Noise Suppression Kit for English IWS 2001 Models

Each controller service kit includes EMI shielding to minimize susceptibility of the replacement controller board to electrostatic discharge, power line conducted noise and radiated electromagnetic interference. See page 7-80 for a list of the kit contents.

The earlier version controller board contains a four position dip switch. The setting of each switch position may change (On or Off) during the calibration procedure, depending on the adjustment procedure being performed.

<table>
<thead>
<tr>
<th>Dipswitch Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTG Alarm 1.0 degree</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PTG Alarm 0.5 degree</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cal Display Loop</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cal ADC Loop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Triac Test Loop</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Service Loop</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

0 = Off 1 = On

4.2.1 Power Supply Board Voltages

1. Configure the four position test switch (S1) located on the control board as follows:

 Switch #1,#2, #4 Open (Off)
 Switch #3 Closed (On)

2. Connect the controller assembly to an appropriately rated power source (listed voltage ± 10%), and switch the power switch On.

 Note: You will go through the normal start up routine. Patient temperature alarms may trigger.
4/Calibration and Adjustments

3. Check that all display segments are On, the observation lamp is On, the alarm light is On, the heater radiates heat, and a continuous alarm tone sounds.

4. Check that the following dc voltages are present at the test connector (T1) located on the control board. Voltages should be within the tolerances specified; otherwise follow the recommended corrective action:

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Reading</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP7 Ground (common)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TP3 (9.0 Vdc ST.)</td>
<td>9 ± 0.2 Vdc</td>
<td>adjust R4 on Power Supply PCB</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP4 (5.0 Vdc LEDS)</td>
<td>5 ± 0.3 Vdc</td>
<td>replace Power Supply PCB</td>
</tr>
<tr>
<td>TP5 (5.0 Vdc ST.)</td>
<td>5 ± 0.3 Vdc</td>
<td>replace Power Supply PCB</td>
</tr>
</tbody>
</table>

5. If no corrective actions are required, continue with Section 4.2.3, Display Brightness, at step 2.

4.2.2 Display Brightness Check

Note: The display brightness is pre-calibrated at the factory and should only require adjustment if replacing a component on the display board.

Test Procedure

1. Configure the four position test switch (S1) on the control board as follows:

 Switch #1, #2, #4 Open (Off)
 Switch #3 Closed (On)

 Connect the controller assembly to an appropriately rated power source and switch the power switch On.

2. Check that all the displays are illuminated and are of uniform brightness.

 Note: IWS 2001 International units do not have a control temperature display.

3. If the displays are acceptable proceed to Section 4.2.4, Alarm Volume, at step 2. If the displays are not adequately illuminated, proceed with the adjustment procedure.

Adjustment Procedure

CAUTION: The back panel and display panel may drop down when the bottom cover mounting screws are removed. Be sure to secure the panels with tape before disassembly.
4/Calibration and Adjustments

1. Switch the power switch Off and unplug the unit.

2. Tape the display panel and back panel to the top cover.

3. Remove the four outside corner mounting screws from the bottom of the display panel. Do not remove the two inside mounting screws. Remove the bottom display cover by sliding it down.

4. Connect a digital voltmeter across R10, located on the bottom edge of the display board.

5. Connect the controller assembly to an appropriately rated power source.

6. Turn On the power switch leaving the test switch S1 settings unchanged from step 1 of the Test Procedure Section above.

7. Adjust R9 on the display board until the voltage across R10 is 3.30 ± 0.2 Vdc.

8. Verify that all segments of all displays are illuminated and are of uniform brightness.

9. Switch the power Off.

10. Replace the bottom of the display panel using the four screws previously removed.

4.2.3 Alarm Volume

Note: The alarm volume and frequency are pre-calibrated at the factory and should only require adjustment if a related control board component is replaced.

Test Procedure

1. All four positions on test switch (S1) on the controller board should be Off. Switch the power switch On.

2. Activate the alarm by selecting the servo mode and unplugging the patient probe, or alternatively, hold down the Alarm Silence switch for five seconds (IWS 2001 International models). You should hear an alternating two tone alarm.

3. Ensure the alarm tone and volume are at the desired levels. Verify that the audio alarm level is adequate in a location with a background noise level of 55 dBA max. If the audio alarm level is acceptable, continue with Section 4.2.5, Analog to Digital Converter Calibration, at 4.2.4. If the audio alarm level is unacceptable, continue with the adjustment procedure.
4/Calibration and Adjustments

Adjustment Procedure

1. Switch the power switch Off.

2. Positions #1, #2 and #4 on test switch (S1) on the controller board should be Off. Position #3 should be On. Switch the power switch On.

3. Verify that the frequency at pin 1 of the control board test connector is 2 kHz ± 0.1 kHz. Adjust R38 on the control board as required.

Note: If test equipment is not available for checking the 2 kHz frequency, adjust R38 for maximum sound level.

5. Verify that R37 on the control board is set fully CCW (maximum volume).

6. Continue with Section 4.2.5, Analog to Digital Converter Calibration, at step 4.

4.2.4 Analog to Digital Converter (ADC) Calibration

1. Switch the power switch Off.

2. Configure the four position test switch (S1) on the control board as follows:

 Switch #1, #2, #3 Open (Off)
 Switch #4 Closed (On)

3. Connect the controller assembly to an appropriately rated power source and switch the power switch On and allow the unit to stabilize for 5 minutes.

4. Connect a resistance of 5900 Ω ± 0.1% to the patient probe connector.

 Note: 5900 Ω ± 0.1% is switch setting I7 on the temperature simulator box.

5. Verify that the ADC counts displayed on the elapsed time display is 1122 ± 2 counts. Slowly adjust R44 on control board as required.

6. Connect the following resistances to the patient probe connector and verify the correct temperature readings appear in the patient temperature display.

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Setting</th>
<th>Patient Temperature Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5496 Ω ± 0.1%</td>
<td>(I2)</td>
<td>39.0 ± 0.1 degrees</td>
</tr>
<tr>
<td>7060 Ω ± 0.1%</td>
<td>(I3)</td>
<td>33.0 ± 0.1 degrees</td>
</tr>
<tr>
<td>5900 Ω ± 0.1%</td>
<td>(I7)</td>
<td>37.3 ± 0.1 degrees</td>
</tr>
<tr>
<td>6190 Ω ± 0.1%</td>
<td>(I11)</td>
<td>36.2 ± 0.1 degrees</td>
</tr>
</tbody>
</table>
4/Calibration and Adjustments

Note: The resistance values shown above are available on the Temperature Simulator. The switch positions are listed in parentheses.

10. If the displayed values are within tolerances, continue with Section 4.2.5, Line Voltage Compensation. If not, replace the control board.

4.2.5 Line Voltage Compensation

⚠️ WARNING: Use extreme care while performing calibration and adjustment procedures, or while working on the Infant Warmer System with power connected. An electrical shock hazard does exist; be certain to observe all safety precautions.

Test Procedure

1. Switch the power switch On.

2. Press and hold the hidden switch on the control panel located directly above the alarm silence switch.

3. After two seconds the display should indicate as follows:

 a. Patient Temperature displays 25.0 ± 0.1°
 b. Control Temperature displays 37.9 ± 0.1°
 c. Elapsed Time displays % nominal line voltage ± 2%

4. Switch the power switch Off and unplug the power cord from the wall outlet.

5. Use a digital volt meter and measure the line voltage at the wall outlet.

6. Connect the controller assembly to an appropriately rated power source and turn the power switch On.

7. Read the corresponding percent of your unit's nominal voltage from the following table. The outlet voltage selects the row and the unit's nominal voltage selects the column. For example, if the line voltage measures 110 Vac for a 115 Vac nominal unit, the % nominal voltage is 95% and 95 ± 2 should appear in the control temp display in step 8.

 Note: Record this value from the table for later use.
4/Calibration and Adjustments

<table>
<thead>
<tr>
<th>95V Nom.</th>
<th>115V Nom.</th>
<th>220V Nom.</th>
<th>240V Nom.</th>
<th>% Nominal (Nom.) Line Voltage x10 (Elapsed time display)</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>104</td>
<td>199</td>
<td>217</td>
<td>90±2</td>
</tr>
<tr>
<td>87</td>
<td>105</td>
<td>201</td>
<td>219</td>
<td>91±2</td>
</tr>
<tr>
<td>88</td>
<td>106</td>
<td>203</td>
<td>221</td>
<td>92±2</td>
</tr>
<tr>
<td>89</td>
<td>107</td>
<td>205</td>
<td>224</td>
<td>93±2</td>
</tr>
<tr>
<td>90</td>
<td>109</td>
<td>207</td>
<td>226</td>
<td>94±2</td>
</tr>
<tr>
<td>91</td>
<td>110</td>
<td>210</td>
<td>229</td>
<td>95±2</td>
</tr>
<tr>
<td>92</td>
<td>111</td>
<td>212</td>
<td>231</td>
<td>96±2</td>
</tr>
<tr>
<td>93</td>
<td>112</td>
<td>214</td>
<td>233</td>
<td>97±2</td>
</tr>
<tr>
<td>94</td>
<td>113</td>
<td>216</td>
<td>236</td>
<td>98±2</td>
</tr>
<tr>
<td>95</td>
<td>115</td>
<td>220</td>
<td>240</td>
<td>100±2</td>
</tr>
<tr>
<td>96</td>
<td>117</td>
<td>22</td>
<td>243</td>
<td>101±2</td>
</tr>
<tr>
<td>97</td>
<td>118</td>
<td>225</td>
<td>245</td>
<td>102±2</td>
</tr>
<tr>
<td>98</td>
<td>119</td>
<td>227</td>
<td>248</td>
<td>103±2</td>
</tr>
<tr>
<td>99</td>
<td>120</td>
<td>229</td>
<td>250</td>
<td>104±2</td>
</tr>
<tr>
<td>100</td>
<td>121</td>
<td>232</td>
<td>253</td>
<td>105±2</td>
</tr>
<tr>
<td>101</td>
<td>122</td>
<td>234</td>
<td>255</td>
<td>106±2</td>
</tr>
<tr>
<td>102</td>
<td>124</td>
<td>236</td>
<td>257</td>
<td>107±2</td>
</tr>
<tr>
<td>103</td>
<td>125</td>
<td>238</td>
<td>260</td>
<td>108±2</td>
</tr>
<tr>
<td>104</td>
<td>126</td>
<td>240</td>
<td>262</td>
<td>109±2</td>
</tr>
<tr>
<td>105</td>
<td>127</td>
<td>243</td>
<td>265</td>
<td>110±2</td>
</tr>
</tbody>
</table>

8. Verify that the value in the elapsed time display equals the percent of nominal voltage read from the table in step 7.

9. If the displayed values are within tolerances, continue with Section 4.2.6, Safety Circuit Test. Otherwise, continue with the adjustment procedure.

Adjustment Procedure

1. Slowly adjust R3 on power supply board as required until the elapsed time display equals the value read from the table in step 5 of the test procedure.

2. Continue with Section 4.2.6, Safety Circuit Test.

4.2.6 Safety Circuit Test (Prior to Software Revision 03.11)

1. Configure the four position test switch (S1) located on the control board as follows:

 Switch #1 Open (Off)
 Switch #2, #3, #4 Closed (On)

2. Switch the power switch On.
4/Calibration and Adjustments

3. The front panel should display the following:

<table>
<thead>
<tr>
<th>Pat. Temp.</th>
<th>EEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cont. Temp.</td>
<td>EEE</td>
</tr>
<tr>
<td>Elapsed Time</td>
<td>Running in Stop Watch Mode</td>
</tr>
</tbody>
</table>

4. Confirm that the heat indicator LED on the control board is illuminated.

5. Use a stop watch and verify that elapsed time display is accurate within ± 1 second per minute.

6. After approximately 3 minutes and 20 seconds (for 60 Hz models) or approximately 4 minutes (50 Hz models) a two tone alarm occurs which cannot be silenced.

7. Confirm the heat indicator LED on the control circuit board (viewed from the rear of unit) is Off.

8. Switch the power switch Off and restore the test switch to the original configuration (all switches Open).

4.2.7 Triac Safety Circuit Test (Rev 03.11 Software Only)

1. Place the individual test switches in the following positions:

 Switch #1 Open ("Off")
 Switch #2, #3, #4 Closed ("On")

2. Switch the power switch on.

3. The front panel should display the following:

 | Pat Temp | EEE |
 | Cont Temp | EEE |
 | Elapsed Time | Running in stop watch mode |

4. Let run until the display indicates 03:10 (3 minutes 10 seconds) for 60 hertz units or 03:50 (3 minutes 50 seconds) for 50 hertz units.

 Note: The elapsed timer may reset back to 00:00 and restart timing and the audio alarm activate for 1 second before the time elapses. If so wait until the timer gets back to 03:10 or 03:50.

5. Confirm that the heat indicator LED on the control board is lit.

6. Let the unit run until a warbling two tone alarm which cannot be silenced occurs (5 minutes maximum time).
7. Confirm the elapsed timer stops between 03:10 and 03:40 for 60 hertz units (03:50 and 04:20 for 50 hertz units). If outside this range or if E 08 is displayed then the control board is defective.

8. Confirm that the heat indicator on the control board is off. If not replace the control board.

9. Switch the power switch Off and restore the test switch to the original configuration (all switches Open).

4.2.8 Test Loop

Complete Unit Testing

1. Switch the power Off.

2. Configure the four position test switch S1 on the control board in the test loop position. All switches Closed (On).

3. Switch the power switch On.

4. Verify that the following sequence occurs:

 a. For the first second:

 All segments, LEDs, and high-low alternating tone audible alarm are On.

 b. For the next second:

 High-low alternating tone audible alarm On. Patient display “60H” for 60 Hz (“50H” for 50 Hz).

 Elapsed time display - software revision number.

 c. The unit should then loop in the following order until the power is removed:

<table>
<thead>
<tr>
<th>Seven Seg Display's</th>
<th>Bar Graph Segments</th>
<th>Alarm LEDs</th>
<th>Mode LEDs</th>
<th>Heater and Lights</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 1's</td>
<td>1,11</td>
<td>*Probe fail</td>
<td>*Servo</td>
<td>On</td>
</tr>
<tr>
<td>All 2's</td>
<td>2,12</td>
<td>Pat. temp.</td>
<td>*Servo</td>
<td>Off</td>
</tr>
<tr>
<td>All 3's</td>
<td>3,13</td>
<td>Sys. fail</td>
<td>*Servo</td>
<td>On</td>
</tr>
<tr>
<td>All 4's</td>
<td>4,14</td>
<td>Heater Off</td>
<td>Manual</td>
<td>Off</td>
</tr>
<tr>
<td>All 5's</td>
<td>5,15</td>
<td>Reset timer</td>
<td>Manual</td>
<td>On</td>
</tr>
<tr>
<td>All 6's</td>
<td>6,16</td>
<td>Spare LED</td>
<td>Manual</td>
<td>Off</td>
</tr>
<tr>
<td>All 7's</td>
<td>7,17</td>
<td>All Off</td>
<td>Apgar</td>
<td>On</td>
</tr>
<tr>
<td>All 8's</td>
<td>8,18</td>
<td>All Off</td>
<td>Apgar</td>
<td>Off</td>
</tr>
<tr>
<td>All 9's</td>
<td>9,19</td>
<td>All Off</td>
<td>Apgar</td>
<td>On</td>
</tr>
<tr>
<td>All 0's</td>
<td>10,20</td>
<td>All Off</td>
<td>All Off</td>
<td>Off</td>
</tr>
<tr>
<td>All Off</td>
<td>All Off</td>
<td>All Off</td>
<td>All Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

* LED indicators not present on IWS 2001 International units.
4/Calibration and Adjustments

While looping through this test loop the program also does RAM tests, memory checksum, and ADC calibration tests. If any error occurs, an error number will be displayed in the Elapsed Time display and the critical alarm will sound for 2 seconds. The program will then continue to loop and display any additional error numbers. See Section 6 for error code descriptions.

5. Switch the power switch Off and restore the test switch to the original configuration (or all switches Open).

For patient temperature alarm-difference setting greater than 0.5 degree C:

Switch #1, #2 should be closed (On)
Switch #4 should be open (Off).

6. Replace the back panel.

Controller Unit Testing Separate From Warmer

Note: If required, the controller unit can be tested separately from the warmer. The following test load may be connected in place of a heater assembly.

1. With the power switch Off connect the controller assembly to a test load as follows:

2. Between J17 pin 3 (phase) and J17 pin 1 (heater N) connect a 400 watt resistive load for 115 Vac.

3. Between J17 pin 3 and J17 pin 2 (alarm light N) connect a 12 watt resistive load for 115 Vac.

4. Between pin 1 and pin 3 of the observation light connector, place a 50 watt resistive load for 12 Vac.

4.3 Gas Regulator Check and Adjustment

Check the output pressure of the regulators. If adjustment is required perform the adjustment procedure.

Gas Regulator Pressure Check (See Figure 5-24)

1. Disconnect the gas pipeline connection(s).

2. Check system for leaks according to section 5.8 F. Remove the cylinder(s). Bleed off the cylinder pressure.

3. Remove the mounting screws for the Gas Yoke and Regulator Assembly and then remove the assembly.
4/CaliBratiOn and Adjustments

4. Disconnect the copper tubing from the outlet port of the regulator(s).

Note: The regulator(s) output pressure must be 52 ± 2 psig (4 bar ± 138 millibar in the U.K.) with approximately 500 cc per minute flow passing through it.

5. Attach the special fitting and gauge assembly (Stock No. 0175-0543-000) to the regulator outlet. This special tool has a 0.025 in. orifice to maintain an approximately 500 cc per minute flow for proper regulator adjustment.

6. Attach a gas cylinder to the yoke and open the cylinder valve.

7. Check the pressure gauge to determine if the regulator is set correctly.

Gas Regulator Adjustment Procedure

1. If required, adjust the regulator adjustment screw until the special fitting pressure gauge reads 52 ± 2 psig (4 bar ± 138 millibar in the U.K.). If present, adjust other regulator.

2. Tighten the adjustment screw lock nut. Re-check the pressure.

3. Close the gas cylinder valve and remove the gas cylinder from the yoke.

4. Remove the special fitting and gauge assembly.

5. Reconnect the copper tubing to the regulator outlet.

6. Place the Gas Yoke and Regulator Assembly in position on the warmer and replace the eight mounting screws for the assembly.

7. Check system for leaks according to section 5.8 F. Bleed off the cylinder pressure.

4.4 Electrical Safety Check

A. Leakage Current

Use approved equipment and techniques to test the unit’s leakage current and ground continuity. Follow the directions supplied by the test equipment manufacturer to verify the following:

1. Less than 100 microamperes measured at any exposed metal surface for equipment rated at 120 Vac, 50/60 Hz.

2. Less than 200 microamperes measured at any exposed metal surface for equipment rated at 220 Vac, 50/60 Hz, 230 Vac, 50/60 Hz or 240 Vac, 50/60 Hz.
3. On elevating models, repeat the leakage current test while raising and lowering the bed to ensure that the leakage current remains within limits.

B. Ground Resistance Check

Use a low range ohmmeter or electrical safety analyzer to measure the resistance between the ground pin on the line cord plug and exposed metal of the warmer. The ground resistance must be less than 0.1 ohms.

Note: Higher readings may indicate loose or oxidized connections in the power cord or grounding circuits.

4.5 Bed Motor Raise and Lower Test *(Elevating Models Only)*

1. Press the Raise Bed switch.

 a. Ensure that the bed elevates smoothly.

 b. Ensure that the motor continues operating with a over riding clutch action at the upper limit (~46-1/2 inches, or 118 cm, from the top of the mattress to the floor).

2. Press the Lower Bed switch.

 a. Ensure that the bed lowers smoothly.

 b. Ensure that the motor continues operating with a over riding clutch action at the lower limit (~38-1/2 inches, or 98 cm, from the top of the mattress to the floor).

⚠️ CAUTION: On elevating models, do not continue run the motor at upper and lower limit positions; equipment damage may result.
WARNING: Before any disassembly or repair, disconnect the electrical power and the gas line supplies. Remove any gas cylinders.

WARNING: After completing a repair, the appropriate calibration procedure must be performed. After completing any portion of the calibration and adjustments procedures, perform the Checkout Procedure to make sure the Infant Warmer System is in proper operating condition. In addition, a final electrical safety check and leakage current test must be performed. If the unit fails any steps of the Checkout Procedure it must be removed from service and repaired. Record the information for future reference.

WARNING: Use the Static Control Work Station (Stock No. 0175-2311-000) to help ensure that static charges are safely conducted to ground. The Velostat material is conductive. Do not place electrically powered circuit boards on it.

Figure 5-1 Removal of Back Cover from Heater Assembly

5.1 Heater Module Repairs

A. Heater Housing Disassembly
 (See Figures 5-1 and 5-2)

2. Rotate the heater to the X-ray position.

3. Remove the two Phillips head mounting screws for the back cover, and remove the cover (some older units have three screws securing the cover).
5/Repair and Disassembly

4. Disconnect the heater housing connector. Squeeze the locking tabs on the rear of the plug to disengage the lock mechanism.

5. Remove the ground wire for the heater housing.

6. Remove the four mounting screws for the front cover plate and remove the plate.

7. Remove the four mounting screws for the front heater housing cap and remove the cap.

8. Push the heater assembly out the front of the heater housing. Avoid bending the rear of the heater assembly.

9. To make disassembly easier, the four mounting screws for the rear heater housing cap may be loosened. Do not entirely remove the mounting screws.

Note: The heater, alarm lamp sockets, examination light socket, and wiring harness can be replaced when the heater assembly is removed.

B. Heater Replacement
(See Figure 5-2)

⚠️ WARNING: Disconnect the power to the warmer and allow the heat tube to cool before cleaning or replacement to avoid the possibility of a burn.

Figure 5-2 Heater Housing Assembly
5/Repair and Disassembly

⚠️ CAUTION: During heater rod removal or replacement, hold terminal to ensure no strain is placed on the element.

1. Hold each terminal on the heater rod to ensure no strain is placed on the element while removing the heater wire connection screws from both ends of the heater.

2. Remove the four mounting bolts for the front mounting plate and move it to the side.

3. Slide the heater rod out from the front of the heater assembly.

4. Slide the replacement heater rod in from the front of the heater assembly.

⚠️ WARNING: The replacement heater tube must match your unit. Earlier units have 440 Watt Heaters. Newer units, with serial number beginning with HCA, have a 540 Watt heater. Installing the new 540 Watt heater tubes in the older units without HCA serial numbers may shorten the life of the power supply board. Check the serial number located on the back panel of the display module against the parts listed in 7/Illustrated Parts to verify you have ordered the correct replacement part.

5. Hold each terminal on the heater rod to ensure no strain is placed on the element while replacing the heater wire connection screws on both ends of the heater. Tighten the screws to 12 - 14 lb.-in.

6. Place the front mounting plate in position and replace the four mounting bolts.

C. Heater Housing Assembly
(See Figures 5-1 and 5-2)

1. Slide the rear section of the heater assembly into the front of the heater housing. Guide the rear panel as you push the assembly all the way in. Avoid bending the rear of the heater assembly.

2. Attach the ground wire for the heater housing.

3. Reconnect the heater assembly wiring.

4. Place the front heater housing cap in position and replace the four mounting screws.

5. Tighten the four mounting screws for the rear heater housing cap (if they were loosened).

6. Place the front cover plate in position and replace the four mounting screws.
7. Place the rear cover in position, and replace the two Phillips head mounting screws (some older units have three screws).

8. Rotate the heater to the normal position.

9. Perform the electrical safety procedures in Section 4 and all the checkout procedures in Section 2.2.

D. Alarm Lamp Replacement
(See Figure 5-3)

Lamp: GTE Sylvania 120MB 6W, Ohmeda Stock No. 0690-2100-315

⚠️ **WARNING:** Disconnect the Infant Warmer System power cord and allow the unit to cool before replacing the alarm light.

1. Disconnect the Infant Warmer System power cord and allow the unit to cool for 10 minutes.

2. Use a Phillips head screwdriver and remove the lens mounting screw located in the center of the alarm light.

3. Remove the lamp by pushing in and turning it counterclockwise.

4. Install the new lamp by pushing in and turning it clockwise.

Note: When one lamp burns out it is recommended to replace both lamps. Replacing both lamps ensures maximum reliability.
5/Repair and Disassembly

Unscrew the two cover mounting screws and remove the cover.

Figure 5-4 Observation Lamp Cover Removal

5. Place the lens cover in position and secure it with the mounting screw.

6. Plug the power cord in and perform the checkout procedures detailed in Section 2.2.

E. Observation Lamp Replacement
(See Figures 5-4 and 5-5)

Lamp: GE EXZ (Q50 MR16/NFL) Ohmeda Stock No. 0208-0516-300 or GE EXN (Q50 MR16/FL)

⚠️ WARNING: Disconnect the Infant Warmer System power cord and allow the unit to cool before replacing the observation light. The lamp normally operates at a high temperature.

Note: Do not touch the center glass bulb. This will reduce the life of the lamp.

1. Disconnect the power cord for the warmer and allow the unit to cool for 10 minutes.

2. Rotate the heater assembly to the X-ray (side) position.

3. Use a Phillips head screwdriver to remove the two back panel mounting screws and remove the back panel (some older units have three screws).

4. While holding the lamp with one hand, use the other hand to pull the lever (next to the lamp) forward and remove the lamp.

5. Place the new lamp in position and push it into the lamp socket.
5/Repair and Disassembly

![Figure 5-5 Observation Lamp Replacement](image_url)

6. Replace the back panel and mounting screws.

7. Rotate the heater assembly back to the normal operating position.

8. Plug the power cord in and perform the checkout procedure detailed in Section 2.2.

5.2 Control Module Repairs

A. Control Module Removal

(See Figure 5-6)

1. Disconnect the Infant Warmer System power cord.

2. Remove the two center mounting screws from the bottom of the display module.

3. Remove the two mounting screws for the control unit cover and remove the cover. Fold the ESD shield (if present) down away from the control board.

4. Disconnect the two connectors, J17 and the three pin chassis connector for the observation light to the right of the power board (on elevating models, J16 must also be disconnected). Squeeze the locking tabs on the rear of the plug to disengage the lock mechanism. On IWS model 5000 and newer models with Serial Numbers starting with HCA, disconnect J14 to the solid state relay. If present, disconnect cable W3, P2 connecting the solid state relay to the heater wire harness (ref. Wiring diagram in Section 8).
5. Loosen the four corner mounting screws for the control unit and carefully remove the control module. Place the control unit on a flat surface so it rests on the transformers.

B. Control, Power Supply and ThermaLink Board Replacement

(See Figure 5-7)

⚠️ **CAUTION:** When removing cables, always grasp the connector on the sides and gently remove the cable connector from the board. This will prevent weakening of the cable assembly. Never remove the connector by pulling on the cable.

Control Board Removal

1. Disconnect the power cord.

2. Disconnect the four connectors (J1, J5, J6, and J7) from the control board. Disengage the locking tab on the connector by inserting a small screwdriver between the tab and the rear of the connector plug. Grasp the sides of the connector and gently remove the connector plug from the controller board.

3. If the ThermaLink option is installed, disconnect connector J9. Grasp the sides of the connector and gently remove the connector plug from the controller board.
4. Use a 5/16 inch socket to remove the six mounting nuts and three flat washers, if present, for the control board.

5. Remove the control board.

Power Supply Board Removal

Note: Remove the Control Board first.

1. Disconnect connectors J11 and J12 from the power supply board. Disengage the locking tab on the connector by inserting a small screwdriver between the tab and the rear of the connector plug. Grasp the sides of the connector and gently remove the connector from the power supply board.

2. Disconnect connectors J13, J14, J15, and J17 (also disconnect J16 on elevating models) from the power supply board. Squeeze the locking tabs on the rear of each connector plug to disengage the lock mechanism.

3. Use a 5/16 inch socket to remove the six mounting nuts for the power supply board.

4. Remove the power supply board.

ThermaLink Board Removal

Note: Remove the Controller from the unit first and place on anti-static workstation prior to ThermaLink PCB removal.
5/Repair and Disassembly

1. Remove the two mounting screws from the ThermaLink cover. Slide the ThermaLink cover back away from the chassis. Disconnect the ThermaLink external connector cable attached to the cover from connector J9 on ThermaLink board. Grasp the sides of the connector and gently remove the connector plug from the ThermaLink board. Remove the cover and set aside.

2. Disconnect connector J9 from the control board. Grasp the sides of the connector and gently remove the connector plug from the controller board.

3. Loosen the four ThermaLink chassis mounting screws from the left hand side of the controller chassis and remove the ThermaLink chassis from the controller taking care not to damage the ThermaLink to control board ribbon cable. On some units, it may be necessary to completely remove the ThermaLink chassis mounting screws prior to removing the ThermaLink chassis from the controller.

4. Place the ThermaLink chassis on the anti-static work station.

5. Disconnect ribbon cable connector J30 from the ThermaLink board. Grasp the sides of the connector and gently remove the connector plug from the controller board.

6. Remove the four ThermaLink board mounting screws using a Phillips screw driver and remove the ThermaLink board.

ThermaLink Board Installation

1. Place the new ThermaLink board in position on the four ThermaLink chassis mounting posts.

2. Replace the four mounting screws for the ThermaLink board.

3. Reconnect ribbon cable connector J30 to the ThermaLink board.

4. Place the assembled ThermaLink chassis in position against the left side of the controller chassis taking care not to pinch the ribbon cable, and tighten the four mounting screws. On some older units, it may be necessary to remove the mounting screws and thread them through the holes in the controller chassis.

5. Reconnect ribbon cable connector J9 to the control board.

6. Reconnect the external ThermaLink cable, attached to the ThermaLink cover, to connector J31 on the ThermaLink board.
5/Repair and Disassembly

7. Place the ThermaLink cover in position and replace the two mounting screws.

8. Perform the electrical safety and the calibration procedures in Section 4. Perform the checkout procedures detailed in Section 2.2.

Power Supply Board Installation

1. Place the new power supply board in position on the six mounting posts.

2. Replace the six mounting nuts for the power supply board.

3. Reconnect connectors J11, J12, J13, J14, J15, J16 (applicable to elevating models) and J17 to the power supply board.

Control Board Installation

1. Place the control board in position on the six mounting posts.

2. Replace the six mounting nuts and three flat washers, if present, for the control board. See figure 5-7.

3. Reconnect the four connectors (J1, J5, J6, and J7) to the control board.

4. If the ThermaLink Option is installed, reconnect the J9 connector to the control board.

5. Perform the electrical safety and the calibration procedures in Section 4. Perform the checkout procedures detailed in Section 2.2.

C. Display Module Disassembly

(See Figures 5-8 and 5-9)

⚠ CAUTION: When removing cables, always grasp the connector on the sides and gently remove the cable connector from the board. This will prevent weakening of the cable assembly. Never remove the connector by pulling on the cable.

1. Disconnect the power cord.

2. Remove the 4 bottom cover screws from the Display Module.

3. Slide the bottom cover down from the top cover.

4. Slide the display board out of the cover.
5. Disconnect the ground wires (if present) from the bottom cover by pulling the two fastons off.

6. Remove the 5 mounting nuts from the back of the display board. Remove the flat washers, lock washers, and the ground wire (if present). See Figure 5-9.

7. Remove the ESD shield (if present) and ten flat washers (if present) from the mounting posts. Separate the display board from the display panel.

8. Disconnect the 12 pin connector (J22) from the display board taking care not to damage the ESD shield. Disengage the locking tab on the connector by inserting a small screwdriver between the tab and the rear of the connector plug. Grasp the sides of the connector and gently remove the connector from the display board.

Figure 5-8 Display Module Assembly

D. Display Module Assembly

(See Figures 5-8 and 5-9)

1. Place the display board on the display panel mounting posts.

2. For units with the ESD shield present, place the 10 flat washers over the threads of the mounting posts, then replace the ESD shield.
Figure 5-9 Display Board Assembly

3. For units with the ESD shield present, replace the 3 flat washers, 3 lock washers and mounting nuts on all the standoffs except the grounding post and the center stand-off.

4. For units without the ESD shield present, replace the 4 lock washers and mounting nuts on all the standoffs except the grounding post.

5. Replace the ground wire (if present), internal tooth lock washer and mounting nut on the grounding post.

6. For units with the ESD shield present, replace the two flat washers, external tooth lock washer and acorn nut on the center stand-off.

7. Connect the 12 pin connector J22 from the control board to the display board. Ensure that the locking tabs are engaged.

8. Slide the display board into the top cover.

9. Connect the ground wires (if present) to the back cover plate.

10. For units with the ESD shield present, check that all 4 spring clips are in place and holding the foil covered ribbon cable securely to the ESD shield. See figure 5-10.
11. Slide the bottom cover and back panel into the top cover. Be sure that the display and back panel are aligned in the slots, and that you push up evenly on all four corners of the display module.

12. Replace the 4 bottom cover mounting screws for the display panel.

13. Perform the electrical safety and the calibration procedures in Section 4. Perform the checkout procedures detailed in Section 2.2.

E. Control Module Replacement
(See Figure 5-6)

1. Carefully place the control module in position and tighten the four mounting screws for the control unit.

2. Reconnect the two connectors, J17 and the three pin chassis connector to the right of the power board (on elevating models, J16 must also be connected), to the power supply board. On IWS model 5000 and newer models with Serial Numbers starting with HCA, reconnect J14 to the solid state relay. If present, reconnect cable W3, P2 connecting the solid state relay to the heater wire harness (ref. Wiring diagram in Section 8 of Service Manual).

3. Hold the display module in position and replace the two inside mounting screws on the bottom of the module.

4. For units with the ESD shield present, fold the ESD shield back up into place.

![Diagram of Display Module Top Cover with labels](image-url)

Figure 5-10 Ribbon Cable Grounding Diagram
5/Repair and Disassembly

5. Place the control unit cover in position and replace the two mounting screws.

6. Perform the electrical safety and the calibration procedures in Section 4. Perform the checkout procedures detailed in Section 2.2.

F. Battery Replacement

(See Figures 5-6 and 5-7)

The maintenance free battery should be tested regularly and the replacement schedule is every two years. Refer to Section 2.2B for testing the battery.

1. Disconnect the warmer power cord.

2. Remove the two mounting screws for the control unit cover and remove the cover. For units with the ESD shield present, fold the ESD shield down away from the control board.

3. Disconnect connector J1 from the control board. Disengage the locking tab on the socket by inserting a small screwdriver between the tab and the rear of the plug. You do not have to remove any other connectors.

4. Remove the 6 mounting nuts and 3 flat washers (if present) for the control board.

5. Slide the control board off the mounting posts and rotate it down.

6. Remove the battery and install a replacement battery. Ensure the positive and negative terminals are correctly engaged.

⚠️ CAUTION: Replace only with Ohmeda NI-CAD rechargeable battery (Stock No. 0690-1000-310).

7. Place the control board in position on the mounting posts.

8. Replace the 6 mounting nuts and 3 flat washers (if present) for the control board.

9. Reconnect connector J1 to the control board.

10. For units with the ESD shield present, fold the ESD shield back up into place.

11. Replace the two mounting screws for the control unit cover.

12. Perform the electrical safety procedures in Section 4 and the checkout procedures in Section 2.2.
5/Repair and Disassembly

G. Circuit Breaker Reset

The warmer is equipped with a combination power switch and manual resetting circuit breaker. If the circuit breaker trips the power switch is deactivated. To reset the circuit breaker return the switch to the “On” position. If the circuit breaker trips again, service is required.

5.3 Bed Platform Repairs Small and Large Bed Models
(For Model 3500 see section 5.4)

A. Side Panel Replacement
(See Figure 5-11)

To remove a side panel, first lower the side panel then press the end pins in and lift the side panel out. To replace a side panel, hold the end pins in, place the side panel in position, and release the end pins. To lower the side panel, pull up and rotate away from the bed. To raise the side panel rotate it to the upright position, then allow it to engage in the latched position.

![Figure 5-11 Side Panel Replacement](image)

B. Side Panel Repairs
(See Figure 5-12)

Disassembly:

1. Remove the mounting screw from the end bracket.

3. Disassemble the end bracket, window, support button and spring from the bed side.

3. Replace damaged parts as necessary.
5/Repair and Disassembly

Figure 5-12 Side Panel Assembly

Assembly:

1. Mount the spring, support button, and end bracket on the bed side and window.

2. Replace the mounting screw and tighten securely.

C. Bed Platform Disassembly
(See Figure 5-13)

1. Remove the mattress and the clear plastic cover.

2. Remove the four side panels from the bed platform.

Note: Before removing the hydraulic cylinder on units with rotating drawer packages, the drawer package must first be removed. See appendix.

3. Use a 1/2 inch wrench and 7/16 inch wrench to remove the hydraulic system mounting nut and stud from the lower support.

4. Use a No. 2 Phillips screw driver and remove the four retaining rods and hooks from the bottom of the bed platform.

5. Slide the two bed pivot rods out from each side.

6. Lift the bed platform off the lower support.

D. Bed Platform Assembly
(See Figure 5-13)

1. Place the bed platform in position on the lower support.
2. Insert the two bed pivot rods into position on the lower support. The notch must face the bed platform (upwards), and be positioned between the notches in the bed platform.

3. Use a No. 2 Phillips screw driver and install the four retaining rods and hooks on the bottom of the bed platform. The open end of the hooks should face away from the bed platform.

4. Use a 1/2 inch wrench and 7/16 inch wrench to install the hydraulic system mounting nut and stud on the lower support.

Note: Before removing the hydraulic cylinder on units with rotating drawer packages, the drawer package must first be removed. See appendix.

5. Replace the four corner blocks and eight O-rings, if present, on the bed platform.

6. Replace the four side panels on the bed platform.

7. Replace the clear plastic cover.

8. Replace the mattress.

9. Perform checkout procedure in section 2.2.

Figure 5-13 Bed Platform Assembly
E. Hydraulic System Removal
(See Figures 5-14 and 5-15)

Note: Before removing the hydraulic cylinder on units with rotating drawer packages, the drawer package must first be removed. See appendix.

\textbf{WARNING:} Before any disassembly or repair disconnect the power supply, gas pipeline supply connections, remove any gas cylinders and remove any accessories from the uprights.

\textbf{WARNING:} When lowering or lifting the Infant Warmer System to and from the floor for inspection or repair, use two people for safety. Always ensure that you lay the unit on its right side (as viewed from the front) when laying the unit down. The heater/lamp housing does not lock and pivots to the left for access.

The unit may be carefully placed on its right side (looking from the front), or the bed may be removed for replacement of the hydraulic system.

1. Use a 1/2 inch wrench and 7/16 inch wrench to remove the hydraulic system mounting nut and stud from the lower support.

2. Remove the two Phillips head mounting screws which hold the outer (triangular shaped) cover plate in position.

\textbf{Figure 5-14} Hydraulic System Assembly (small bed shown)
5/Repair and Disassembly

3. Remove the four Phillips head mounting screws which hold the inner (square shaped) cover plate in position. Ensure that the tension on the spring is released carefully.

Note: The tilt lever, rod, spring, and mounting pin can be removed for replacement if necessary. Remove the pin from the top of the bed to remove the spring and rod.

Note: On large bed models, the outer and inner hydraulic cover plates are combined into a single component.

4. Make note of how the tubing is installed in parallel, and does not overlap until it reaches the storage area.

5. Remove the hydraulic system assembly for replacement.

F. Hydraulic System Installation
(See Figures 5-14 and 5-15)

1. Transfer the mounting pin from the old hydraulic cylinder to the new hydraulic cylinder.

2. Place the hydraulic cylinder with pin in position in the bed support casting.

3. Install the tubing for the hydraulic system in parallel and make sure it does not overlap until it reaches the storage area.

⚠️ **CAUTION:** When servicing the bed hydraulic system, the tubing must not be stretched, pinched or kinked during reassembly. If the tubing is pinched, the bed will not tilt and damage and oil leaks may result.

4. On small bed units, place the inner (square shaped) cover plate in position. On Large bed units, place the single cover in position.

5. Install the two mounting screws closest to the tilt lever.

6. Install the two mounting screws closest to the cylinder at the edge of the cover plate.

7. Coil the tubing so it fits in the triangular area.

8. On small bed units, place the outer (triangular shaped) cover plate in position and replace the two Phillips head mounting screws.

9. Use a 1/2 inch wrench and 7/16 inch wrench to tighten the hydraulic system mounting nut and stud in place on the lower support.
5/Repair and Disassembly

Install the tubing for the hydraulic system in parallel and make sure it does not overlap until it reaches the storage area. The tubing must not be stretched, pinched or kinked during reassembly.

Figure 5-15 Hydraulic Tubing Installation

10. Re-install the rotating drawer package if previously removed.

11. Perform the checkout procedures in section 2.2.

5.4 Model 3500 Bassinet Bed Platform Repairs

A. Side Panel Replacement
(See Figure 5-11)

To remove a side panel, first unlock the ends by sliding the latch buttons outward to expose the red dots. Grasp the side panel, pull up and rotate away from the bed. Press the end pins in and lift the side panel out. To replace a side panel, verify the latch buttons are in the outward position exposing the red dots, hold the pins in, place the side panel in position and release the end pins. Grasp the side panel and rotate it to the upright position allowing it to engage in the latched position. Lock the ends by sliding the latch buttons inward to cover the red dots.

B. Side Panel Repairs
(See Figure 5-11 and 5-12)

Disassembly:

1. Remove the mounting screw from the end bracket.
2. Disassemble the end bracket, windows, support button and spring from the bed side.

3. Replace damaged parts as necessary.

Assembly:

1. Mount the spring, support button, and end bracket on the bed side and window.

2. Replace the mounting screw and tighten securely.

3. Perform the checkout procedures in section 2.2.

C. Bed Platform Disassembly
(See Figure 5-16)

1. Remove the mattress.

2. Remove the four side panels from the bed platform.

3. If necessary, remove the four corner blocks from the bed platform.

4. Using the handle, lower the front of the bed platform and lock in place.

5. Working from the rear of the unit, locate the collar on the left side of the pivot rod. Using a long 1/8" Allen wrench, loosen the set screw in the collar.

6. Grasping the entire bed platform, move it to the left so the shouldered spacers are no longer positioned in the indexing pivot bracket.

7. Pull the handle (forward) to release the indexing pins from the detents, grasp the entire bed platform and lift off the indexing pivot bracket.

![Diagram of Bed Platform Pivot Rod, Spacer and Collar Assembly](image)

Figure 5-16 Bed Platform Pivot Rod, Spacer and Collar Assembly (Model 3500) as Viewed from the Rear
5/Repair and Disassembly

D. Bed Platform Assembly
(See Figure 5-16)

1. Place the bed platform on the indexing pivot bracket.

2. Pull the handle (forward) and place the indexing pins in the top detents. Release the handle.

3. Work from the rear of the unit. With the pivot rod in the indexing pivot bracket, move the bed platform to the left so the shoulder spacers are positioned in the indexing pivot bracket.

4. Using the handle (forward), lower the front of the bed platform and lock in place.

5. Slide the spacer and collar to the left, so the spacer is against the indexing pivot bracket.

6. Using a long 1/8" Allen wrench, tighten the set screw in the collar.

7. If they were removed, replace the four corner blocks on the bed platform.

8. Replace the four side panels on the bed platform.

9. Replace the mattress.

10. Perform the checkout procedures in section 2.2.

5.5 Model 3500 Bassinet Drawer Removal

The bassinet drawers may be removed from the bassinet cabinet for cleaning.

1. Pull the drawer out to its maximum travel.

2. The drawer slides (located between each drawer side and the cabinet) each have a release latch located on top of the slides. With your finger (or the blunt end of a pencil), reach in between the drawer and the cabinet and press down on the front edge of each latch to release them. Slide the drawer out of the cabinet.

3. To replace a drawer, insert the drawer slides into the cabinet tracks and close the drawer fully. The drawer latches will engage automatically when the drawer is closed.
5/Repair and Disassembly

5.6 Elevating Base Disassembly and Repair

(See Figures 5-17 to 21)

⚠️ WARNING: Before any disassembly or repair disconnect the power supply, gas pipeline supply connections, remove any gas cylinders and remove any accessories from the uprights.

General Disassembly Procedures

Note: This procedure requires two people, since the Infant Warmer is heavy and must be carefully laid on its right-hand side (as viewed from the front of the unit) during the operation. In order to replace the lift motor, phase capacitor, gear box/jack-shaft unit or motor power power cable, the following steps are necessary.

⚠️ WARNING: Lowering or lifting the Infant Warmer System to its side requires two people due to the size and weight of the unit.

⚠️ WARNING: Whenever the unit must be laid on its side for a repair procedure, lay it on the right side (as viewed from the front), the lamp-house assembly swings freely to the left and attempting to lay the unit on the left side could cause injury to a repair person or damage to the equipment.

1. Remove accessories from the uprights, the mattress, clear plastic panel, X-ray tray and side panels, as described in Section 5 C.

2. Remove the drawers of the unit.

3. Remove the cover plate from the bed support casting. See item 4, Figure 7-16.

4. Disconnect the motor cord plug and socket located inside the bed support casting.

5. Remove the connector from the motor cord plug.

6. Remove the strain relief clamp around the motor cord and allow the cord to fall down inside the elevator column.

7. Using 1/2 inch wrench, remove the upper motor/jack-shaft mounting bolt and lock washer.

Note: There is an external lock washer between the head of the bolt and the upper plate. There is also another lock washer, on the same bolt, under the plate between the top of the jack-shaft and the plate. See Figure 5-18.
8. Carefully lay the warmer on its right-hand side, as viewed from the front.

9. Use a 1/2 inch wrench to remove the four (4) 5/16-18 hex nuts and external lock washers from the assembly base plate. DO NOT REMOVE THE FOUR PHILLIPS HEAD SCREWS.

10. Pull out the base plate and the entire elevating assembly carefully; the ground wires and motor phase capacitor are mounted to the base plate.

Note: The removal of the assembly requires some maneuvering. Gently pull the assembly out and turn it in a clockwise direction until the motor is located in the upper left corner of the access hole. Lifting outward on the bottom of the unit and gently maneuvering back and forth should allow the unit to be pulled out of the elevator column.

WARNING: When disassembling the elevating base, observe the following safety precaution to avoid electrical shock hazard from high voltage. Safely discharge the capacitor prior to removing any connectors.

11. Using an insulated screwdriver, carefully ground the phase capacitor to the base plate to remove any electrical charge and chance of shock.
12. When the assembly is clear, check the top of the jack-shaft for the upper lock washer which may have stuck to the shaft. If the washer is there, remove it and set aside. If it is not, reach up the elevator column and remove it from the upper mounting bolt and set it aside.
Figure 5-19 Cut-away, Internal Side View; Cable and Wiring Connections
Figure 5-20 Gearbox and Jack-Shaft Assembly.

13. Remove the motor/jack-shaft assembly to replace the motor, motor coupling, phase capacitor, gear box and shaft, or power cable.

14. Re-assemble according to section 5.6G

B. Motor Replacement

Disassembly

The motor is bidirectional. It has thermal overload protection and there are three (3) power connection wires:

White - Common, connects to the power cord
Red - Clockwise Rotation, connects to capacitor
Black - Counter-Clockwise Rotation, connects to capacitor

1. Use a 3/8 inch wrench to remove the two nuts that hold the motor housing to the gear box assembly. One of these nuts holds the ground connection from the motor housing power cable.

2. Lift the motor away from the gear box assembly. The motor shaft is coupled to the gear drive with a hard rubber coupling. Make note of how the coupling is oriented for reassembly—it is slotted for alignment with a gear drive coupling in the recess of the gear box.

Reassembly:

Note: When replacing the motor, you must align the groove in the motor coupling with the drive coupling in the gear box. Ensure that the slot of the motor coupling and the drive coupling are in approximately the same plane. The coupling will settle into final alignment when the jack-shaft is turned. The motor cable should be on the top left when the motor is reassembled to the gear box (as viewed from the rear of the motor).
Figure 5-21 Motor and Gearbox Assembly.

1. Slip the motor coupling into the gear box assembly and align the studs of the motor housing with the mounting holes on the gear box.

2. Start the 10-32 nut on the right side (viewed from the shaft end of the motor). Do not tighten.

3. Replace the ground wire for the motor housing and start the threads of the 10-32 hex nut. Fit the motor housing against the gear box to ensure proper alignment of the coupling.

4. If the motor does not easily fit flush against the gear box, check the coupling alignment.

5. When the motor is properly aligned, tighten the motor mounting nuts.

C. Jack Replacement

The gear box/jack-shaft is a single assembly. The preceding procedures explain disassembly. See Figure 5-21 for gear box/jack-shaft configuration.

D. Capacitor Replacement

⚠️ WARNING: When disassembling the elevating base, observe the following safety precaution to avoid electrical shock hazard from high voltage. Safely discharge the capacitor prior to removing any connectors.

1. Carefully discharge and then disconnect the capacitor as detailed in the General Disassembly procedure, steps 9, 10 and 11.
5/Repair and Disassembly

2. To remove and replace, disconnect the red and black wire connectors, lift out the old capacitor from the mounting base and slip in the new one. On some models (those with a capacitor with a plastic casing) it may be necessary to install a capacitor mounting bracket first to accommodate the larger size replacement capacitor (with a metal casing). See 7/Illustrated Parts.

3. Reconnect wires. Ensure that connections to the capacitor are power cord red and motor red to the same terminal, power cord black and motor black to the other terminal, see Figure 7-17.

Note: Failure to observe the preceding step will result in the bed moving in reverse of the panel indicators.

E. Power Cord Replacement

In order to replace the power cord, the jack shaft assembly must be removed as described in 5.5A. The power cord is a special coiled, four-conductor, rubber covered cord. It has a four (4) pin Mate-N-Lok connector on the upper end and red, black, white and green wires on the other end. The white wire has a single pin connector which attaches to the white motor lead with a mating connector. The green (ground) wire is crimped into a ring-tongue lug which also has a short green wire (with a crimp on lug) to provide the motor ground connection.

1. Disconnect all electrical connections.

2. The upper end of the power cord is held in place by a strain relief bushing which must be compressed to remove.

3. The lower end of the power cord is held in place by a cable clamp which is attached to the assembly base plate. The clamp must be removed.

4. The power cord should be free for removal and replacement.

5. In some cases, it may be necessary to replace the strain relief bushing.

F. Column Guide Lubrication

Anytime service is required on the lift, the column guides should be lubricated.

Note: The elevating base must be completely removed from the warmer and top mounting screw removed from the jack shaft before performing the following procedure.

1. The person positioned at the top of the unit must hold it while the second person at the bottom pulls the lower part of the unit away from the top. The distance between full lowered position and full raised position is eight (8) inches.
5/Repair and Disassembly

2. Use a cotton swab or your finger to apply Lubriplate (0220-5150-300) along each inside corner of the lower column. The column guides ride on this surface.

Note: The unit moves eight inches from the fully lowered position to the fully raised position. If you pull it apart any further, the unit will separate, and then you must use the following procedure to rejoin the upper and lower columns.

1. Remove the four (4) the hex nuts that secure the lower end of tension springs with a 3/8 inch wrench. See Figure 5-19.

2. Use long-nose pliers or a spring hook to remove the lower loop of the tension springs.

⚠️ **WARNING:** Depending on the position of the upper column in relation to the lower column, the springs could be heavily or lightly tension loaded. Use care when releasing the springs.

3. Push the column guides toward the bottom of the column. The slotted mounting holes will position the guide so the top section of the column will slide in the bottom section.

4. Slide the two sections together ensuring that they are properly aligned. It may take several attempts to slip the lower column section over the top while clearing the guides. When the top column is properly positioned the hole for the screw jack is to the front of the column.

5. After the two units are rejoined, check that they slide without binding.

6. Replace each tension spring by reconnecting the end-loop to the stud on each guide.

7. Apply a small amount of medium strength Loc-Tite to the stud threads and replace the four (4) hex nuts.

G. Elevating Base Reassembly

1. To reassemble the elevating base, reverse the steps of 5.6A. Before reinstalling the motor jack shaft assembly, first reinstall the power cord in the top section of the column, making sure the pins are securely locked in the connector and are configured as shown in Figure 5-19. When reinstalling the motor jack shaft assembly, make sure that both lock washers (inside and outside) are in position at the top of the jack shaft as shown in Figure 5-18.

2. Perform the electrical safety and calibration procedures in section 4. Perform the checkout procedures detailed in section 2.2.
5/Repair and Disassembly

5.7 Caster Replacement (All Models)

Use the following procedures to replace the casters on all IWS models. Section A applies to all IWS models except the model 3500. Section B applies to the model 3500 Warmer. Section C applies to the Model 3500 Bassinet. Before starting to replace a caster, be sure you have the assistance of another person and the correct replacement parts. When replacement is completed, perform the indicated check-out procedures.

⚠️ WARNING: Due to the size and weight of the warmer at least two people are required to replace a caster.

⚠️ WARNING: Before any disassembly or repair disconnect the power supply, gas pipeline supply connections, remove any gas cylinders and remove any accessories from the uprights.

⚠️ WARNING: When lowering or lifting the Infant Warmer System to and from the floor for inspection or repair, use two people for safety. Always ensure that you lay the unit on its right side (as viewed from the front) when laying the unit down. The heater/lamp housing does not lock and pivots to the left for access.

A. Caster Replacement (Except Model 3500)
(See Figure 7-8)

The casters on all models except the 3500 can be replaced with the warmer upright or carefully placed on its right side (facing the front.)

1. Disconnect the power cord.

2. Disconnect pipeline gas supplies.

3. Remove any gas cylinders and any accessory equipment.

4. Lock or block all remaining casters to keep the unit from rolling around (unless the unit has been laid on its side).

5. Use blocks to support the frame near the caster you are replacing.

6. Remove the plastic end plate from the stand assembly.

7. Use a 7/8" socket and ratchet to remove the caster mounting nut.

 Note: There is another nut underneath the caster. You may have to hold this nut while removing or tightening the caster mounting nut.

8. Tilt the unit (unless the unit has been laid on its side); remove the old caster and install the new caster.
9. Replace the mounting nut and tighten securely.

 Note: There is another nut underneath the caster. You may have to hold this nut while removing or tightening the caster mounting nut.

10. Replace the plastic end cap.

11. Perform the checkout procedure, section 2.2, and, if the unit was laid on its side, the electrical safety checks, Section 4.

B. Model 3500 Warmer Caster Replacement
(See Figure 7-11)

1. Disconnect the bassinet from the warmer and move it out of the way.

2. Disconnect the power cord.

3. Disconnect pipeline gas supplies.

4. Remove any gas cylinders and all accessory equipment.

6. With the assistance of another person, gently place the model 3500 on its right side (facing the front) on the floor.

7. Make note of the orientation of the caster you are replacing. Using a Phillips screwdriver, remove the four caster mounting bolts and the lock washers.

8. Remove the old caster and install the new one, orienting it like the old one. Be sure to include a lock washer under each mounting bolt.

9. With assistance of another person, place the warmer in its upright position.

10. Perform the checkout procedure, section 2.2, and the electrical safety checks, Section 4.

C. Model 3500 Bassinet Caster Replacement
(See Figure 7-22)

1. Disconnect the bassinet from the warmer and move it away.

2. Remove the drawers (refer to section 5.5) and note their positions for re-assembly.

3. With the assistance of another person, gently place the Bassinet on its side on the floor.

4. Make note of the orientation of the caster you are replacing. Using a 3/16” Allen wrench, remove the four mounting bolts and the lock washers.
5. Repair and Disassembly

5. Remove the old caster and install the new one, orienting it like the old one. Be sure to include a lock washer under each mounting bolt.

6. With the assistance of another person, place the bassinet in the upright position.

7. Re-install drawers.

8. Perform the checkout procedure in section 2.2.

![Diagram of Oxygen Manifold Maintenance]

Figure 5-22 Oxygen Manifold Maintenance
Vac Kote is a trademark of Ball Corporation.

5.8 Oxygen/Air Yoke Manifold Repairs

WARNING: Never oil or grease oxygen equipment unless a lubricant that is made and approved for this type of service is used. Oils and grease oxidize readily, and in the presence of oxygen, will burn violently. Vac Kote is the oxygen service lubricant recommended (Stock No. 6700-0092-200).

WARNING: Before any disassembly or repair disconnect the electrical supply, gas pipeline supply connections and remove any gas cylinders.

WARNING: Only competent individuals trained in the repair of high pressure gas equipment should attempt to service it. Unqualified repairs may result in serious injury or equipment damage.
5/Repair and Disassembly

A. General Safety Guidelines

1. Work in a clean area with clean tools and keep parts on a clean surface.

2. Do not allow dirt, oil, grease, or other combustibles to come in contact with the regulator or other parts.

3. Use only nitrogen or dry, compressed air to blow a part clean or dry. Never use compressed air containing oil: it can create a fire hazard.

4. Always use the correct socket, box or open end wrenches. Never use a pliers, pipe wrench, or adjustable wrench.

5. If you have even the slightest doubt about the condition of a part, replace the part.

⚠️ WARNING: When servicing an oxygen manifold, use only new Ohmeda parts as shown in this manual. Because of the high pressure gas application, it is essential that you never substitute parts from another manufacturer or use parts that are not clean for oxygen service.

B. General Maintenance Procedures

Before any yoke manifold repairs:

1. Disconnect the warmer from the AC power source.

2. Disconnect pipeline gas supplies.

3. Remove any gas cylinders. (See Figures 5-22 and 5-24)

These procedures apply to both the two cylinder oxygen manifold and the three cylinder air/oxygen manifold.

Periodically (at least once a year) lubricate the Tee handle threads with a small amount of oxygen service lubricant (Stock No. 6700-0092-200). This will prolong their life and make sealing of the yoke gaskets easier.

Periodically (at least once a year) replace the yoke check valve strainer nipples before they become clogged with lint or dust. Momentarily open and then close the cylinder valve before installing cylinders to blow any foreign material from the valve. When installing fresh cylinders, remove the old gasket and use a single, clean, new gasket (Stock No. 6600-0152-400) in its place.

⚠️ CAUTION: Use only one cylinder gasket per yoke. Using more than one gasket could cause a cylinder gas leak.
5/Repair and Disassembly

Apply Teflon® tape around all pipe threads. Wrap the tape clockwise, starting one thread up, as viewed from the end of the male fitting. Apply enough pressure so the tape just starts to follow the contours of the threads. Wrap two layers of tape.

Figure 5-23 Applying Teflon Tape.

To operate, open cylinder valves S-L-O-W-L-Y, and rotate cylinder valves until fully open.

CAUTION: Open cylinder valves S-L-O-W-L-Y to avoid damaging the regulators.

C. Gauge Replacement

WARNING: When replacing gauges, verify that pressure range of the replacement gauge is the same as the one you are replacing, and that the correct gas is shown.

1. Turn off gas supply and bleed off any system pressure.
2. Use a 7/16 inch open end wrench and turn the gauge counterclockwise to remove it.
3. Remove any Teflon tape remnants from the threads.

Figure 5-24 O_2 Manifold Assembly (Air/O_2 Manifold Assembly not shown)
5/Repair and Disassembly

4. Apply Teflon tape around the threads of the new gauge.

5. Install the new gauge by turning it in clockwise. Do not over-tighten. Position the gauge as shown in Figure 5-24.

6. Perform leak test according to section 5.8 F.

D. Gauge Lens Replacement

1. Turn the lens cover counterclockwise to remove it. Check that the gauge is not damaged.

2. Clean both sides of the replacement lens.

3. Place the lens cover in position over the gauge face and turn the lens clockwise. Do not over-tighten.

E. Strainer/Tee Handle Replacement

Periodically (at least once a year) replace the strainer nipples before they become clogged with lint or dust. The strainers are located in the cylinder yokes of the gas supply modules. Remove the gas cylinder, if present. With the yoke gate swung out of the way, use a flat-tip screwdriver to unscrew the strainer. Screw the replacement strainer snugly into place. Install yoke plugs (Stock No. 6600-0399-500) and gaskets (Stock No. 6600-0152-400) on unused yokes to prevent dust and lint from accumulating in the strainers or leakage occurring through unused cylinder yokes. Check that the correct gas cylinders can be properly attached to the yokes.

The tee handle screw can be unscrewed from the yoke gate and replaced if necessary.

F. Leak Testing the System

Prior to initial use and as prescribed by hospital protocol, the yoke system(s) should be checked for leaks according to the following procedure:

1. Discontinue use of the system to be tested.

2. Disconnect all pipeline gas supply and outlet lines from the yoke assembly.

3. Use new gaskets and full cylinders at each cylinder port (optionally, one full cylinder and a yoke plug may be used on a 2 cylinder oxygen manifold)

4. Open a cylinder valve at each manifold to charge the manifold(s) to a minimum of 745 psig (5137 kPa) and then close the valve(s).

5. Note the gauge pressure reading in the manifold(s).

6. After one minute, check the gauge pressure reading(s) again. The pressure gauge needle should not drop visually. If there is a visual pressure drop, discontinue use of the gas system and have the yoke assembly repaired by a qualified service person.
5/Repair and Disassembly

G. Yoke Check Valve Replacement

The yoke check valve permits a depleted cylinder to be replaced while the other cylinder continues to furnish oxygen.

⚠️ WARNING: Do not use oil or oil bearing materials on or near the regulator. Oils and greases oxidize readily and, in the presence of oxygen, they will burn violently. The air or oxygen regulators or any regulator parts must be discarded if contaminated with oil or grease.

⚠️ CAUTION: Yoke check valves are not intended to provide a leak free seal; always use a yoke plug (stock no. 6600-0399-500) and a fresh cylinder gasket to seal an unused yoke.

Replace the check valve if a large leak is detected when changing the cylinders.

1. Remove the gas cylinder(s), if present and bleed off any system pressure. With the yoke gate swung out of the way, use special socket tool (stock no. 0175-0420-000) to remove the check valve from the manifold block.

2. Always install a new sealing washer when installing a yoke check valve.

3. Tighten the check valve to 15 - 20 lb. ft. torque. Do not over tighten.

4. Check that the correct gas cylinders can be properly attached to the yokes. Perform leak test according to section 5.8F.

H. High Pressure Regulator Replacement and Adjustment

(See Figure 5-25 and 5-26)

Replace regulators every 5 years

⚠️ WARNING: Do not use oil or oil bearing materials on or near the regulator. Oils and greases oxidize readily and, in the presence of oxygen, they will burn violently. The air or oxygen regulators or any regulator parts must be discarded if contaminated with oil or grease.

1. Disconnect the gas pipeline connection(s) and remove the gas cylinder(s). Bleed off any system pressure.

2. Remove the mounting screws for the Yoke and Regulator Assembly and then remove the assembly.

3. Disconnect the copper tubing from the outlet port of the regulator and the elbow of the manifold port. Remove the outlet port fittings and copper tubing.

4. Remove the regulator from the manifold block by turning it counterclockwise. Remove any Teflon tape remnants from the threads.
5. Attach the new regulator to the manifold block. Use Teflon tape to seal the thread connections. Tighten to ensure there are no leaks. Position the regulator as shown in 5-26. Replace the outlet port fittings and copper tubing.

6. Perform leak test according to section 5.8F.

7. The regulator must be adjusted to 52 ± 2 psig (4 bar ± 138 millibar in the U.K.) with an approximate 500 cc per min. flow rate passing through it as follows:

 A. Remove the copper tubing.
 B. Attach the special fitting and gauge assembly (stock no. 0175-0543-000) to the regulator outlet. This special tool has a 0.025 in orifice to maintain a 500 cc flow for proper regulator adjustment.
 C. Adjust the regulator adjustment screw until the special fitting pressure gauge reads 52 ± 2 psig. (4 bar ± 138 millibar in the U.K.). Repeat for second regulator, if present.
 D. Tighten the adjustment screw lock nut. Re-check pressure.
 E. Remove the special fitting and gauge assembly.
 F. Reconnect the copper tubing to the regulator outlet.

8. Place the assembly in position and replace the eight mounting screws.

9. Perform leak test according to section 5.8 F.

Figure 5-25 Manifold Assembly Removal
Figure 5-26 High Pressure Regulator
5/Repair and Disassembly

I. Pneumatic Troubleshooting

This troubleshooting information provides a list of some problem conditions, possible causes, and solutions. If any of the below symptoms occur, shut off the cylinder valve and correct the problem before continuing to use the system.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas leakage when cylinder valve is opened.</td>
<td>Dirty, old, missing or multiple cylinder gaskets.</td>
<td>Install new gasket.</td>
</tr>
<tr>
<td>Leaking pipeline inlet or supply check valves.</td>
<td>Check operation of check valves.</td>
<td></td>
</tr>
<tr>
<td>Leaking check valves, fittings, regulators or gauges.</td>
<td>Replace components.</td>
<td></td>
</tr>
<tr>
<td>Improper gauge operation incorrect gauge readings.</td>
<td>Damaged gauge.</td>
<td>Replace gauge.</td>
</tr>
<tr>
<td>Gas leakage at the regulator outlet when the adjustment screw is completely released.</td>
<td>Leaking regulator.</td>
<td>Replace regulator.</td>
</tr>
<tr>
<td>Outlet pressure increases steadily above set pressure (no flow through system).</td>
<td>Leaking regulator.</td>
<td>Replace regulator.</td>
</tr>
<tr>
<td>Gas leakage from regulator case.</td>
<td>Leaking regulator.</td>
<td>Replace regulator.</td>
</tr>
<tr>
<td>Excessive drop in working pressure after the regulator pressure has been set.</td>
<td>Worn or sticking internal parts. Internal flow obstructed, or dirty filter. Cylinder valve not fully open. Dirty yoke check valve strainer nipple.</td>
<td>Replace regulator. Check for flow obstructions. Fully open cylinder valve. Replace strainer nipple.</td>
</tr>
<tr>
<td>Gas leakage from regulator or safety relief valve.</td>
<td>Leaking regulator or safety relief valve.</td>
<td>Replace regulator or safety relief valve.</td>
</tr>
<tr>
<td>Incorrect working pressure.</td>
<td>Regulator requires pressure adjustment.</td>
<td>Adjust pressure.</td>
</tr>
</tbody>
</table>
6/Troubleshooting and Testing

⚠️ WARNING: Use extreme care while performing calibration and adjustment procedures, or while working on the Ohio Infant Warmer System with power connected. An electrical shock hazard does exist; be certain to observe all standard safety precautions.

⚠️ CAUTION: Use the Static Control Work Station (Stock No. 0175-2311-00) to help ensure that static charges are safely conducted to ground. The Velostat material is conductive. Do not place electrically powered circuit boards on it.

Note: Self test programs stop when a system error code is detected. Therefore a second error code will not be displayed for another failure. The same failure can trigger more than one error code. The actual code that appears is determined by the point in the test loop where the fault occurs.

Note: SW1 on the ThermaLink board should be in the OFF position.

For maximum reliability and ease of troubleshooting, the IWS features three levels of testing: Power-Up Self tests, On Line Self tests, and On Demand Self tests.

Power up tests are performed only on power up. On line tests are performed continuously during operation to verify proper functioning. Control panel switches activate on demand tests that can be used to assess error codes.

To facilitate service of older IWS units manufactured prior to software revision 4.01, a separate section on self test functions has been included in this section. Section 6.1 describes the self test functions for units with software revision 4.01 or higher. Section 6.2 describes the self test functions for all units prior to software revision 4.01.

6.1 Self Test Functions (units with Software Revision 4.01 or higher)

6.1.1 Power Up Testing

When power is first applied, the following self tests are performed. If a failure is detected, the error code appears in the elapsed time display. If no error is detected, the tests are transparent to the user.

- RAM test (Error 05)
- Instruction test (Error 01)
- Checksum (Error 04)
- Safety relay (Error 16)*

* This is the only routine that checks for this error.

6.1.2 On Line Testing

The following self tests are performed continuously during normal operation. If a failure is detected, the error code appears in the elapsed time display.
6/Troubleshooting and Testing

RAM test (Error 05)
Checksum (Error 04)
ADC calibration (Errors 02 and 03)
Triac or solid state relay fails to respond to software control (Errors 12 and 13)
ADC not converting (Error 07)
Audible alarm failure (Error 14)
Software upsets (Errors 15, 17, and 19)
Line voltage out of range (Error 10)*

* This is the only routine that checks for this error.

6.1.3 On Demand Testing

There are two types of on demand testing. Calibration routines that let you test and adjust specific circuits and switch activated displays that display actual readings to assist in troubleshooting (e.g. the number of software time outs).

A. Calibration Routines

Calibration routines let you adjust specific circuits by depressing a switch during power up. You must switch the power off to exit these routines.

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Applications</th>
<th>External Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC Calibration</td>
<td>Elapsed time display shows patient temp to two decimal places even if outside normal display range.</td>
<td>Display Brightness adj.</td>
<td>Depress Start/Hold switch at power up</td>
</tr>
<tr>
<td>% Line Voltage</td>
<td>% of rated line voltage appears in elapsed time display.</td>
<td>% line voltage calibration</td>
<td>Depress Reset switch at power up</td>
</tr>
<tr>
<td></td>
<td>2KHz alarm active</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alarm freq. adj.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The control and patient temperature displays tell you if you are in a calibration mode and identify the routine:

- In the ADC Calibration routine, the letters “CAL” appear in the patient temperature display and the letters “AdC” appear in the control temperature display.
- In the% Line Voltage Calibration routine, the letters “CAL” appear in the patient temperature display and the letters “LI.” appear in the control temperature display.
6/Troubleshooting and Testing

Note: On IWS 2001 International units, "CAL" appears in the patient temperature display regardless of which calibration routine is selected. If the value in the elapsed time display changes when you unplug, warm, or cool the patient probe, you are in the ADC calibration routine.

B. Switch Activated Displays

Switch activated displays show parameters, such as the % line voltage, on the controller front panel for easier troubleshooting.

In normal operation the Alarm Silence, the Start/ Hold, and the Apgar Tones switches activate service displays when held down for more than five seconds. The high priority alarm also sounds to indicate that actual patient temperatures are not displayed. The normal display reappears when you release the switch.

The following table summarizes the data that will be displayed when each switch is depressed and held for at least five seconds. It is intended as a quick reference. Switch applications for troubleshooting are discussed in Section 6.3 under the individual error codes.

<table>
<thead>
<tr>
<th>Activation</th>
<th>Description</th>
<th>Related Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depress Alarm Silence for 5 sec</td>
<td>All LEDs and Display segments illuminate</td>
<td>None</td>
</tr>
<tr>
<td>Depress Alarm Silence for 5 sec</td>
<td>Phased in high priority alarm</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>(alternating two tone) sounds.</td>
<td></td>
</tr>
<tr>
<td>Depress Start/Hold for 5 sec</td>
<td>Displays show converted values of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patient temp: Cal high temp to 1 decimal pl</td>
<td>Error 03</td>
</tr>
<tr>
<td></td>
<td>(25.05 ± 0.3°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control temp*: Cal high temp to 1 decimal pl</td>
<td>Error 02</td>
</tr>
<tr>
<td></td>
<td>(37.96 ± 0.3°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elapsed time: % line voltage to 1 decimal pl</td>
<td>Error 10</td>
</tr>
<tr>
<td></td>
<td>(% nominal ± 2%)</td>
<td></td>
</tr>
<tr>
<td>Depress Apgar Tones for 5 sec</td>
<td>Displays show converted values of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patient temp: Pxx</td>
<td>Error 19</td>
</tr>
<tr>
<td></td>
<td>(xx = number of watchdog circuit time outs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control temp*: Hyy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(yy = number of heater cycles per sec)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elapsed time: Patient temperature (2 decimal places)</td>
<td></td>
</tr>
</tbody>
</table>

* IWS 2001 International units do not have a control temperature display.
6/Troubleshooting and Testing

C. Self Test Loop

1. Self Tests

To enter this loop depress and hold the Apgar tone switch while powering up the unit. The microcontroller cycles through a series of self tests, including:

All of the power up tests
- Instruction Test (E01)
- EPROM Checksum Test (E04)
- RAM Test (E05)

The following on line self tests
- ADC High Calibration Failure (E02)
- ADC Low Calibration Failure (E03)
- ADC Failure (E07)
- Heater Not Switching On (E12)
- Heater Not Switching Off (E13)
- Alarm Oscillator Failure (E14)
- ThermaLink Self Test*

Important: Unless you specifically want to repeat the power up tests, troubleshooting should be performed in the normal operational modes.

2. Displays

The display loop runs simultaneously with the self tests, displaying frames of data and testing for proper LED operation. An alternating two tone alarm sounds continuously during the test. Frames are cycled as follows:

<table>
<thead>
<tr>
<th>Frame</th>
<th>Temperature Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patient Temp.</td>
</tr>
<tr>
<td>1.</td>
<td>——— All displays blank———</td>
</tr>
<tr>
<td>2.*</td>
<td>rs</td>
</tr>
<tr>
<td>3.</td>
<td>Patient Temp.†</td>
</tr>
<tr>
<td>4.</td>
<td>Low Cal. Point</td>
</tr>
<tr>
<td>5.</td>
<td>— all segments of all displays are lit —</td>
</tr>
</tbody>
</table>

*Only on controllers with 5.00 software.
† Only when the probe is connected, otherwise display is blank.
6/Troubleshooting and Testing

D. ThermaLink Communication Option Self Test

The RS-232 portion of the ThermaLink communications option, available only on controllers with 05.00 software or higher, can be tested by setting the switch SW1 on the optional ThermaLink board to the ON position, or by shorting pins 2 and 3 on the ThermaLink Connector. Disconnect cable to other equipment before testing. Press the Apgar tones switch while powering up the unit. Release the switch when a continuous alarm sounds. If the RS-232 is functioning, the displays will cycle to a frame that shows:

<table>
<thead>
<tr>
<th>Patient Temp</th>
<th>Control Temp</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs</td>
<td>232</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Conversely, if the RS-232 is not functioning, the temperature displays will cycle to a frame that shows:

<table>
<thead>
<tr>
<th>Patient Temp</th>
<th>Control Temp</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs</td>
<td>232</td>
<td>FAIL</td>
</tr>
</tbody>
</table>

At the end of this test, be sure to set the SW1 to the OFF position for normal operation.

6.2 Self Test Functions (units prior to Software Revision 4.01)

The following text is a description of the self test functions performed by the infant warmer. If an error results on any of the power-up or on-line tests then the error number will be displayed on the elapsed time display in the format E ##. The high priority alarm (System Failure LED) will be ON and cannot be silenced. Power must be switched OFF to reset this alarm.

6.2.1 Power Up Testing

On power up the following tests are performed.

1. Instruction Test (Error #01)

 Selected instructions are tested and verified operational.

2. Checksum (Error #04)

 The hex values of EPROM locations from 0000 to 1FFD are added together and a 2 byte sum is stored. EPROM locations 1FFE and 1FFF contain a 2 byte number which when added to the calculated checksum should total zero.

3. RAM Test (Error #05)

 RAM locations 10 through 7F are tested with patterns of 00, FF, AA, and 55.
4. Test Port 1 Lines (Error #06)

The port one I/O lines are tested to verify they can be toggled.

NOTE: At power up the software revision number is displayed for 1 second in the elapsed time display, after the LED segment test.

6.2.2 On Line Testing

The following tests are run during the normal operation of the software. An error on any of these tests results in a System Failure alarm.

1. **ADC Calibration Test (CAL High Error #02, CAL Low Error #03)**

 Verifies that readings of the precision calibration resistors are within 0.3 degrees of the nominal values.

 These readings can be checked by depressing the hidden switch on the display panel (located directly above the alarm silence switch) for 2 seconds.

 After 2 seconds the displays should indicate as follows:

 * Patient Temperature is 25.0 ± 0.3 degrees.
 * Control Temperature is 37.9 ± 0.3 degrees.

2. **Hardware Triac Test (E#025 03.11 Software only)**

 A circuit independent of the microcontroller monitors that the microcontroller can switch the heat OFF. Every 3 minutes 24 seconds in 60 Hz operation (4 minutes and 5 seconds for 50 Hz operation) a request is made to the microcontroller to switch the heat OFF. If the heat does not go OFF, a hardware latch is latched and a relay contact is opened so there is no heat. This verifies that the triac is not shorted and that the microcontroller is still able to control the heat. This failure does not display an error number because it is not controlled by the microcontroller but will cause the software triac test to fail when heat is called for by the program.

3. **ADC Convertor Not Converting (Error #07)**

 Verifies that the ADC conversion complete occurs within 1 second.

4. **Hardware Triac Timer Not Running (Error #08)**

 Verifies that the request from the hardware triac test circuit occurs within 256 seconds.
5. Software Triac Test (Error #09)

The heater status line is checked to verify that the heat is ON when the micro is switching it ON. This verifies that the triac is not failed open.

6. Line Voltage Out of Range (Error #10)

Verifies that the line voltage is within the range of 82.6% to 117.4% of nominal input voltage. (95v to 135v, for 115v units)

6.2.3 On Demand Testing

Diagnostic testing can be accessed by one of the following:

1. Depressing and holding the Apgar Tones switch while powering up unit. This causes the unit to cycle in the self test loop until power is removed. See self test loop.

2. Selecting one of the test positions on the 4 position DIP switch located on the control board. Following is a description of the functions of the DIP positions:

 a. Switches All Open (OFF) Normal Operating Position.

 b. Switches 2,3,4, Closed (ON) and Switch 1 Open (OFF) Hardware Triac Test

 This mode is used to test the hardware triac test circuit. (See Section 4)

 c. Switches 1,2,3, Open (OFF) and Switch 4 Closed (ON) ADC Calibration

 The system displays the actual ADC counts on the elapsed time display, the patient temperature on the patient display even if outside of the normal displayed range, and the % of nominal line voltage on the control display. This position is used for calibrating the analog to digital converter and the line voltage compensation circuit.

 d. Switches 1,2,4 Open (OFF) and Switch 3 Closed (ON) Alarm Calibration

 All segments of all LEDs are lit. The heater, overhead alarm lamps, and the observation lamp are on. The audio alarm emits a steady low priority alarm sound. The 2 kHz alarm frequency can be adjusted using this mode.
e. Switches All Closed (ON)
 Self Test Loop

 In this mode the unit cycles through a display test, checks ADC calibration, cycles the heater, alarm lights, and observation lights, and steps through the tests described in power up testing. It also monitors the touch switches and sounds the critical alarm while any switch is depressed. If any error occurs the error number will be displayed on the elapsed time display and the critical alarm will sound for two seconds. The program will then continue to loop through this test, even if the 4 DIP switches are returned to Open (OFF).

 If the test loop is entered on power up by depressing the Apgar Tones switch the program will loop until an error is detected. If an error is detected the unit will then stop the test loop, the error code will be displayed in the elapsed time display, and the critical alarm will sound. The power must be switched OFF to exit this mode.

6.2.4 Self Test Loop

 The unit cycles in the following loop until the power is removed.

 Power up tests performed:

 Instruction test (Error #01)
 Check calibrate high (Error #02)
 Check calibrate low (Error #03)
 Checksum (Error #04)
 RAM test (Error #05)
 Test port 1 lines (Error #06)
 Check if ADC is converting (Error #07)
6/Troubleshooting and Testing

Display loop test:

<table>
<thead>
<tr>
<th>Seven Segment Display's</th>
<th>Bar Graph Segments</th>
<th>Alarm LEDs</th>
<th>Mode LEDs</th>
<th>Heater & Lights</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 1's</td>
<td>1,11</td>
<td>Probe fail</td>
<td>Servo</td>
<td>ON</td>
</tr>
<tr>
<td>All 2's</td>
<td>2,12</td>
<td>Pat temp</td>
<td>Servo</td>
<td>OFF</td>
</tr>
<tr>
<td>All 3's</td>
<td>3,13</td>
<td>Sys fail</td>
<td>Servo</td>
<td>ON</td>
</tr>
<tr>
<td>All 4's</td>
<td>4,14</td>
<td>Heater OFF</td>
<td>Manual</td>
<td>OFF</td>
</tr>
<tr>
<td>All 5's</td>
<td>5,15</td>
<td>Reset timer</td>
<td>Manual</td>
<td>ON</td>
</tr>
<tr>
<td>All 6's</td>
<td>6,16</td>
<td>Spare LED</td>
<td>Manual</td>
<td>OFF</td>
</tr>
<tr>
<td>All 7's</td>
<td>7,17</td>
<td>All OFF</td>
<td>Apgar</td>
<td>ON</td>
</tr>
<tr>
<td>All 8's</td>
<td>8,18</td>
<td>All OFF</td>
<td>Apgar</td>
<td>OFF</td>
</tr>
<tr>
<td>All 9's</td>
<td>9,19</td>
<td>All OFF</td>
<td>Apgar</td>
<td>ON</td>
</tr>
<tr>
<td>All 0's</td>
<td>10,20</td>
<td>All OFF</td>
<td>All OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>All OFF</td>
<td>All OFF</td>
<td>All OFF</td>
<td>All OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

The unit returns to start of self test loop.

6.3 Troubleshooting Error Codes

Important: The recommended service policy is to limit repair procedures to sensor or board replacement, or in some cases the replacement of EPROMs. Additional information is provided for the purpose of identifying the faulty assembly.

Error codes are a subset of the system failure alarm. When an error code is triggered, an alternating two tone alarm sounds, the heater is automatically shut off, and normal warmer operation stops. However, the patient display continues to update, and the various on demand test functions are still available.

This section individually discusses each error code.

During a system failure alarm, the error code appears in the elapsed time display in the format E0##. A nonsilenceable, high priority alarm sounds and the System Failure LED illuminates. You must switch the power OFF to reset this alarm.

Note: Excessive EMI levels in the hospital environment can trigger the system failure alarm. Note the error code and switch off the unit. Wait ten seconds and switch the unit back on. If the system failure alarm recurs, remove the Infant Warmer from use until it has been repaired.

A. E01, Instruction Test Failure

A software routine executes selected instructions from the 8032 microcontroller. The results are then checked and if any mistakes are found this error is triggered.

To repeat the test, cycle the power off and back on. If the error recurs, replace the control board or kit.
6/Troubleshooting and Testing

B. E02, ADC High Calibration Failure

The reading from the ADC calibrate high resister (R30, 5.76 kΩ), has exceeded the limits of 37.96 ± 0.3°C for one minute (or two consecutive ADC readings on boards prior to 4.01 software). This corresponds to a voltage of approximately 540 mV at the multiplexer input (U12 pin 14).

To see if the ADC requires calibration, depress the Start/Hold switch for five seconds; the low calibration test point (25.05 ± 0.3°C) will appear in the patient temperature display and the high calibration reading (37.96 ± 0.3°C) will appear in the control temperature display (except on IWS 2001 units, which do not have a control temperature display). If both readings exceed or nearly exceed the limits, calibration is required or resistor R30 may be out of tolerance. If the problem persists replace the control board or kit.

C. E03, ADC Low Calibration Failure

The reading from the ADC calibrate low resister (R29, 10 kΩ), has exceeded the limits of 25.05 ± 0.3°C for one minute (2 consecutive readings on control boards prior to 4.01 software). This corresponds to a voltage of approximately 690 mV at the multiplexer input (U12 pin 13).

To see if the ADC requires calibration, depress the Start/Hold switch for five seconds; the low calibration test point (25.05 ± 0.3°C) will appear in the patient temperature display and the high calibration reading (37.96 ± 0.3°C) will appear in the control temperature display (except on IWS 2001 units, which do not have a control temperature display). If both readings exceed or nearly exceed the limits, calibration is required or resistor R29 may be out of tolerance. If the problem persists, replace the control board or kit.

D. E04, Checksum Failure

The results of the EPROM memory checksum differ from the correct result stored at memory locations 3FFE and 3FFF on U9.

There are no related test points. To repeatedly check for this alarm, switch off the unit and wait ten seconds; then switch it back on. If the error recurs, replace the EPROM (U9) and repeat the previous check. If the error recurs, replace the control board or kit.

E. E05, RAM Test Failure

The data read from a RAM memory location differs from the test pattern written to it.

There are no related test points. To repeatedly check for this alarm, switch off the unit and wait ten seconds; then switch it back on. If the error recurs, replace the control board or kit.
6/Troubleshooting and Testing

F. E06, Port 1 (Prior to 04.01 Software only)

Data being read back on Port 1 does not agree with the data written to the port. These signals cannot be monitored and there are no related test points. If the problem persists, replace the control board or kit.

G. E07, ADC Converter Failure

The Conversion Complete Signal from the ADC does not occur within five seconds of the Start Conversion signal from I/O expander U2.

Do not attempt to monitor these signals; the Start Conversion and the Conversion Complete pulses are extremely narrow with durations of only a few nano seconds. Verify that no conversions are being completed by heating or cooling the patient temperature probe and observing that the temperature display does not update, then replace the control board.

H. E08, Hardware Watchdog Timer (Software Revision 01.00 only)

The hardware watchdog timer is not functioning and timing out properly. There are no associated test points. Replace the control board.

I. E09, Heater Control (Prior to 04.01 Software only)

The heater triac or solid state relay or driving components are defective and are not allowing the radiant heat to be controlled. Verify that all the interconnecting cables are properly connected and making good electrical contact. Also verify for correct control signals from the control board. Replace the solid state relay (if applicable). If the problem persists, replace the power supply board.

J. E10, Line Voltage Out Of Range

Note: This alarm generally indicates a need for calibration.

The line voltage compensation signal from the power supply board converts to a voltage outside the allowed range, 82.6% to 117.4% of the nominal voltage (86.1% to 122.5% for 230 V). Line voltage fluctuation greater than 10% of a unit's nominal voltage will affect heater output.

Check the line voltage at the power outlet. If the line voltage is not outside the alarm range, calibrate the line voltage compensation circuit (Section 4.6). If the circuit cannot be calibrated, unplug and plug back in the cable connectors on both the control and power supply boards. If this does not correct the problem, replace the power supply board. If the line voltage deviates from the nominal voltage by more than 10%, find a different power supply.
6/Troubleshooting and Testing

<table>
<thead>
<tr>
<th>Labeled Voltage</th>
<th>Nominal Voltage</th>
<th>Power Supply Range (alarm limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 V</td>
<td>95 V</td>
<td>82.6 to 117.4 V</td>
</tr>
<tr>
<td>120 V</td>
<td>115 V</td>
<td>95 to 135 V</td>
</tr>
<tr>
<td>220 V</td>
<td>220 V</td>
<td>181.7 to 258.3 V</td>
</tr>
<tr>
<td>230 V</td>
<td>230 V</td>
<td>198.2 to 281.8 V</td>
</tr>
<tr>
<td>240 V</td>
<td>240 V</td>
<td>198.2 to 281.8 V</td>
</tr>
</tbody>
</table>

K. E12, Heater Not Switching On (Revision 04.01 Software and higher)

The microcontroller has commanded the heater to switch on (U1 pin 16 high) but the heater status signal indicates that the heater is off (U2 pin 14 low; heater status LED off).

Verify the proper heater command and the heater status signal levels. Also verify that heater rod wires are properly connected and making good electrical contact. The most probable cause of this alarm is an open solid state relay (or triac in some older IWS models) or a problem in the power supply board’s heater drive circuit. Replace solid state relay (if applicable). If problem persists, replace power supply board.

L. E13, Heater Not Switching Off (Revision 04.01 Software and higher)

The microcontroller has commanded the heater to switch off (U1 pin 16 low) but the heater status signal indicates that the heater is on (U2 pin 14 high; heater status LED illuminated).

Verify the proper heater command and the heater status signal levels. Also verify that heater rod wires are properly connected and making good electrical contact. The most probable cause of this alarm is a shorted solid state relay (triac in some older IWS models) or a problem in the power supply board’s heater drive circuit. Replace solid state relay (if applicable). If problem persists, replace power supply board.

M. E14, Alarm Oscillator Failure (Revision 04.01 Software and higher)

An alternating two tone alarm signal has been activated (high priority alarm line) but the 2 kHz signal at test point 1 (also U2 pin 16) is not toggling.

To troubleshoot this failure, an alternating two tone alarm must be active. To activate the alarm circuit, depress the Reset switch during power up. If the problem persists, replace the control board.
6/Troubleshooting and Testing

N. E15, Software Upset RAM Error (Revision 04.01 Software and higher)

A software upset has caused the watchdog timer to time out and the system is unable to recover because critical parameters (e.g. control temperature) stored in the RAM may have been altered. This error does not necessarily indicate a hardware failure.

Note: Excessive EMI levels in the hospital environment can trigger the system failure alarm. Note the error code and switch off the unit. Wait ten seconds and switch the unit back on. If the system failure alarm recurs, remove the warmer from use until it has been repaired.

Switch the unit off and back on. If the error does not recur, allow the unit to run for half an hour. Then check the number of recoverable software upsets that have occurred by depressing and holding the Appar Tones switch for at least five seconds. If PFF appears in the patient temperature display, no software upsets have occurred. Complete the Checkout Procedure and return the unit to service. If another value appears in the patient temperature display, replace the control board.

O. E16, Safety Relay Not Opening Properly (Revision 04.01 Software and higher)

On power up, the software performs tests to verify that, if the watchdog timer is not pulsed, the safety relay opens. If the microcontroller does not sense the contacts opening, the System Fail Alarm is activated.

To repeat the test, cycle the power off, wait ~5 seconds, then turn the power back on.

The most likely cause for this failure is a defective power supply board, but it can also be caused by a bad control board.

P. E17, Software Upset (Revision 04.01 Software and higher)

For some unknown reason, the software is not cycling through all of the routines and is unable to recover. This error does not necessarily indicate a hardware failure.

Note: Excessive EMI levels in the hospital environment can trigger the system failure alarm. Note the error code and switch off the unit. Wait ten seconds and switch the unit back on. If the system failure alarm recurs, remove the warmer from use until it has been repaired.
6/Troubleshooting and Testing

Switch the unit off and back on. If the error does not recur, allow the unit to run for half an hour. Then check the number of recoverable software upsets that have occurred by depressing and holding the Apgar Tones switch for at least five seconds. If PFF appears in the patient temperature display, no software upsets have occurred. Complete the Checkout Procedure and return the unit to service. If another value appears in the patient temperature display, replace the control board or kit.

Q. E19, Software Upset (Revision 04.01 Software and higher)

The watchdog timer has timed out 256 times since power up. This error can be caused by a software upset. This error does not necessarily indicate a hardware failure.

Note: Excessive EMI levels in the hospital environment can trigger the system failure alarm. Note the error code and switch off the unit. Wait ten seconds and switch the unit back on. If the system failure alarm recurs, remove the warmer from use until it has been repaired.

Switch the unit off and back on. If the error does not recur, allow the unit to run for half an hour. Then check the number of recoverable software upsets that have occurred by depressing and holding the Apgar Tones switch for at least five seconds. If PFF appears in the patient temperature display no software upsets have occurred. Complete the Checkout Procedure and return the unit to service. If another value appears in the patient temperature display, replace the control board or kit.

R. E25, Watchdog Circuit Tripped (Software Revision 3.11 Only)

This alarm only triggers in units with software level 03.11. Replace the control board or kit.
Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Cord 100/120V units</td>
<td>0208-0950-300</td>
</tr>
<tr>
<td></td>
<td>Power Cord 220/230/240V units</td>
<td>6600-0107-600</td>
</tr>
<tr>
<td>2</td>
<td>Plug Guard</td>
<td>6600-0572-500</td>
</tr>
<tr>
<td>3</td>
<td>Screw 8-32 x 3/8</td>
<td>6600-0261-400</td>
</tr>
<tr>
<td>4</td>
<td>Lock washer, internal #8</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>5</td>
<td>Rechargeable 7.2 Battery</td>
<td>0690-1000-310</td>
</tr>
<tr>
<td>6</td>
<td>Control Board ESD Shield†</td>
<td>6600-0509-500</td>
</tr>
</tbody>
</table>

†Included with noise suppression kit, see page 7-80

* Not present on all units.

Figure 7-1

Infant Warmer Controller Assembly 1 (All models)
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phone Jack Bezel</td>
<td>0217-5219-100</td>
</tr>
<tr>
<td>2. Bezel Label - English/French</td>
<td>0205-4711-304</td>
</tr>
<tr>
<td>Bezel Label - Spanish</td>
<td>0205-4711-301</td>
</tr>
<tr>
<td>Bezel Label - German</td>
<td>0205-4711-302</td>
</tr>
<tr>
<td>Bezel Label - Italian</td>
<td>6600-1557-100</td>
</tr>
<tr>
<td>Bezel Label - Swedish</td>
<td>6600-1559-100</td>
</tr>
<tr>
<td>3. Patient Cable Harness Assy Kit (includes items 4 & 11)</td>
<td>6600-0392-800</td>
</tr>
<tr>
<td>4. Washer, flat</td>
<td>6600-0455-400</td>
</tr>
<tr>
<td>5. Display Board</td>
<td>0631-5031-700</td>
</tr>
<tr>
<td>6. Standoff</td>
<td>0402-0233-300</td>
</tr>
<tr>
<td>7. Brass Washer</td>
<td>0202-4510-300</td>
</tr>
<tr>
<td>8. Screw, 8-32 x2</td>
<td>0140-4127-236</td>
</tr>
<tr>
<td>9. Screw #6 x 5/8</td>
<td>0142-2833-210</td>
</tr>
<tr>
<td>10. Display box bottom cover*</td>
<td>6600-0521-500</td>
</tr>
<tr>
<td>11. Display box top cover*</td>
<td>6600-0522-500</td>
</tr>
<tr>
<td>12. Switch panel label - English</td>
<td>0205-4945-300</td>
</tr>
<tr>
<td>Spanish</td>
<td>6600-0462-100</td>
</tr>
<tr>
<td>French</td>
<td>6600-0100-100</td>
</tr>
<tr>
<td>German</td>
<td>6600-0472-100</td>
</tr>
<tr>
<td>Italian</td>
<td>6600-1549-100</td>
</tr>
<tr>
<td>Swedish</td>
<td>6600-1551-100</td>
</tr>
<tr>
<td>Model 2001, English (includes model ID #)</td>
<td>6600-0238-100</td>
</tr>
<tr>
<td>Model 2001, Spanish (includes model ID #)</td>
<td>6600-0266-100</td>
</tr>
<tr>
<td>Model 2001, French (includes model ID #)</td>
<td>6600-0267-100</td>
</tr>
<tr>
<td>13. Nut, 6-32 Hex</td>
<td>0144-3324-113</td>
</tr>
<tr>
<td>14. Ground label**</td>
<td>0205-4737-300</td>
</tr>
<tr>
<td>15. Display box grounding spring**</td>
<td>0214-1569-500</td>
</tr>
<tr>
<td>16. Tab Faston 250 SER**</td>
<td>0208-0439-300</td>
</tr>
<tr>
<td>17. Lock washer, #6 int**</td>
<td>0144-1106-131</td>
</tr>
<tr>
<td>18. Display Board ESD Shield†**</td>
<td>6600-0508-500</td>
</tr>
<tr>
<td>19. Snap dome switch panel - 3000 &4000, Model 5000</td>
<td>0208-5129-300</td>
</tr>
<tr>
<td>Snap dome switch panel -Model 2001</td>
<td>6600-0136-700</td>
</tr>
<tr>
<td>20. Model Number Insert label</td>
<td>See table below</td>
</tr>
</tbody>
</table>

Parts not shown
Skin Temperature Probe LA003 (reusable)........ 0208-0697-700
Reflective patches, 50/pkg (used with LA003)....... 0203-1980-300
Skin Temperature Probe LA005 (disposable) pkg/10... 6600-0208-700
Probe LA005... 6600-0196-700

* Replace both top and bottom panels to ensure a match

† Included with noise suppression kit, see page 7-80

<table>
<thead>
<tr>
<th>Model Number</th>
<th>English</th>
<th>Spanish</th>
<th>French</th>
<th>German</th>
<th>Italian</th>
<th>Swedish</th>
</tr>
</thead>
</table>

Not present on all units
Figure 7-2
Infant Warmer Controller Assembly 2 (All models)
<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lock Nut 8-32 w/Ext Lock Washer</td>
<td>0202-1131-300</td>
</tr>
<tr>
<td>2. Cable Tie 4"</td>
<td>0203-5915-300</td>
</tr>
<tr>
<td>3. External Lock Washer</td>
<td>0202-3205-300</td>
</tr>
<tr>
<td>4. Screw, 8-32 x 1/2</td>
<td>0140-6127-108</td>
</tr>
<tr>
<td>5. Transformer 95,115, 220,</td>
<td></td>
</tr>
<tr>
<td>240 Vac Input 8 to 13 Vac Output</td>
<td>0208-7580-300</td>
</tr>
<tr>
<td>6. Transformer 95,115, 220,</td>
<td></td>
</tr>
<tr>
<td>240 Vac Input 12 Vac Output</td>
<td>0208-7581-300</td>
</tr>
<tr>
<td>7. Hex nut 4-40</td>
<td>0144-3217-113</td>
</tr>
<tr>
<td>8. Internal #4 Lock Washer</td>
<td>0144-1104-131</td>
</tr>
<tr>
<td>9. Mounting Plate</td>
<td>0214-2275-711</td>
</tr>
<tr>
<td>10. Micro Switch (1 amp)</td>
<td>0208-5163 300</td>
</tr>
<tr>
<td>11. Screw, 4-40 x 5/8</td>
<td>0140-6517-110</td>
</tr>
<tr>
<td>12. External #6 Lock Washer</td>
<td>0202-3200-300</td>
</tr>
<tr>
<td>13. Screw, 6-32 x 1/2</td>
<td>0140-6124-108</td>
</tr>
<tr>
<td>14. Cable Tie Mount</td>
<td>0203-5922-300</td>
</tr>
<tr>
<td>15. Screw #6 x 5/8</td>
<td>0142-2833-210</td>
</tr>
<tr>
<td>16. Display Box Mounting Bracket</td>
<td>0214-1571-500</td>
</tr>
<tr>
<td>17. Flat washer</td>
<td>0202-4518-340</td>
</tr>
<tr>
<td>18. Control Board ESD Shield†*</td>
<td>6600-0509-500</td>
</tr>
</tbody>
</table>

†Included with noise suppression kit, see page 7-80

* Not present on all units.
Figure 7-3
Infant Warmer Controller Assembly 3
IWS 3000, 3300, 3500, and 2001
with serial numbers that do not begin with HCA
Illustrated Parts

For 120 V Version, connect to 2 & 4
For 220 V Version, connect to 2 & 5
For 230 V Version, connect to 2 & 6
For 240 V Version, connect to 2 & 6

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lock Nut 8-32 w/Ext Lock Washer</td>
<td>0202-1131-300</td>
</tr>
<tr>
<td>2. Cable Tie 4"</td>
<td>0203-5915-300</td>
</tr>
<tr>
<td>3. External Lock Washer</td>
<td>0202-3205-300</td>
</tr>
<tr>
<td>4. Screw, 8-32 x 1/2</td>
<td>0140-6127-108</td>
</tr>
<tr>
<td>5. Transformer 95, 115, 220, 230, 240 Vac</td>
<td></td>
</tr>
<tr>
<td>Input 8 to 13 Vac Output</td>
<td>0208-7580-300</td>
</tr>
<tr>
<td>6. Transformer 95, 115, 220, 230, 240 Vac</td>
<td></td>
</tr>
<tr>
<td>Input 12 Vac Output</td>
<td>0208-7581-300</td>
</tr>
<tr>
<td>7. Hex Nut 4-40</td>
<td>0144-3217-113</td>
</tr>
<tr>
<td>8. Internal #4 Lock Washer</td>
<td>0144-1104-131</td>
</tr>
<tr>
<td>9. Mounting Plate</td>
<td>0214-2275-711</td>
</tr>
<tr>
<td>10. Micro Switch (1 amp)</td>
<td>0208-5163-300</td>
</tr>
<tr>
<td>11. Screw, 4-40 x 5/8</td>
<td>0140-6517-110</td>
</tr>
<tr>
<td>12. External #6 Lock Washer</td>
<td>0202-3200-300</td>
</tr>
<tr>
<td>13. Screw, 6-32 x 1/2</td>
<td>0140-6124-108</td>
</tr>
<tr>
<td>14. Cable Tie Mount</td>
<td>0203-5922-300</td>
</tr>
<tr>
<td>15. Screw #6 x 5/8</td>
<td>0142-2833-210</td>
</tr>
<tr>
<td>16. Display Box Mounting Bracket</td>
<td>0214-1571-500</td>
</tr>
<tr>
<td>17. Solid State Relay</td>
<td>6600-0457-800</td>
</tr>
<tr>
<td>18. Flat washer</td>
<td>0202-4518-340</td>
</tr>
<tr>
<td>19. Control Board ESD Shield†*</td>
<td>6600-0509-500</td>
</tr>
</tbody>
</table>

† Included with noise suppression kit, see page 7-80
* Not present on all units.
Figure 7-4
Infant Warmer Controller Assembly 4
Model 5000 and all models with HCA serial numbers
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lock Washer 8-32 w/Ext Lock washer</td>
<td>0202-1131-300</td>
</tr>
<tr>
<td>2. Tab Faston 250 Series amp #60465-2*</td>
<td>0208-0439-300</td>
</tr>
<tr>
<td>3. External Lock Washer</td>
<td>0202-3205-300</td>
</tr>
<tr>
<td>4. Controller end cap</td>
<td>0217-5320-100</td>
</tr>
<tr>
<td>5. Screw, 6-32 x 1/2*</td>
<td>0140-6124-108</td>
</tr>
<tr>
<td>6. External #6 Lock Washer*</td>
<td>0202-3200-300</td>
</tr>
<tr>
<td>7. Snap Split Bushing*</td>
<td>0208-0607-300</td>
</tr>
<tr>
<td>8. Lock Nut #6-32</td>
<td>0202-1130-300</td>
</tr>
<tr>
<td>9. Screw 6-32 x 3/8</td>
<td>0400-3135-300</td>
</tr>
<tr>
<td>10. Power Cord Line Filter (install from inside)</td>
<td>6600-0170-600</td>
</tr>
<tr>
<td>11. Nylon Grommet</td>
<td>0211-1472-300</td>
</tr>
<tr>
<td>12. Toggle Switch dpst</td>
<td>0690-2500-365</td>
</tr>
<tr>
<td>13. Controller Wire Harness</td>
<td></td>
</tr>
<tr>
<td>Model 2001 & Series 3000 without HCA serial number</td>
<td>0208-6181-700</td>
</tr>
<tr>
<td>Model 5000 without HCA serial number</td>
<td>6600-0006-700</td>
</tr>
<tr>
<td>All models with HCA serial number</td>
<td>6600-0333-700</td>
</tr>
<tr>
<td>14. Cable Assy, 16 Conductor</td>
<td>6600-0211-700</td>
</tr>
<tr>
<td>15. Cable Assy, 12 Conductor</td>
<td>6600-0261-600</td>
</tr>
<tr>
<td>16. Control Board (for units with ESD shielding in place)‡</td>
<td>6600-0223-700</td>
</tr>
<tr>
<td>17. Power Supply Board</td>
<td></td>
</tr>
<tr>
<td>Model 2001 & Series 3000 without HCA serial number</td>
<td>6600-0180-700</td>
</tr>
<tr>
<td>Model 5000 115/220/240V without HCA serial number</td>
<td>6600-0013-850</td>
</tr>
<tr>
<td>All other models with HCA serial number</td>
<td>6600-0012-850</td>
</tr>
<tr>
<td>18. Spacer 1/4" Hex 6-32 x 3/4</td>
<td>0402-0234-300</td>
</tr>
<tr>
<td>19. Spacer 1/4" Hex 6-32 x 2</td>
<td>0402-0236-300</td>
</tr>
<tr>
<td>20. Screw #4 x 5/16</td>
<td>6600-0013-400</td>
</tr>
<tr>
<td>21. Control Board ESD Shield†</td>
<td>6600-0509-500</td>
</tr>
<tr>
<td>22. Standoff, 6-32 x 3/4, Nylon</td>
<td>6600-0479-400</td>
</tr>
</tbody>
</table>

‡ If your unit has no shielding, see page 7-80 for a complete noise suppression kit.

* Not present on all units.
Figure 7-5
Infant Warmer Controller Assembly 5 (All models)
<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ThermaLink ribbon cable assembly</td>
<td>6600-0346-700</td>
</tr>
<tr>
<td>2. ThermaLink chassis</td>
<td>6600-0550-500</td>
</tr>
<tr>
<td>3. ThermaLink board</td>
<td>6600-0243-702</td>
</tr>
<tr>
<td>4. Controller label</td>
<td>0205-4959-300</td>
</tr>
<tr>
<td>5. "D" channel</td>
<td>0217-5320-100</td>
</tr>
<tr>
<td>6. ThermaLink wire harness assembly</td>
<td>6600-0239-700</td>
</tr>
<tr>
<td>7. ThermaLink chassis cover</td>
<td>6600-0551-500</td>
</tr>
<tr>
<td>8. Lock washer, #4 int</td>
<td>0202-3407-300</td>
</tr>
<tr>
<td>9. Screw, 4-40 x 1/4 Phillips</td>
<td>6600-0125-400</td>
</tr>
<tr>
<td>10. Screw, 6-32 x 1/4 PH SST</td>
<td>0140-6624-104</td>
</tr>
<tr>
<td>11. Lock washer, #6 int</td>
<td>0202-3412-300</td>
</tr>
<tr>
<td>12. Screw, #8-32 x 9/16</td>
<td>0140-6627-109</td>
</tr>
<tr>
<td>13. Lock washer, #8 int</td>
<td>6600-0262-400</td>
</tr>
</tbody>
</table>

ThermaLink upgrade kit (units with 5.0 software only)6600-0001-850
Figure 7-6
ThermaLink option assembly
<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Screw 10-24 x 5/16</td>
<td>0140-6530-105</td>
</tr>
<tr>
<td>2. Bed support cover</td>
<td>0214-1559-510</td>
</tr>
<tr>
<td>3. Screw, 3/8-16 x 1"</td>
<td>0144-2245-416</td>
</tr>
<tr>
<td>4. Lower cross support (3300)</td>
<td>0217-5269-300</td>
</tr>
<tr>
<td>Lower cross support (4300)</td>
<td>6600-0326-400</td>
</tr>
<tr>
<td>5. Nut, elastic 3/8-16</td>
<td>6600-0266-400</td>
</tr>
<tr>
<td>6. Upright with dovetails</td>
<td>0217-5266-300</td>
</tr>
<tr>
<td>7. Upright mounting bar</td>
<td>0217-5296-542</td>
</tr>
<tr>
<td>8. Tie-rod centering bracket</td>
<td>0214-1554-500</td>
</tr>
<tr>
<td>9. Upright tie-rod 1/2-13 x 5.75"</td>
<td>0217-5284-300</td>
</tr>
<tr>
<td>10. Reinforcing plate (used on both cross members)</td>
<td>6600-0233-500</td>
</tr>
<tr>
<td>11. Lock washer 1/2 int</td>
<td>0202-3425-300</td>
</tr>
<tr>
<td>12. Locking nut 1/2-13</td>
<td>6600-0263-400</td>
</tr>
<tr>
<td>13. Locking lug assembly</td>
<td>6600-0339-700</td>
</tr>
<tr>
<td>14. Support plate</td>
<td>0214-1558-511</td>
</tr>
<tr>
<td>15. Upper cross member (3000/3300)</td>
<td>6600-0341-700</td>
</tr>
<tr>
<td>Upper cross member (4000/4300)</td>
<td>6600-0341-703</td>
</tr>
<tr>
<td>16. Cover, cross member</td>
<td>0214-1550-549</td>
</tr>
<tr>
<td>17. Screw 8-32 x 3/8</td>
<td>6600-0261-400</td>
</tr>
<tr>
<td>18. Lock washer, #8 int</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>19. Cover*</td>
<td>6600-0450-500</td>
</tr>
<tr>
<td>20. End cap</td>
<td>0217-5286-100</td>
</tr>
<tr>
<td>21. Chest drainage hanger</td>
<td>6600-0477-500</td>
</tr>
<tr>
<td>Chest drainage hanger kit (template & hdwe)</td>
<td>6600-0274-800</td>
</tr>
<tr>
<td>22. Screw 1/4 x 1</td>
<td>0142-4247-116</td>
</tr>
</tbody>
</table>

*Not present on all units
Figure 7-7
Infant Warmer Frame Assembly (Models 3000, 3300, 4000, and 4300)

Torque to 125 ± 15 lbs. in.
<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cast Iron Base Weight (used on non-elevating models)</td>
<td>0217-5038-100</td>
</tr>
<tr>
<td>2. Locking 5" Caster</td>
<td>0215-8105-300</td>
</tr>
<tr>
<td>3. Non-Locking 5 Caster</td>
<td>0215-8104-300</td>
</tr>
<tr>
<td>4. Locking Nut</td>
<td>6600-0263-400</td>
</tr>
<tr>
<td>5. Weight Support Rod</td>
<td>0217-5295-542</td>
</tr>
<tr>
<td>6. Screw 5/16-18 x 1</td>
<td>0144-2440-216</td>
</tr>
<tr>
<td>7. Pyramidal Lock washer</td>
<td>0202-3419-300</td>
</tr>
<tr>
<td>8. Right Leg Kit (model 3000)</td>
<td>6600-0245-800</td>
</tr>
<tr>
<td>Right Leg Kit (model 2001/3300)</td>
<td>6600-0250-800</td>
</tr>
<tr>
<td>Right Leg Kit (4000)</td>
<td>6600-0021-850</td>
</tr>
<tr>
<td>Right Leg Kit (4300)</td>
<td>6600-0023-850</td>
</tr>
<tr>
<td>9. Left Leg Kit (model 3000)</td>
<td>6600-0246-800</td>
</tr>
<tr>
<td>Left Leg Kit (model 2001/3300)</td>
<td>6600-0249-800</td>
</tr>
<tr>
<td>Left Leg Kit (4000)</td>
<td>6600-0022-850</td>
</tr>
<tr>
<td>Left Leg Kit (4300)</td>
<td>6600-0024-850</td>
</tr>
<tr>
<td>10. Screw 5/16-18 x 1</td>
<td>0144-2440-216</td>
</tr>
<tr>
<td>11. Base plate (3000/3300)</td>
<td>0214-1553-710</td>
</tr>
<tr>
<td>Base plate (4000/4300)</td>
<td>6600-0336-700</td>
</tr>
<tr>
<td>12. Hole Plug</td>
<td>0203-0232-300</td>
</tr>
<tr>
<td>13. End Cap</td>
<td>6600-0520-500</td>
</tr>
</tbody>
</table>
7/Illustrated Parts

Note: Base weights have cork material attached for noise damping.

Figure 7-8
Base Assembly (Models 3000, 3300, 4000, and 4300)
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Screw 10-24 x 5/16</td>
<td>0140-6530-105</td>
</tr>
<tr>
<td>2. Bed support cover</td>
<td>0214-1559-510</td>
</tr>
<tr>
<td>3. Screw, 3/8-16 x 7/8</td>
<td>0144-2245-416</td>
</tr>
<tr>
<td>5. Lower cross support (5000)</td>
<td>0217-5180-300</td>
</tr>
<tr>
<td>Lower cross support (4400)</td>
<td>6600-0326-400</td>
</tr>
<tr>
<td>7. Upright with dovetails (5000)</td>
<td>0217-5178-300</td>
</tr>
<tr>
<td>Upright with dovetails (4400)</td>
<td>6600-0454-500</td>
</tr>
<tr>
<td>8. End cap</td>
<td>0217-5286-100</td>
</tr>
<tr>
<td>9. Screw, 1/4 x 1</td>
<td>0142-4247-116</td>
</tr>
<tr>
<td>10. Support plate</td>
<td>0214-1558-511</td>
</tr>
<tr>
<td>11. Locking lug assembly</td>
<td>6600-0339-700</td>
</tr>
<tr>
<td>12. Leg weight (4400 - units without drawers)*</td>
<td>6600-0444-400</td>
</tr>
<tr>
<td>13. Screw 8-32 x 1/2</td>
<td>0140-6627-108</td>
</tr>
<tr>
<td>14. Upper cross assembly (includes cross member, locking lugs and heater hinge assy)</td>
<td>6600-0341-701</td>
</tr>
<tr>
<td>(5000)</td>
<td></td>
</tr>
<tr>
<td>(4400)</td>
<td>6600-0341-703</td>
</tr>
<tr>
<td>15. Cover</td>
<td>0214-1550-549</td>
</tr>
<tr>
<td>Cover, (earlier 5000 - item 18 not required)</td>
<td>0214-2272-549</td>
</tr>
<tr>
<td>16. Screw, 8-32 x 3/8</td>
<td>6600-0261-400</td>
</tr>
<tr>
<td>17. Lock washer, #8</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>18. Cover, cross member (5000)</td>
<td>6600-0450-501</td>
</tr>
<tr>
<td>Cover, cross member (4400)</td>
<td>6600-0450-500</td>
</tr>
<tr>
<td>19. Chest drainage hanger</td>
<td>6600-0477-500</td>
</tr>
<tr>
<td>Chest drainage hanger kit (template & hdwe)</td>
<td>6600-0274-800</td>
</tr>
<tr>
<td>20. Screw, PH HD 10-24 x 1/2</td>
<td>0140-6630-108</td>
</tr>
<tr>
<td>21. Lock washer, INT</td>
<td>0144-1110-131</td>
</tr>
</tbody>
</table>

*If drawers are removed, a weight must be installed in the right leg. See Warning on page A-17.
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Locking 5" Caster</td>
<td>0215-8105-300</td>
</tr>
<tr>
<td>2. Locking nut</td>
<td>6600-0263-400</td>
</tr>
<tr>
<td>3. Screw 5/16-18 x1</td>
<td>0144-2440-216</td>
</tr>
<tr>
<td>4. Pyramidal lock washer</td>
<td>0202-3419-300</td>
</tr>
<tr>
<td>5. Right leg (5000)</td>
<td>6600-0243-800</td>
</tr>
<tr>
<td>Right leg (4400)</td>
<td>6600-0023-850</td>
</tr>
<tr>
<td>6. Base Subassembly (includes items 13 through 16)</td>
<td></td>
</tr>
<tr>
<td>120V (5000)</td>
<td>0217-5185-300</td>
</tr>
<tr>
<td>220/230/240V (5000)</td>
<td>6600-0036-700</td>
</tr>
<tr>
<td>100V (5000)</td>
<td>6600-0038-700</td>
</tr>
<tr>
<td>120V (4400)</td>
<td>6600-0449-500</td>
</tr>
<tr>
<td>220/230/240V (4400)</td>
<td>6600-0449-501</td>
</tr>
<tr>
<td>100V (4400)</td>
<td>6600-0449-502</td>
</tr>
<tr>
<td>7. Hole Plug</td>
<td>0203-0232-300</td>
</tr>
<tr>
<td>8. End Cap (5000)</td>
<td>0210-1549-300</td>
</tr>
<tr>
<td>End Cap (4400)</td>
<td>6600-0520-500</td>
</tr>
<tr>
<td>9. Non-Locking 5" Caster*</td>
<td>0215-8104-300</td>
</tr>
<tr>
<td>10. Left leg (5000)</td>
<td>6600-0244-800</td>
</tr>
<tr>
<td>Left leg (4400)</td>
<td>6600-0024-850</td>
</tr>
<tr>
<td>11. Cover, elevating column</td>
<td>6600-0602-500</td>
</tr>
<tr>
<td>12. Screw 5/16-18 x 1 hex</td>
<td>6600-0017-400</td>
</tr>
<tr>
<td>13. Flexible Power Cord</td>
<td>6600-0033-700</td>
</tr>
<tr>
<td>14. Gear/Jackshaft assembly</td>
<td>0217-5175-300</td>
</tr>
<tr>
<td>15. Condenser 120V†</td>
<td>6600-0254-800</td>
</tr>
<tr>
<td>Condenser 220/230/240V†</td>
<td>6600-0255-800</td>
</tr>
<tr>
<td>Condenser 100V†</td>
<td>6600-0256-800</td>
</tr>
<tr>
<td>16. Motor 120V</td>
<td>0208-2506-800</td>
</tr>
<tr>
<td>Motor 220/230/240V</td>
<td>6600-0037-600</td>
</tr>
<tr>
<td>Motor 100V 50/60 Hz</td>
<td>6600-0217-600</td>
</tr>
</tbody>
</table>

† Kit includes mounting bracket.
Figure 7-10
Elevating Base Assembly, IWS 5000 and 4400
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3500 Upper cross member assy.</td>
<td>6600-0341-702</td>
</tr>
<tr>
<td>2. Screw</td>
<td>0142-1874-510</td>
</tr>
<tr>
<td>3. Cover</td>
<td>0214-1550-549</td>
</tr>
<tr>
<td>4. Lock washer, #8 int</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>5. Screw, 8-32 x 3/8</td>
<td>6600-0261-400</td>
</tr>
<tr>
<td>6. End cap</td>
<td>6600-0302-500</td>
</tr>
<tr>
<td>7. Routing Clip (Pkg 6)</td>
<td>0217-5290-870</td>
</tr>
<tr>
<td>8. Screw, #8-32, 5/8" *</td>
<td>0140-6627-110</td>
</tr>
<tr>
<td>9. Caster, 2.50, with Lock</td>
<td>6600-0184-400</td>
</tr>
<tr>
<td>10. Lock Washer, #8, external</td>
<td>6600-0379-400</td>
</tr>
<tr>
<td>11. Caster, 2.50</td>
<td>6600-0183-400</td>
</tr>
<tr>
<td>12. Base</td>
<td>6600-0189-400</td>
</tr>
<tr>
<td>13. 3500 Base assembly (includes items 9 through 12)</td>
<td>6600-0325-700</td>
</tr>
<tr>
<td>14. Nut, elastic 1/2 - 13†</td>
<td>6600-0263-400</td>
</tr>
<tr>
<td>15. Washer, .5621 x 1, .25 OD</td>
<td>0202-4138-300</td>
</tr>
<tr>
<td>16. Tierod 1/2 - 13 x6</td>
<td>0217-5284-300</td>
</tr>
<tr>
<td>17. Nut, elastic 5/16 -24^</td>
<td>0202-1017-300</td>
</tr>
<tr>
<td>18. Washer, .344 ID, .875 OD</td>
<td>6600-0290-400</td>
</tr>
<tr>
<td>19. Screw, 5/16 - 24 x 2-3/4</td>
<td>0144-2241-244</td>
</tr>
<tr>
<td>20. Bar upright</td>
<td>6600-0301-500</td>
</tr>
<tr>
<td>21. Dovetail upright</td>
<td>6600-0180-400</td>
</tr>
</tbody>
</table>

Parts not Shown

- Hole plug .375 6600-0188-400

*Torque 35 in lb. ± 5 in. lb.
†Torque 105 in lb. ± 5 in. lb.
^Torque 360 in lb. ± 5 in. lb.
Figure 7-11
Model 3500 frame assembly
<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Harness, elevating base interconnect</td>
<td>6600-0085-700</td>
</tr>
<tr>
<td>Interconnect Wire Harness</td>
<td></td>
</tr>
<tr>
<td>Units without HCA serial numbers</td>
<td>0208-6179-700</td>
</tr>
<tr>
<td>Units with HCA serial numbers</td>
<td>6600-0334-700</td>
</tr>
<tr>
<td>Cable Tie</td>
<td>0203-5919-300</td>
</tr>
<tr>
<td>Interlock Switch Bracket</td>
<td>0214-1570-500</td>
</tr>
<tr>
<td>External Lock Washer #8</td>
<td>6600-0379-400</td>
</tr>
<tr>
<td>Screw 8-32 x 3/8</td>
<td>6600-0261-400</td>
</tr>
<tr>
<td>Lock washer, internal #8</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>Power Cord</td>
<td></td>
</tr>
<tr>
<td>100/120V 60 Hz</td>
<td>0208-0950-300</td>
</tr>
<tr>
<td>220/230/240V 50/60 Hz</td>
<td>6600-0107-600</td>
</tr>
<tr>
<td>Bracket, plug guard</td>
<td>6600-0572-500</td>
</tr>
</tbody>
</table>
Figure 7-12
Heater Connections
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Screw 6-32 x 3/8</td>
<td>0400-1093-300</td>
</tr>
<tr>
<td>2. Screw 6-32 x 1-1/8</td>
<td>6600-0214-400</td>
</tr>
<tr>
<td>3. Alarm Lens</td>
<td>0217-5305-100</td>
</tr>
<tr>
<td>4. Incandescent Lamp 120V</td>
<td>0690-2100-315</td>
</tr>
<tr>
<td>5. Front End Cap</td>
<td>0217-5303-100</td>
</tr>
<tr>
<td>6. Warmer Module Side</td>
<td></td>
</tr>
<tr>
<td>Model 2001, 3000, 3300</td>
<td>0217-5304-510</td>
</tr>
<tr>
<td>Model 3500</td>
<td>6600-0179-400</td>
</tr>
<tr>
<td>Model 5000,4000,4300,4400</td>
<td>0217-5181-510</td>
</tr>
<tr>
<td>7. Rear End Cap</td>
<td>0217-5319-210</td>
</tr>
<tr>
<td>8. Screw 1/4-20 Hex Head</td>
<td>0142-9277-132</td>
</tr>
<tr>
<td>9. Bumper</td>
<td>0211-1657-300</td>
</tr>
<tr>
<td>10. Heater assy. (does not include heater tube)</td>
<td></td>
</tr>
<tr>
<td>Model 2001, Series 3000 without HCA serial number</td>
<td>6600-0316-700</td>
</tr>
<tr>
<td>Model 2001, Series 3000 with HCA serial number</td>
<td>6600-0316-701</td>
</tr>
<tr>
<td>Model 5000 without HCA serial number</td>
<td>6600-0316-706</td>
</tr>
<tr>
<td>Model 5000, Series 4000 with HCA serial number</td>
<td>6600-0316-702</td>
</tr>
<tr>
<td>Ventilation Plate (5000, Series 4000)</td>
<td>6600-0030-500</td>
</tr>
<tr>
<td>12. Lock Washer</td>
<td>0202 3415-300</td>
</tr>
<tr>
<td>13. Hinge Pin</td>
<td>0217-5215-500</td>
</tr>
<tr>
<td>14. Screw 1/4.-20 x 3/4</td>
<td>6600-0395-400</td>
</tr>
<tr>
<td>15. Hinge Cover</td>
<td>6600-0475-500</td>
</tr>
<tr>
<td>16. Screw 8-32 x 3/8</td>
<td>6600-0261-400</td>
</tr>
<tr>
<td>17. Internal Lock Washer #8</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>18. External Lock Washer #8</td>
<td>6600-0379-400</td>
</tr>
<tr>
<td>20. Ground Label</td>
<td>0205-4737-300</td>
</tr>
<tr>
<td>21. Insert, Wood Trim, Oak, Model 3500 only</td>
<td>6600-0298-500</td>
</tr>
<tr>
<td>22. Instruction Label Plate</td>
<td>0214-1568-500</td>
</tr>
<tr>
<td>23. Instruction Label (applied to item 22)</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>0205-4958-300</td>
</tr>
<tr>
<td>French</td>
<td>6600-0089-100</td>
</tr>
<tr>
<td>Spanish</td>
<td>6600-0460-100</td>
</tr>
<tr>
<td>German</td>
<td>6600-0470-100</td>
</tr>
<tr>
<td>Italian</td>
<td>6600-1565-100</td>
</tr>
<tr>
<td>Swedish</td>
<td>6600-1567-100</td>
</tr>
</tbody>
</table>
Figure 7-13
Heater Assembly
7/Illustrated Parts

Top View Plug Diagram (Item 8)
- Units without HCA serial numbers
- Units with HCA serial numbers

Description

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector Adapter, Faston</td>
<td>0208-0511-300</td>
</tr>
<tr>
<td>2</td>
<td>External Lock Washer #10</td>
<td>0202-3210-340</td>
</tr>
<tr>
<td>3</td>
<td>Cable Clamp, Nylon Type n-2</td>
<td>0208-0446-300</td>
</tr>
<tr>
<td>4</td>
<td>Lock washer Ext-6</td>
<td>6600-0259-400</td>
</tr>
<tr>
<td>5</td>
<td>Screw 6-32 x 3-8</td>
<td>0140-6624-106</td>
</tr>
<tr>
<td>6</td>
<td>Nut, 8-32 w/External Lock washer</td>
<td>0202-1131-300</td>
</tr>
<tr>
<td>7</td>
<td>Nut, 6-32 w/External Lock Washer</td>
<td>6600-0382-400</td>
</tr>
<tr>
<td>8</td>
<td>Lamphouse Wiring Harness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model 2001, Series 3000</td>
<td>0208-6180-700</td>
</tr>
<tr>
<td></td>
<td>Model 5000</td>
<td>6600-0005-700</td>
</tr>
<tr>
<td></td>
<td>Model 2001, Series 3000 with HCA serial number</td>
<td>6600-0343-700</td>
</tr>
<tr>
<td></td>
<td>Model 5000, Series 4000 with HCA serial number</td>
<td>6600-0335-700</td>
</tr>
<tr>
<td>9</td>
<td>Cable Clamp</td>
<td>0208-0331-300</td>
</tr>
</tbody>
</table>
7/Illustrated Parts

Units without HCA serial number
(old)

Units with HCA serial number
(new)

220/240V
Wiring Configuration

220/230/240V
Wiring Configuration

100/120V
Wiring Configuration

100/120V
Wiring Configuration

View A-A shown on page 7-29

Figure 7-14
Infant Warmer Heater Wiring
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Screw 6-32 x 1/2</td>
<td>0140-6124-108</td>
</tr>
<tr>
<td>2. Lamp Socket Sylvania #31099</td>
<td>0686-9000-416</td>
</tr>
<tr>
<td>Lamp GTE Sylvania 120MB 6W</td>
<td>0690-2100-315</td>
</tr>
<tr>
<td>3. Alarm Light Bracket</td>
<td>0214-1567-500</td>
</tr>
<tr>
<td>4. Front Reflector End Cap</td>
<td>0217-5213-500</td>
</tr>
<tr>
<td>5. Heater Tube</td>
<td></td>
</tr>
<tr>
<td>120V 440W (2001/series 3000 prior to HCA)</td>
<td>6600-0284-800</td>
</tr>
<tr>
<td>220V 440W (2001/series 3000 prior to HCA)</td>
<td>6600-0285-800</td>
</tr>
<tr>
<td>240V 440W (2001/series 3000 prior to HCA)</td>
<td>6600-0286-800</td>
</tr>
<tr>
<td>100V 440W (2001/series 3000 prior to HCA)</td>
<td>6600-0287-800</td>
</tr>
<tr>
<td>120V 540W (5000/series 4000)</td>
<td>6600-0280-800</td>
</tr>
<tr>
<td>220V 540W (5000/series 4000)</td>
<td>6600-0281-800</td>
</tr>
<tr>
<td>240V 540W (5000/series 4000)</td>
<td>6600-0282-800</td>
</tr>
<tr>
<td>100V 540W (5000/series 4000)</td>
<td>6600-0283-800</td>
</tr>
<tr>
<td>120V 540W (series 3000 w/HCA)*</td>
<td>6600-0014-850</td>
</tr>
<tr>
<td>220V 540W (series 3000 w/HCA)*</td>
<td>6600-0015-850</td>
</tr>
<tr>
<td>240V 540W (series 3000 w/HCA)*</td>
<td>6600-0016-850</td>
</tr>
<tr>
<td>100V 540W (series 3000 w/HCA)*</td>
<td>6600-0017-850</td>
</tr>
<tr>
<td>6. Nut, #6-32 w/Ext Lock washer</td>
<td>6600-0382-400</td>
</tr>
<tr>
<td>7. Washer</td>
<td>6600-0378-400</td>
</tr>
<tr>
<td>8. Spring</td>
<td>6600-0019-300</td>
</tr>
<tr>
<td>9. Nut</td>
<td>6600-0111-400</td>
</tr>
<tr>
<td>10. Rear Reflector Cap</td>
<td>0217-5212-500</td>
</tr>
<tr>
<td>11. Wire Harness Socket Bracket</td>
<td>0214-1566-500</td>
</tr>
<tr>
<td>12. External lock washer #6</td>
<td>6600-0259-400</td>
</tr>
<tr>
<td>13. Screw, 6-32 x 7/8</td>
<td>0140-6124-114</td>
</tr>
<tr>
<td>14. Exam Light Lens 2.5 x 5</td>
<td>0217-5306-300</td>
</tr>
<tr>
<td>15. Nut, Hex</td>
<td>0144-3117-113</td>
</tr>
<tr>
<td>16. Internal Lock Washer #4</td>
<td>0202-3407-300</td>
</tr>
<tr>
<td>17. Lamp holder Bracket</td>
<td>0217-5214-500</td>
</tr>
<tr>
<td>18. Lamp holder kit</td>
<td></td>
</tr>
<tr>
<td>Units without HCA serial numbers (sockets)</td>
<td>6600-0010-850</td>
</tr>
<tr>
<td>Units with HCA serial numbers (pins)</td>
<td>6600-0011-850</td>
</tr>
<tr>
<td>19. Screw, 4-40 x 5/16</td>
<td>6600-0388-400</td>
</tr>
<tr>
<td>20. Lamp 12V 50W GE EXZ(O50 MR16/NFL) or GE EXX(O50 MR16/FL)</td>
<td>0208-0516-300</td>
</tr>
<tr>
<td>21. Screw, 6-32 x 7/8</td>
<td>0140-6124-114</td>
</tr>
<tr>
<td>22. Spacer 1/4" Hex 6-32 .75L</td>
<td>0402-0234-300</td>
</tr>
<tr>
<td>23. Snap Bushing 3/8 I.D. for .50 Hole</td>
<td>6600-0519-500</td>
</tr>
<tr>
<td>24. Nut, #6-32 w/Ext Lock washer</td>
<td>6600-0382-400</td>
</tr>
<tr>
<td>25. Hole Plug</td>
<td>6600-0392-400</td>
</tr>
<tr>
<td>26. Insulator Fishpaper</td>
<td>6600-0002-300</td>
</tr>
</tbody>
</table>

*These tubes are designed for newer units (with HCA serial number) that have 540 watts heaters. Placing these tubes in older 440 watts unit will cause equipment damage.
Figure 7-15
Infant Warmer Assembly
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elastic Nut 5/16-24</td>
<td>0202-1017-300</td>
</tr>
<tr>
<td>2. Screw 10-24 x 3/8</td>
<td>6600-0250-400</td>
</tr>
<tr>
<td>3. Lock washer #10</td>
<td>0144-1110-131</td>
</tr>
<tr>
<td>4. Tubing Cover Plate</td>
<td>0214-2268-511</td>
</tr>
<tr>
<td>5. Tilt Plate Cover</td>
<td>0217-5261-510</td>
</tr>
<tr>
<td>6. Tubing Actuator Rod</td>
<td>0217-5323-500</td>
</tr>
<tr>
<td>7. Extension Spring</td>
<td>6600-0013-300</td>
</tr>
<tr>
<td>8. Bed Tilt Lever</td>
<td>0217-5277-100</td>
</tr>
<tr>
<td>9. Pin</td>
<td>0217-5321-500</td>
</tr>
<tr>
<td>10. Hydraulic System Assembly (includes item 11)</td>
<td>6600-0325-800</td>
</tr>
<tr>
<td>11. Ball Joint</td>
<td>0217-5318-300</td>
</tr>
<tr>
<td>12. Valve Bed Hydraulic Plate</td>
<td>0217-5283-100</td>
</tr>
<tr>
<td>13. Bed (Model 3300)</td>
<td>0217-5316-100</td>
</tr>
<tr>
<td>14. Pin</td>
<td>0217-5322-500</td>
</tr>
<tr>
<td>15. Pivot Rod</td>
<td>0217-5312-549</td>
</tr>
<tr>
<td>16. Corner Block (pkg 4 - includes items 2, 19, 22 & 23)</td>
<td>6600-0228-800</td>
</tr>
<tr>
<td>17. Rod</td>
<td>0217-5313-300</td>
</tr>
<tr>
<td>18. Hook</td>
<td>0203-5194-300</td>
</tr>
<tr>
<td>19. O-ring</td>
<td>6600-0348-400</td>
</tr>
<tr>
<td>20. Bed support</td>
<td>0217-5310-210</td>
</tr>
<tr>
<td>21. Bearing</td>
<td>0209-0079-300</td>
</tr>
<tr>
<td>22. Split ring lock washer, #10</td>
<td>6600-0322-400</td>
</tr>
<tr>
<td>23. Washer, flat</td>
<td>0202-4518-340</td>
</tr>
</tbody>
</table>

Parts not shown

Replacement Bed Assembly (includes items 1 - 23).....0217-5385-810
Figure 7-16
Small Bed Assembly Model 2001 and Series 3000 except 3500
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elastic Nut 5/16-24</td>
<td>0202-1017-300</td>
</tr>
<tr>
<td>2. Screw 10-24 x 3/8</td>
<td>6600-0250-400</td>
</tr>
<tr>
<td>3. Lock washer #10</td>
<td>0144-1110-131</td>
</tr>
<tr>
<td>4. Tubing Cover Plate Tilt Plate Cover</td>
<td>6600-0038-500</td>
</tr>
<tr>
<td>5. Tubing Actuator Rod</td>
<td>0217-5323-500</td>
</tr>
<tr>
<td>6. Extension Spring</td>
<td>6600-0013-300</td>
</tr>
<tr>
<td>7. Bed Tilt Lever</td>
<td>0217 5277-100</td>
</tr>
<tr>
<td>8. Pin</td>
<td>0217-5321-500</td>
</tr>
<tr>
<td>9. Hydraulic System Assembly</td>
<td>6600-0325-800</td>
</tr>
<tr>
<td>10. Ball Joint</td>
<td>0217-5318-300</td>
</tr>
<tr>
<td>11. Valve Bed Hydraulic Plate</td>
<td>0217-5283-100</td>
</tr>
<tr>
<td>12. Bed (Model 5000)</td>
<td>0217-5381-100</td>
</tr>
<tr>
<td>13. Pin</td>
<td>0217-5322-500</td>
</tr>
<tr>
<td>14. Pivot Rod</td>
<td>0217-5312-549</td>
</tr>
<tr>
<td>15. Corner Block (Pkg 4 - includes items 2, 16, 17 & 21)</td>
<td>6600-0228-800</td>
</tr>
<tr>
<td>16. Split ring lock washer, #10</td>
<td>6600-0322-400</td>
</tr>
<tr>
<td>17. Flat washer</td>
<td>0202-4518-340</td>
</tr>
<tr>
<td>18. Rod, rear</td>
<td>0217-5190-300</td>
</tr>
<tr>
<td>19. Rod, front</td>
<td>0217-5187-300</td>
</tr>
<tr>
<td>20. Hook</td>
<td>0203-5194-300</td>
</tr>
<tr>
<td>21. O-ring</td>
<td>6600-0348-400</td>
</tr>
<tr>
<td>22. Bed support</td>
<td>0217-5310-210</td>
</tr>
<tr>
<td>23. Bearing</td>
<td>0209-0079-300</td>
</tr>
</tbody>
</table>

7-32
6600-0195-000 B 10/25/93
Figure 7-17
Large Bed Assembly Model 5000 and Series 4000
7/Illustrated Parts

1. Foam Mattress
 - Model 2001 and 3300 ... 0305-5060-300
 - Model 4300, 4400 & 5000 .. 0305-5061-300
2. Clear Plastic Bed Support ... 0217-5221-300
3. Corner Block (Pkg 4 - includes hdwe & O-ring) 6600-0228-800
4. Left and Right Bed Side Panel **
 - Model 2001 and 3300, 20"(new)* ... 6600-0005-700
 - Model 4300, 4400 & 5000, 25" .. 6600-0009-700
5. Front and Rear Bed Side**
 - Model 2001 and 3300, 15"(new)* ... 6600-0004-700
 - Model 4300, 4400 & 5000, 18" .. 6600-0008-700
6. Tubing Organizer Panel†
 - Model 2001 and 3300 ... 6600-0004-801
 - Model 4300, 4400 & 5000 .. 6600-0004-802

* For older units where the end bracket differs from that shown
 (see page 7-36) order
 - Left and Right Bed Side Panel (old) 0217-5361-811
 - Front and Rear Bed Side (old) 0217-5361-810

† Tubing Organizer panel used for rear bedside only.
** Decals not included - refer to page 7-36 for part numbers.
Figure 7-18
Bed Assembly
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Window, Front and Rear^</td>
<td></td>
</tr>
<tr>
<td>Model 2001 and 3300 (new)</td>
<td>6600-0021-500</td>
</tr>
<tr>
<td>Model 2001 and 3300 (old)</td>
<td>0212-1001-300</td>
</tr>
<tr>
<td>Model 4300, 4400 & 5000</td>
<td>0212-1001-300</td>
</tr>
<tr>
<td>Model 3500§</td>
<td>6600-0326-500</td>
</tr>
<tr>
<td>Window, Left and Right</td>
<td></td>
</tr>
<tr>
<td>Model 2001 and 3300 (new)</td>
<td>6600-0022-500</td>
</tr>
<tr>
<td>Model 2001 and 3300 (old)</td>
<td>0212-1002-300</td>
</tr>
<tr>
<td>Model 4300, 4400 & 5000</td>
<td>0212-1004-300</td>
</tr>
<tr>
<td>Model 3500§</td>
<td>6600-0326-500</td>
</tr>
<tr>
<td>Tubing Organizer Panel†</td>
<td></td>
</tr>
<tr>
<td>Model 2001 and 3300</td>
<td>6600-0567-500</td>
</tr>
<tr>
<td>Model 4300, 4400 & 5000</td>
<td>6600-0566-500</td>
</tr>
<tr>
<td>2. Extrusion, Front and Rear^</td>
<td></td>
</tr>
<tr>
<td>Model 2001 and 3300</td>
<td>0217-5280-300</td>
</tr>
<tr>
<td>Model 4300, 4400 & 5000</td>
<td>0217-5183-300</td>
</tr>
<tr>
<td>Model 3500</td>
<td>0217-5280-300</td>
</tr>
<tr>
<td>Extrusion, Left and Right</td>
<td></td>
</tr>
<tr>
<td>Model 2001 and 3300</td>
<td>0217-5281-300</td>
</tr>
<tr>
<td>Model 4300, 4400 & 5000</td>
<td>0217-5184-300</td>
</tr>
<tr>
<td>Model 3500</td>
<td>0217-5281-300</td>
</tr>
<tr>
<td>3. Spring</td>
<td>0203-3262-300</td>
</tr>
<tr>
<td>4. Support Button</td>
<td>0217-5275-100</td>
</tr>
<tr>
<td>5. End Bracket (new)</td>
<td>0217-5291-100</td>
</tr>
<tr>
<td>End Bracket (old)</td>
<td>0217-5279-100</td>
</tr>
<tr>
<td>6. Mounting Screw*</td>
<td>0144-2130-224</td>
</tr>
<tr>
<td>7. Side panel decal set (includes decals for all four panels)</td>
<td>6600-1530-100</td>
</tr>
<tr>
<td>Model 2001 and 3300</td>
<td>6600-1531-100</td>
</tr>
<tr>
<td>Model 4300, 4400 & 5000</td>
<td>6600-1531-100</td>
</tr>
</tbody>
</table>

* Apply Loctite 242 Stock No. 0220-5016-300
§ Model 3500 windows may be used on Model 3300 beds if higher bed sides are required.
† Tubing Organizer panel used for rear bedside only.
^ Decal not included - order item 7
Figure 7-19
Bedside Assembly
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. X-ray tray, small bed (includes item 5)</td>
<td>6600-0003-852</td>
</tr>
<tr>
<td>X-ray tray, large bed (includes item 5)</td>
<td>6600-0003-853</td>
</tr>
<tr>
<td>2. Tray slides kit (2) (includes items 3 & 4)</td>
<td></td>
</tr>
<tr>
<td>small bed</td>
<td>6600-0004-850</td>
</tr>
<tr>
<td>large bed</td>
<td>6600-0004-851</td>
</tr>
<tr>
<td>3. Slide knob</td>
<td>0212-1936-300</td>
</tr>
<tr>
<td>4. Slide knob spacer, small bed</td>
<td>6600-0565-500</td>
</tr>
<tr>
<td>large bed</td>
<td>6600-0565-501</td>
</tr>
<tr>
<td>5. Tray label set</td>
<td>6600-1537-100</td>
</tr>
</tbody>
</table>

Parts not shown

- Window decal sets (Shown on page 7-37)
 - Small bed: 6600-0005-850
 - Large bed: 6000-0005-851
- X-ray tray upgrade kit (includes all items above)
 - Small bed: 6600-0003-850
 - Large bed: 6600-0003-851
Figure 7-20
X-ray tray assembly
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mattress, Foam, Poly</td>
<td>0305-5060-300</td>
</tr>
<tr>
<td>Window, Bed Side, Front and Rear</td>
<td>6600-0176-700</td>
</tr>
<tr>
<td>Window, Bed Side, Left and Right</td>
<td>6600-0176-701</td>
</tr>
<tr>
<td>Collar, Setscrew, 0.5 Dia</td>
<td>6600-0169-400</td>
</tr>
<tr>
<td>Spring, Comp, Tilt</td>
<td>6600-0168-400</td>
</tr>
<tr>
<td>Handle, Inner Adj*</td>
<td>6600-0284-500</td>
</tr>
<tr>
<td>Tube Handle, Inner Coupler</td>
<td>6600-0309-500</td>
</tr>
<tr>
<td>Screw, 10-24 x 3/8</td>
<td>6600-0250-400</td>
</tr>
<tr>
<td>Washer, lk, #10, slit ring</td>
<td>6600-0322-400</td>
</tr>
<tr>
<td>Corner Block, locking (includes 8, 9, 24 & 25)</td>
<td>6600-0185-700</td>
</tr>
<tr>
<td>Corner Block, locking (Pkg 4 - includes 8, 9, 24 & 25)</td>
<td>6600-0230-800</td>
</tr>
<tr>
<td>Label Lot ID</td>
<td>6600-0541-100</td>
</tr>
<tr>
<td>Bed assembly (includes everything shown on page 7-41)</td>
<td>6600-0191-700</td>
</tr>
<tr>
<td>Bushing, Pivot, Bed **</td>
<td>6600 0288-500</td>
</tr>
<tr>
<td>Ring, Truarc, 500 Shaft</td>
<td>0203-5227-300</td>
</tr>
<tr>
<td>Rod, Pivot, Bed Tilt</td>
<td>6600-0285-500</td>
</tr>
<tr>
<td>Spacer, Index Tilt</td>
<td>6600 0304-500</td>
</tr>
<tr>
<td>Pin, Spring, .094 x 0.5 sst</td>
<td>6600-0170-400</td>
</tr>
<tr>
<td>Spacer</td>
<td>6600-0287-500</td>
</tr>
<tr>
<td>Pin, Indexing, Tilt</td>
<td>6600-0286-500</td>
</tr>
<tr>
<td>O-ring, .375 ID .562</td>
<td>6600-0402-400</td>
</tr>
<tr>
<td>Screw, 1/2-20 x .5, rh, ph, sstf</td>
<td>6600-0078-400</td>
</tr>
<tr>
<td>Handle, Outer Fixed</td>
<td>6600-0283-500</td>
</tr>
<tr>
<td>Label, Warning, Bedside, 3500 IWS</td>
<td>6600-0582-100</td>
</tr>
<tr>
<td>Flat Washer</td>
<td>0202-4518-340</td>
</tr>
<tr>
<td>O-ring</td>
<td>6600-0348-400</td>
</tr>
</tbody>
</table>

* Apply Loctite 290 Stock No. 0220-5031-300 to the curved end which fits into the inner coupler tube handle. Remove excess adhesive. Position in bed and align with center pivot prior to Loctite application.

** Apply Loctite 290 Stock No. 0220-5031-300. Remove excess adhesive (center bushings only). Position flange against retaining ring prior to Loctite application.

† Apply Loctite 242 Stock No. 0220-5016-300 sparingly.
7/Illustrated Parts

Figure 7-21
Model 3500 Bed Assembly
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover, Cabinet</td>
<td>6600-0281-500</td>
</tr>
<tr>
<td>Screw, 1/4-20 x 3.75 Cap</td>
<td>6600-0186-400</td>
</tr>
<tr>
<td>Bracket, Indexing Pivot</td>
<td>6600-0282-500</td>
</tr>
<tr>
<td>Knob, Docking†</td>
<td>6600-0174-400</td>
</tr>
<tr>
<td>O-ring, .375 ID .562</td>
<td>6600-0402-400</td>
</tr>
<tr>
<td>Rod, Thd, 1/4 - 20 x 3.5 stl pl§</td>
<td>6600-0171-400</td>
</tr>
<tr>
<td>Nut, Kep, 1/4-20 w/ Ext Lkwshr</td>
<td>6600-0074-400</td>
</tr>
<tr>
<td>Washer, Neoprene</td>
<td>6600-0193-400</td>
</tr>
<tr>
<td>Rod, Docking</td>
<td>6600-0289-500</td>
</tr>
<tr>
<td>Washer, Flt, .63 OD .38 ID x .06 sst</td>
<td>6600-0173-400</td>
</tr>
<tr>
<td>Spring, Tilt</td>
<td>6600-0060-400</td>
</tr>
<tr>
<td>Collar, Docking</td>
<td>6600-0176-400</td>
</tr>
<tr>
<td>Washer</td>
<td>0202-4004-300</td>
</tr>
<tr>
<td>Bearing, Docking Plastic^</td>
<td>6600-0305-500</td>
</tr>
<tr>
<td>Plunger, Docking</td>
<td>6600-0290-500</td>
</tr>
<tr>
<td>Pin, Spring, 0.125 x 1.0 sst</td>
<td>6600-0172-400</td>
</tr>
<tr>
<td>Bracket, Dock Left</td>
<td>6600-0292-500</td>
</tr>
<tr>
<td>Screw, 10-24 x 1.0 trs ph*</td>
<td>6600-0118-400</td>
</tr>
<tr>
<td>Washer, lk. #10 , .047T</td>
<td>0202-3015-340</td>
</tr>
<tr>
<td>Washer, .193 ID, 438 OD</td>
<td>0202-4518-300</td>
</tr>
<tr>
<td>Bracket, Dock Right</td>
<td>6600-0291-500</td>
</tr>
<tr>
<td>Caster</td>
<td>6600-0167-400</td>
</tr>
<tr>
<td>Standard Cabinet with Oak Drawer Front</td>
<td>6600-0503-500</td>
</tr>
<tr>
<td>Cabinet with Oak Front Pass Through Drawer</td>
<td>6600-0423-800</td>
</tr>
<tr>
<td>Screw, 5/16-18 x 1**</td>
<td>0144-2440-216</td>
</tr>
<tr>
<td>Washer, lk., int, 5/16, st</td>
<td>0202-3418-300</td>
</tr>
<tr>
<td>Caster, Locking</td>
<td>6600-0166-400</td>
</tr>
<tr>
<td>Rod, Pivot, Bed Tilt</td>
<td>6600-0285-500</td>
</tr>
<tr>
<td>Collar, Setscrew, 0.5 Dia</td>
<td>6600-0169-400</td>
</tr>
<tr>
<td>Spacer</td>
<td>6600-0287-500</td>
</tr>
<tr>
<td>Warning label</td>
<td>6600-1377-100</td>
</tr>
<tr>
<td>Warning label</td>
<td>6600-1375-100</td>
</tr>
<tr>
<td>Casting base weight</td>
<td>0217-5038-100</td>
</tr>
<tr>
<td>Nut, hex 5/16-18</td>
<td>6600-0071-200</td>
</tr>
<tr>
<td>Carriage bolt</td>
<td>6600-0446-400</td>
</tr>
<tr>
<td>Nut, elastic 1/4-20</td>
<td>0144-3536-113</td>
</tr>
</tbody>
</table>

* Torque 35 in. lb. ± 5 in. lb.
** Torque 105 in. lb. ± 10 in. lb.
† Apply Locite 242 Stock No. 0220-5016-300 sparingly.
§ Apply Locite 290 Stock No. 0220-5031-300 sparingly to top end only.
^ Apply silicone rubber sealant Stock No. 0220-5250-300 under flange before insertion.
Figure 7-22
Model 3500 Bassinet
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Outer cabinet panel</td>
<td>0217-5356-710</td>
</tr>
<tr>
<td>2. Cabinet side spacer</td>
<td>0214-1574-510</td>
</tr>
<tr>
<td>3. Drawer side panel</td>
<td>0214-1572-510</td>
</tr>
<tr>
<td>4. Insulation</td>
<td>6600-0190-500</td>
</tr>
<tr>
<td>5. Drawer slide channel*</td>
<td>6600-0133-400</td>
</tr>
<tr>
<td>6. Right slide channel (old) shown</td>
<td>0203-2510-300</td>
</tr>
<tr>
<td>Left slide channel (old)</td>
<td>0203-2509-300</td>
</tr>
<tr>
<td>7. Plastic Drawer</td>
<td>0217-5220-400</td>
</tr>
<tr>
<td>8. Drawer front†</td>
<td>0214-1576-510</td>
</tr>
<tr>
<td>9. Drawer slide spacer</td>
<td>6600-0089-500</td>
</tr>
<tr>
<td>10. Nut, hex elastic locking 6/32</td>
<td>6600-0111-400</td>
</tr>
<tr>
<td>11. Right drawer slide track</td>
<td>6600-0132-400</td>
</tr>
<tr>
<td>Right drawer slide track (old)</td>
<td>0203-2507-400</td>
</tr>
<tr>
<td>12. Left drawer slide track</td>
<td>6600-0134-400</td>
</tr>
<tr>
<td>Left drawer slide track (old)</td>
<td>0203-2508-400</td>
</tr>
<tr>
<td>13. Screw, 6-32 x 3/8</td>
<td>0140-6624-106</td>
</tr>
<tr>
<td>14. Screw, #8 x 3/8</td>
<td>6600-0471-400</td>
</tr>
<tr>
<td>15. Lock washer, external</td>
<td>6600-0259-400</td>
</tr>
<tr>
<td>16. Flat washer, #6</td>
<td>0144-1006-131</td>
</tr>
<tr>
<td>17. Nut, elastic</td>
<td>6600-0111-400</td>
</tr>
<tr>
<td>18. Rivet</td>
<td>6600-0155-400</td>
</tr>
<tr>
<td>19. Screw, #10-24 x 3/8 (stationary drawers only)</td>
<td>6600-0250-400</td>
</tr>
<tr>
<td>20. Lock washer, #10 internal (stationary drawers only)</td>
<td>0144-1110-131</td>
</tr>
<tr>
<td>21. Screw, 8-32 x 3/8 (Models 4300/4400/5000 only)</td>
<td>0140-6127-106</td>
</tr>
<tr>
<td>22. Lock washer, #8 internal</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>23. Washer (stationary drawers only)</td>
<td>0144-1014-131</td>
</tr>
<tr>
<td>24. Washer, split ring (stationary drawers only)</td>
<td>0144-1114-331</td>
</tr>
<tr>
<td>25. Bolt, 1/4 - 20 x 1 1/2 (stationary drawers only)</td>
<td>6600-0012-400</td>
</tr>
<tr>
<td>Bolt, flat hd, 1/4 - 20 x 1 5/8 (rotating drawers only)</td>
<td>6600-0447-400</td>
</tr>
<tr>
<td>26. Cabinet top, large (shown)</td>
<td>6600-0601-500</td>
</tr>
<tr>
<td>Cabinet top, small (not shown-used on small bed</td>
<td>6600-0025-500</td>
</tr>
<tr>
<td>stationary drawer cabinets only)</td>
<td></td>
</tr>
</tbody>
</table>

*Apply Lubriplate (0616-0203-300) to contact areas.
†Use tape transfer acrylic (0220-5119-300) to attach front to drawer.
Figure 7-23
Drawer Assembly
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lower rotating plate</td>
<td>6600-0573-500</td>
</tr>
<tr>
<td>2. Drawer cover</td>
<td>6600-0583-500</td>
</tr>
<tr>
<td>3. Upper rotating plate (model 2001/3300)</td>
<td>6600-0574-501</td>
</tr>
<tr>
<td>Upper rotating plate§ (model 4300/4400/5000)</td>
<td>6600-0574-500</td>
</tr>
<tr>
<td>4. Pinch shield*</td>
<td>6600-0582-500</td>
</tr>
<tr>
<td>5. Molded top *</td>
<td>6600-0601-500</td>
</tr>
<tr>
<td>6. Rear cover</td>
<td>6600-0590-500</td>
</tr>
<tr>
<td>7. Carriage bolt, 1/2-13 x 1.75</td>
<td>6600-0580-500</td>
</tr>
<tr>
<td>8. Bearing ring†</td>
<td>6600-0576-500</td>
</tr>
<tr>
<td>9. Shoulder washer</td>
<td>6600-0581-500</td>
</tr>
<tr>
<td>10. Slotted hex nut</td>
<td>6600-0424-400</td>
</tr>
<tr>
<td>11. Cotter pin</td>
<td>6600-0426-400</td>
</tr>
<tr>
<td>12. Cam follower †</td>
<td>6600-0577-500</td>
</tr>
<tr>
<td>13. Roller</td>
<td>6600-0578-500</td>
</tr>
<tr>
<td>14. Spacer</td>
<td>6600-0427-400</td>
</tr>
<tr>
<td>15. Extension spring</td>
<td>6600-0425-400</td>
</tr>
<tr>
<td>16. Screw, 6-32 x 1" Flt Hd</td>
<td>6600-0432-400</td>
</tr>
<tr>
<td>17. Screw, 10-24 x 5/16 Ph Hd*</td>
<td>0140-6530-105</td>
</tr>
<tr>
<td>18. Screw, #8 x 3/8</td>
<td>0142-4234-106</td>
</tr>
<tr>
<td>19. Screw, 8-32 x 3/8 Ph Hd</td>
<td>0140-6127-106</td>
</tr>
<tr>
<td>20. Nut, elastic</td>
<td>6600-0111-400</td>
</tr>
<tr>
<td>21. Lock Washer, #8 Internal</td>
<td>6600-0262-400</td>
</tr>
<tr>
<td>22. Bearing</td>
<td>6600-0428-400</td>
</tr>
<tr>
<td>23. Screw, 6-32 x 3/8 Ph Hd</td>
<td>0140-6124-106</td>
</tr>
<tr>
<td>24. Lock washer, #10 internal</td>
<td>0144-1110-131</td>
</tr>
<tr>
<td>25. Drawer assembly (includes everything except top)</td>
<td>6600-0006-854</td>
</tr>
</tbody>
</table>

Parts not shown
- Base spacer plate (Model 4300 with rotating drawers only) 6600-0614-500
- Support post plate (Model 4300 with rotating drawers only) 6600-0612-500
- Support post (Model 4300 with rotating drawers only) 6600-0453-400
- Support post bracket (Model 4300 with rotating drawers only) 6600-0613-500

* Apply a 1/8" thick bead of Sealant Silicone Rubber (0220-5250-300) any where item #4 and #5 contact.

† Apply Lubriplate (0616-0203-300) to any areas subject to friction.
Figure 7-24
Rotating drawer assemblies
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. O_2 Gauge, 3000 lbs (210 kg/cm²)</td>
<td>0205-8350-300</td>
</tr>
<tr>
<td>2. Label, Oxygen Yoke Assembly</td>
<td>0205-4957-300</td>
</tr>
<tr>
<td>3. Plug 1/8 nptm w/Hex Socket</td>
<td>6600-0191-400</td>
</tr>
<tr>
<td>4. Button Plug</td>
<td>0216-2593-300</td>
</tr>
<tr>
<td>5. O_2 Manifold Yoke</td>
<td>0219-4002-531</td>
</tr>
<tr>
<td>6. Air Gauge, 3000 lbs (210 kg/cm²)</td>
<td>0205-8355-300</td>
</tr>
<tr>
<td>7. Label, Air Yoke Assembly</td>
<td>6600-0016-100</td>
</tr>
<tr>
<td>8. Socket Head Set Cup Screw 6-32 x 3/8</td>
<td>0141-4124-112</td>
</tr>
<tr>
<td>9. Air Manifold Yoke</td>
<td>6600-0024-500</td>
</tr>
<tr>
<td>10. Air Outlet DISS 1/8 nptm Single Check</td>
<td>6600-0021-400</td>
</tr>
<tr>
<td>11. Screw 1/4 -20 x 3/8</td>
<td>0140-6136-106</td>
</tr>
<tr>
<td>12. Safety Relief Valve</td>
<td>0207-8258-800</td>
</tr>
<tr>
<td>13. Tee, 1/8 nptf 1/8 nptm 3/16</td>
<td>0213-4127-300</td>
</tr>
<tr>
<td>14. Bushing 1/8 nptf 1/4 nptm</td>
<td>6600-0035-300</td>
</tr>
<tr>
<td>15. Single Stage O_2 Regulator 8000 Series</td>
<td>6600-0003-700</td>
</tr>
<tr>
<td>16. Hex Nut 3/8-16</td>
<td>0144-3345-113</td>
</tr>
<tr>
<td>17. Copper Tube</td>
<td>0213-8022-300</td>
</tr>
<tr>
<td>18. Hex Socket Plug 1/4 nptm</td>
<td>0413-3511-300</td>
</tr>
<tr>
<td>19. Close Nipple 1/4 npt</td>
<td>0413-1099-325</td>
</tr>
<tr>
<td>20. 3/16 Compression Elbow 1/8 nptm</td>
<td>0413-8566-300</td>
</tr>
<tr>
<td>21. O_2 Connector DISS 9/16</td>
<td>0204-0508-532</td>
</tr>
<tr>
<td>22. O-Ring .250 ID .375 OD</td>
<td>0210-0595-300</td>
</tr>
<tr>
<td>23. O-Ring .312 ID .437 OD</td>
<td>0210-0601-300</td>
</tr>
<tr>
<td>24. Steel Ball</td>
<td>0409-1697-300</td>
</tr>
<tr>
<td>25. O_2 DISS Outlet 1/8 nptm Single Check</td>
<td>0205-0540-800</td>
</tr>
<tr>
<td>Piston</td>
<td>0205-0413-535</td>
</tr>
<tr>
<td>O-Ring</td>
<td>0210-0559-300</td>
</tr>
<tr>
<td>Adapter</td>
<td>0205-0412-535</td>
</tr>
<tr>
<td>26. Spring</td>
<td>6600-0156-400</td>
</tr>
<tr>
<td>27. Gauge lens</td>
<td>0212-0066-300</td>
</tr>
<tr>
<td>28. Cylinder Bumper</td>
<td>6600-0400-500</td>
</tr>
<tr>
<td>29. Screw, Phillips FL type F, # 8 x 5/8</td>
<td>0142-2244-210</td>
</tr>
</tbody>
</table>

Note: Seal pipe threads with Teflon tape.
Figure 7-25
Air/Oxygen Yoke and Regulator Assembly 1 - Regulator
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Split Ring, 1 inch</td>
<td>0203-2390-300</td>
</tr>
<tr>
<td>2. Bead Chain Clip</td>
<td>0203-0100-300</td>
</tr>
<tr>
<td>3. Bead Chain, No. 10 (3/16 inch)</td>
<td>0203-0068-500</td>
</tr>
<tr>
<td>4. Cylinder Wrench</td>
<td>6600-0308-400</td>
</tr>
<tr>
<td>5. Cylinder guard</td>
<td>6600-0040-500</td>
</tr>
<tr>
<td>6. Tee Handle</td>
<td>0219-3372-600</td>
</tr>
<tr>
<td>7. Screw 3/8-16 x 2 1/4</td>
<td>0144-2145-224</td>
</tr>
<tr>
<td>8. Sleeve</td>
<td>0236-0202-535</td>
</tr>
<tr>
<td>9. Gate Hanger</td>
<td>6600-0348-500</td>
</tr>
<tr>
<td>10. Yoke Spacer</td>
<td>6600-0121-400</td>
</tr>
<tr>
<td>11. Yoke Plug</td>
<td>6600-0399-500</td>
</tr>
<tr>
<td>12. Gasket</td>
<td>6600-0152-400</td>
</tr>
<tr>
<td>13. Yoke Check Valve*</td>
<td>0207-8081-800</td>
</tr>
<tr>
<td>Strainer Nipple</td>
<td>0206-2805-725</td>
</tr>
<tr>
<td>14. Groove Pin</td>
<td>0143-3210-410</td>
</tr>
<tr>
<td>15. Front Body Air DISS Check Unit</td>
<td>6600-0402-500</td>
</tr>
<tr>
<td>16. O-Ring</td>
<td>6700-0136-500</td>
</tr>
<tr>
<td>17. O-Ring</td>
<td>0210-0591-300</td>
</tr>
<tr>
<td>18. Air Primary Check</td>
<td>0221-3661-535</td>
</tr>
<tr>
<td>19. Spring</td>
<td>6600-0238-400</td>
</tr>
<tr>
<td>20. Washer</td>
<td>6600-0032-300</td>
</tr>
<tr>
<td>21. Gauge lens</td>
<td>0212-0066-300</td>
</tr>
</tbody>
</table>

* Torque to 15 -20 ft./lbs.

Note: Seal pipe threads with Teflon tape.
Figure 7-26
Air/Oxygen Yoke and Regulator Assembly 2 - Manifold Block
Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. O₂ Gauge, 3000 lbs (210 kg/cm²)</td>
<td>0205-8350-300</td>
</tr>
<tr>
<td>2. Label, Oxygen Yoke Assembly</td>
<td>0205-4957-300</td>
</tr>
<tr>
<td>3. Plug 1/8 nptm w/Hex Socket</td>
<td>0413-3510-300</td>
</tr>
<tr>
<td>4. Button Plug</td>
<td>0216-2593-300</td>
</tr>
<tr>
<td>5. O₂ Manifold Yoke</td>
<td>0219-4002-531</td>
</tr>
<tr>
<td>6. Screw 1/4-20 x 3/8</td>
<td>0140-6136-106</td>
</tr>
<tr>
<td>7. Safety Relief Valve</td>
<td>0207-8258-800</td>
</tr>
<tr>
<td>8. Tee, 1/8 nptf 1/8 nptm 3/16</td>
<td>0213-4127-335</td>
</tr>
<tr>
<td>9. Bushing 1/8 nptf 1/4 nptm</td>
<td>0413-3350-300</td>
</tr>
<tr>
<td>10. Single Stage O₂ Regulator (8000)</td>
<td>6600-0003-700</td>
</tr>
<tr>
<td>11. Hex Nut 3/8-16</td>
<td>0144-3345-113</td>
</tr>
<tr>
<td>12. Copper Tube</td>
<td>0213-8022-300</td>
</tr>
<tr>
<td>13. Hex Socket Plug 1/4 nptm</td>
<td>0413-3511-300</td>
</tr>
<tr>
<td>14. Close Nipple 1/4 npt</td>
<td>0413-1099-325</td>
</tr>
<tr>
<td>15. 3/16 Compression Elbow 1/8 nptm</td>
<td>0413-8566-300</td>
</tr>
<tr>
<td>16. O₂ Connector DISS 9/16</td>
<td>0204-0508-532</td>
</tr>
<tr>
<td>17. O-Ring .250 ID .375 OD</td>
<td>0210-0595-300</td>
</tr>
<tr>
<td>18. O-Ring .312 ID .437 OD</td>
<td>0210-0601-300</td>
</tr>
<tr>
<td>19. Steel Ball</td>
<td>0409-1697-300</td>
</tr>
<tr>
<td>20. O₂ DISS Outlet 1/8 nptm Single Check</td>
<td>0205-0540-800</td>
</tr>
<tr>
<td>Piston</td>
<td>0205-0413-535</td>
</tr>
<tr>
<td>O-Ring</td>
<td>0210-0559-300</td>
</tr>
<tr>
<td>Adapter</td>
<td>0205-0412-535</td>
</tr>
<tr>
<td>21. Spring</td>
<td>6600-0156-400</td>
</tr>
<tr>
<td>22. Gauge lens</td>
<td>0212-0066-300</td>
</tr>
</tbody>
</table>

Note: Seal pipe threads with Teflon tape.
Figure 7-27
Oxygen Yoke and Regulator Assembly 1 - Regulator
<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Split Ring, 1/2 inch</td>
<td>0203-2390-300</td>
</tr>
<tr>
<td>2. Bead Chain Clip</td>
<td>0203-0100-300</td>
</tr>
<tr>
<td>3. Bead Chain, No. 10 (3/16 inch)</td>
<td>0203-0068-500</td>
</tr>
<tr>
<td>4. Cylinder Wrench</td>
<td>6600-0308-400</td>
</tr>
<tr>
<td>5. Cylinder guard (Model 5000 only)</td>
<td>6600-0040-500</td>
</tr>
<tr>
<td>6. Tee Handle</td>
<td>0219-3372-600</td>
</tr>
<tr>
<td>7. Screw 3/8-16 x 2-1/4</td>
<td>0144-2145-224</td>
</tr>
<tr>
<td>8. Sleeve</td>
<td>0236-0202-535</td>
</tr>
<tr>
<td>9. Gate Hanger</td>
<td>0236-0203-531</td>
</tr>
<tr>
<td>10. Yoke Spacer</td>
<td>6600-0121-400</td>
</tr>
<tr>
<td>11. Yoke Plug</td>
<td>6600-0399-500</td>
</tr>
<tr>
<td>12. Gasket</td>
<td>6600-0152-400</td>
</tr>
<tr>
<td>13. Yoke Check Valve*</td>
<td>0207-8081-800</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0206-2805-725</td>
</tr>
<tr>
<td>14. Groove Pin</td>
<td>0143-3210410</td>
</tr>
<tr>
<td>15. Washer</td>
<td>6600-0032-300</td>
</tr>
<tr>
<td>16. Gauge lens</td>
<td>0212-0066-300</td>
</tr>
<tr>
<td>17. Cylinder Bumper</td>
<td>6600-0400-500</td>
</tr>
<tr>
<td>18. Lock washer, pyramidal</td>
<td>0202-3419-300</td>
</tr>
<tr>
<td>19. Screw, button head cap, 5/16-1</td>
<td>0144-2440-216</td>
</tr>
</tbody>
</table>

* Torque to 15-20 ft./lbs.
Note: Seal pipe threads with Teflon tape.
Figure 7-28
Oxygen Yoke and Regulator Assembly 2 - Manifold Block
Description

<table>
<thead>
<tr>
<th></th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Label, Shelf Load Limit</td>
<td>0205-4955-300</td>
</tr>
<tr>
<td>2. Locking Ring</td>
<td>0203-5186-300</td>
</tr>
<tr>
<td>3. Swivel Arm</td>
<td>0217-5337-552</td>
</tr>
<tr>
<td>4. Washer</td>
<td>0202-0096-300</td>
</tr>
<tr>
<td>5. Washer</td>
<td>0202-0095-300</td>
</tr>
<tr>
<td>6. Knob†</td>
<td>0217-5335-300</td>
</tr>
<tr>
<td>7. Swivel Shelf, 12 x 12</td>
<td>6600-0482-500</td>
</tr>
</tbody>
</table>

† Apply Lubriplate (0616-0203-300) to the knob threads.

Figure 7-29

Instrument Shelf, 12 x 12 (30cm x 30cm)
0217-5365-800
Description	Stock Number
1. Label, Shelf Load Limit | 0205-4956-300
2. Monitor Shelf 12 x 26 | 6600-0481-500
Monitor Shelf 12 x 30.5 (Model 5000) | 0217-5349-100
3. Shelf Support | 0217-5346-710
4. Screw 1/4 -20 x 5/8* | 0140-6136-110
5. Mounting block assy. | 6600-0290-800
6. Washer (included with item 5) | 0202-0095-300
7. Knob† (included with item 5) | 0217-5335-300

* Use Loctite 242 on threads, tighten, then loosen 1/2 turn.
† Apply Lubriplate (0616-0203-300) to the knob threads.

Figure 7-30
Monitor Shelf
Model 2001, 3000, and 3300 - 0217-5366-800
Model 4000, 4300 and 4400 - 6600-0240-800
Model 5000 - 6600-0010-800
Description	**Stock Number**
1. Washer | 0202-0095-300
2. Knob† | 0217-5335-300

† Apply Lubriplate (0616-0203-300) to the knob threads.

Figure 7-31
3.5 Inch (9cm) Utility Post
0217-5374-800
Description

1. Washer .. 0202-0095-300
2. Knob† .. 0217-5335-300

† Apply Lubriplate (0616-0203-300) to the knob threads.

Figure 7-32

20 inch (51cm) Utility post
0217-5376-800
7/Illustrated Parts

Top View

Description	Stock Number
1. Hanger | 0217-5091-300
2. Cap* | 0217-5092-535
3. Washer | 0202-0095-300
4. Knob† | 0217-5335-300

* Apply Loctite 277 before assembly.
†Apply Lubriplate (0616-0203-300) to the knob threads.

Figure 7-33
I.V. Pole
0217-5378-800
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Washer</td>
<td>0202-0095-300</td>
</tr>
<tr>
<td>2. Knob†</td>
<td>0217-5335-300</td>
</tr>
<tr>
<td>3. Ventilator Mounting Post Tube</td>
<td>0217-5288-500</td>
</tr>
<tr>
<td>4. End Rail Cap</td>
<td>0211-1546-300</td>
</tr>
<tr>
<td>5. Ventilator Mounting Post Arm</td>
<td>0217-5287-300</td>
</tr>
<tr>
<td>7. Spiral Ring Lock</td>
<td>0203-5188-300</td>
</tr>
<tr>
<td>8. Black Butyrate Cap</td>
<td>0211-1542-300</td>
</tr>
</tbody>
</table>

† Apply Lubriplate (0616-0203-300) to the knob threads

Figure 7-34
Ventilator Mounting Post
0217-5357-800
Description	**Stock Number**
1. Gauge -20 to + 100 cm H₂O (-2 to + 10 kpa)* | 0205-8156-300
2. Lens | 6600-0250-200
3. Washer | 0402-0221-500
4. Coupler | 0217-5344-542
5. O-ring | 0210-0543-300
6. Mounting Block Assy. | 6700-0080-800
7. Washer (included with item 6) | 0202-0095-300
8. Knob† (included with item 6) | 0217-5335-300
9. Locking Ring | 0203-5186-300

† Apply Lubriplate (0616-0203-300) to the knob threads.
* Seal pipe threads with Teflon tape.

Figure 7-35
Airway Manometer
0217-5377-800
7/Illustrated Parts

Figure 7-36

Manifold Assembly

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plug 1/8 nptm w/Hex Socket*</td>
<td>6600-0191-400</td>
</tr>
<tr>
<td>2. Mounting block assy.</td>
<td>6700-0180-700</td>
</tr>
<tr>
<td>3. Washer (included with item 2)</td>
<td>0202-0095-300</td>
</tr>
<tr>
<td>4. Knob† (included with item 2)</td>
<td>0217-5335-300</td>
</tr>
</tbody>
</table>

† Apply Lubriplate (0615-0203-300) to the knob threads.

*Seal pipe threads with Teflon tape.

Figure 7-37

Flowmeter Assembly

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mounting block assy.</td>
<td>6700-0180-700</td>
</tr>
<tr>
<td>2. Washer (included with item 1)</td>
<td>0202-0095-300</td>
</tr>
<tr>
<td>3. Knob† (included with item 1)</td>
<td>0217-5335-300</td>
</tr>
<tr>
<td>4. O₂ Diss Adapter 1/8. npt</td>
<td>0204-0490-535</td>
</tr>
<tr>
<td>5. Close Nipple 1/8 nptm</td>
<td>0413-1000-335</td>
</tr>
<tr>
<td>6. O₂ Flowmeter (50psi)</td>
<td>6700-1260-907</td>
</tr>
<tr>
<td>7. Hex Socket Plug 1/8 nptm*</td>
<td>6600-0191-400</td>
</tr>
<tr>
<td>8. O₂ DISS Outlet 1/8 npt</td>
<td>0205-0540-800</td>
</tr>
</tbody>
</table>

† Apply Lubriplate (0616-0203-300) to the knob threads.

*Seal pipe threads with Teflon tape.
7/Illustrated Parts

Description Stock Number
1. Mounting block assy. 6700-0080-800
2. Washer (included with item 1) 0202-0095-300
3. Knob† (included with item 1) 0217-5335-300
4. Hex Socket Plug 1/8 nptm* 0413-3510-335
5. DISS Vacuum Adapter 1/8 npt* 6700-0524-802

* Seal pipe threads with Teflon tape.
† Apply Lubriplate (0616-0203-300) to the knob threads.

Figure 7-38
Vacuum Manifold Assembly
(0217-5369-800)

Description Stock Number
1. Plug 1/8 nptm w/Hex Socket* 0413-3510-335
2. Mounting Block assy. 6700-0180-700
3. Washer (included with item 2) 0202-0095-300
4. Knob† (included with item 2) 0217-5335-300
5. O₂ DISS Adapter 1/8 npt* 0204-0490-535
6. O₂ DISS Outlet 1/8 npt* 0205-0540-800

† Apply Lubriplate (0616-0203-300) to the knob threads.
* Seal pipe threads with Teflon tape.

Figure 7-39
Oxygen Manifold
6600-0018-800
7/Illustrated Parts

Description Stock Number
1. Adapter plate .. 0217-5363-800
2. Housing (included w/item 1) 6600-0599-500
3. Lock (included w/item 1) 6600-0600-500
4. Cap head screw (included w/item 1) 6600-0441-400
5. Vacuum Slide Bottle Mount 0221-2343-500
6. Screw 6-32 x .238 .. 0400-3145-300

Parts Not Shown
Allen wrench (included w/item 1) 6600-0443-400

Figure 7-40
Slide Assembly
(0217-5367-800)

Description Stock Number
1. Adapter plate .. 0217-5363-800
2. Housing (included w/item 1) 6600-0599-500
3. Lock (included w/item 1) 6600-0600-500
4. Cap head screw (included w/item 1) 6600-0441-400
5. Female Bracket, Bird Blender 6600-0044-500
6. Screw .. 6600-0014-400

Parts Not Shown
Allen wrench (included w/item 1) 6600-0443-400

Figure 7-41
Bird Dovetail Assembly
(6600-0031-900)
7/Illustrated Parts

S1 Switch, Dip 4 ckt
TP1-TP7 Header 7 Pin
TP8 9 10 Header 3 pin
U1 IC 74LS74
 Dual D Flip Flop Pos Edge
U2 IC 74LS08
 Quad 2 Input and
U3 IC 74LS123
 Dual One Shot w/Clear
U4 5 IC 8243
 Input/Output Expander
U6 IC ADC3711 A/D Converter
U7 IC 7556 Dual 555 Timer
U8 IC 74LS132
 Quad 2 Input Schmitt Nand
U9 IC 4020B CMOS
 14 Bit Binary Counter
U10 IC 27128 EPROM 6600-0190-800
 Programmed
U11 IC 74LS373
 Octal D Latch 3 State Out
U12 IC 8031 Microprocessor
U13 IC 4051B CMOS
 8 channel Analog MPX
U14 IC LM10 Voltage Reference
For U4 5 6 Socket IC 24 Pin
For U10 Socket IC 28 Pin
For U12 Socket IC 40 Pin
Y1 Crystal 6 MHz HC-18/U

Note: The following parts, as shown on the silkscreen, are not installed on this assembly.
U15, U16, C25, C27, J3, J8, and CR2.

Note: R45 and R16 not installed on earlier boards.

Figure 7-42
Control Board Layout
Units with software revision prior to 4.00
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 2 4 5 7 8 9</td>
<td>Capacitor .1 µF 50 V 20% Ceramic</td>
</tr>
<tr>
<td>10 17 18 19</td>
<td>Capacitor .27 µF 100 V 10% Polyester</td>
</tr>
<tr>
<td>20 21 22 23</td>
<td>Capacitor 220 pF 1000 V 10% Tantalum</td>
</tr>
<tr>
<td>24 29 33 34</td>
<td>Capacitor 15 µF 16 V 20% Tantalum</td>
</tr>
<tr>
<td>C12 13</td>
<td>Capacitor .01 µF 100 V 10% Polypropylene</td>
</tr>
<tr>
<td>C14</td>
<td>Capacitor .33 µF 100 V 5% Ceramic</td>
</tr>
<tr>
<td>C15</td>
<td>Capacitor 33 pF 100 V 5% Ceramic</td>
</tr>
<tr>
<td>CR1</td>
<td>Diode IN4001</td>
</tr>
<tr>
<td>DS1</td>
<td>Diode LED Red HLMP 3366</td>
</tr>
<tr>
<td>J6</td>
<td>Header 12 ckt</td>
</tr>
<tr>
<td>J5</td>
<td>Header 16 ckt</td>
</tr>
<tr>
<td>J7</td>
<td>Header 3 ckt</td>
</tr>
<tr>
<td>J1</td>
<td>Header 2 ckt</td>
</tr>
<tr>
<td>LS1</td>
<td>Audio Alarm 12 V QMB-06A 2kHz</td>
</tr>
<tr>
<td>Q1 2</td>
<td>Transistor MPS6515 NPN</td>
</tr>
<tr>
<td>R1 33</td>
<td>Resistor 47k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R2</td>
<td>Resistor 220k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R3</td>
<td>Resistor 39k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R4</td>
<td>Resistor 6.8k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R5 17 19 36 39</td>
<td>Resistor 200Ω 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R6 20 21 22 23</td>
<td>Resistor 5.76k 1/8 W 0.1% Metal Film</td>
</tr>
<tr>
<td>25 28</td>
<td>Resistor 10K 1/8 W 0.1% Metal Film</td>
</tr>
<tr>
<td>R7 8 26</td>
<td>Resistor 100k 1/4 W 1% Metal Film</td>
</tr>
<tr>
<td>R9 41</td>
<td>Resistor 10k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R10 11 14 18 29 30 34</td>
<td>Resistor 4.7k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R12 15</td>
<td>Resistor 2.21k 1/8 W 0.1% Metal Film</td>
</tr>
<tr>
<td>R13</td>
<td>Resistor 1 meg 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R16</td>
<td>Resistor 1k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R24</td>
<td>Resistor 220 ohm 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R27</td>
<td>Resistor 33k 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R31</td>
<td>Resistor 51 ohm 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R32</td>
<td>Resistor 510 ohm 1/4 W 5% Carbon Film</td>
</tr>
<tr>
<td>R35</td>
<td>Resistor var 500 ohm 3/4 W 10% 20 Turn</td>
</tr>
<tr>
<td>R37 44</td>
<td>Resistor var 10k 3006p-1-103</td>
</tr>
<tr>
<td>R38</td>
<td>Resistor 75k 1/4 W 1% Metal Film</td>
</tr>
<tr>
<td>R40</td>
<td>Resistor 453k 1/8 W 0.1% Metal Film</td>
</tr>
<tr>
<td>R42</td>
<td>Resistor 5.9k 1/4 W 0.1% Metal Film</td>
</tr>
<tr>
<td>R43</td>
<td>Resistor 2.7k 1/4 W 5%</td>
</tr>
<tr>
<td>R45</td>
<td>Resistor Network 10k</td>
</tr>
</tbody>
</table>
Note: Some software 04.00 boards do not have connector J9 shown above.

Figure 7-43
Control Board Layout
Units with software revision 4.00 or higher
<table>
<thead>
<tr>
<th>PART</th>
<th>QTY</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCKET, 40 PIN</td>
<td>1</td>
<td>FOR U11</td>
</tr>
<tr>
<td>SOCKET, 28 PIN</td>
<td>1</td>
<td>FOR U9</td>
</tr>
<tr>
<td>HEADER, 7 PIN</td>
<td>1</td>
<td>TP1-7</td>
</tr>
<tr>
<td>HEADER, 3 PIN</td>
<td>1</td>
<td>TPB-10</td>
</tr>
<tr>
<td>HEADER, STRAIGHT 16 PIN</td>
<td>1</td>
<td>J5</td>
</tr>
<tr>
<td>HEADER, STRAIGHT 12 PIN</td>
<td>1</td>
<td>J6</td>
</tr>
<tr>
<td>HEADER, RTANG, 3 PIN</td>
<td>1</td>
<td>J7</td>
</tr>
<tr>
<td>HEADER, RTANG, 2 PIN</td>
<td>1</td>
<td>J1</td>
</tr>
<tr>
<td>HEADER, STRAIGHT 6 PIN</td>
<td>1</td>
<td>J9</td>
</tr>
<tr>
<td>SWITCH, DIP B POSITION</td>
<td>1</td>
<td>S1</td>
</tr>
<tr>
<td>LED HLMP-3366</td>
<td>1</td>
<td>DS1</td>
</tr>
<tr>
<td>ALARM OMB-06A</td>
<td>1</td>
<td>LS1</td>
</tr>
<tr>
<td>FILTER, EMI DATA LINE</td>
<td>1</td>
<td>L1</td>
</tr>
<tr>
<td>IC 74LS02</td>
<td>1</td>
<td>U8</td>
</tr>
<tr>
<td>IC 74LS123</td>
<td>1</td>
<td>U5</td>
</tr>
<tr>
<td>IC 74L504</td>
<td>1</td>
<td>U4</td>
</tr>
<tr>
<td>IC 27128 PROGRAMMED V0500</td>
<td>1</td>
<td>U9</td>
</tr>
<tr>
<td>IC 74LS373</td>
<td>1</td>
<td>U10</td>
</tr>
<tr>
<td>IC 8243</td>
<td>2</td>
<td>U1, 2</td>
</tr>
<tr>
<td>IC 1N8032</td>
<td>1</td>
<td>U11</td>
</tr>
<tr>
<td>IC 4051B</td>
<td>1</td>
<td>U12</td>
</tr>
<tr>
<td>IC ADC3711</td>
<td>1</td>
<td>U3</td>
</tr>
<tr>
<td>IC LM10</td>
<td>1</td>
<td>U14</td>
</tr>
<tr>
<td>IC 7556</td>
<td>1</td>
<td>U6</td>
</tr>
<tr>
<td>IC 74LS132</td>
<td>1</td>
<td>U7</td>
</tr>
<tr>
<td>IC LM324</td>
<td>1</td>
<td>U15</td>
</tr>
<tr>
<td>CRYSTAL 6.0 MHz</td>
<td>1</td>
<td>Y1</td>
</tr>
<tr>
<td>TRANSISTOR MPS6515</td>
<td>2</td>
<td>01, 2</td>
</tr>
<tr>
<td>DIODE</td>
<td>1</td>
<td>CR1</td>
</tr>
<tr>
<td>CAPACITOR .01 MFD</td>
<td>1</td>
<td>C14</td>
</tr>
<tr>
<td>CAPACITOR .15 MFD</td>
<td>3</td>
<td>C7, 9, 20</td>
</tr>
<tr>
<td>CAPACITOR .27 MFD</td>
<td>2</td>
<td>C29, 30</td>
</tr>
<tr>
<td>CAPACITOR 10 MFD 10%</td>
<td>2</td>
<td>C12, 33</td>
</tr>
<tr>
<td>CAPACITOR 220 µF</td>
<td>1</td>
<td>C10</td>
</tr>
<tr>
<td>CAPACITOR 33 µF</td>
<td>37</td>
<td>C28, 35, 38-72</td>
</tr>
<tr>
<td>CAPACITOR 0.1 MFD</td>
<td>20</td>
<td>C1-6, 8, 13, 15-19, 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22, 31, 32, 34, 36</td>
</tr>
<tr>
<td>CAPACITOR 1 MFD</td>
<td>1</td>
<td>C37</td>
</tr>
<tr>
<td>RESISTOR 1K 0.12</td>
<td>1</td>
<td>R49</td>
</tr>
<tr>
<td>RESISTOR 10K</td>
<td>1</td>
<td>RP1</td>
</tr>
<tr>
<td>RESISTOR VAR 500</td>
<td>2</td>
<td>R37, 44</td>
</tr>
<tr>
<td>RESISTOR 1 MEG 50</td>
<td>1</td>
<td>R14</td>
</tr>
<tr>
<td>RESISTOR 47K 52</td>
<td>1</td>
<td>R20</td>
</tr>
<tr>
<td>RESISTOR 100K 0.12</td>
<td>5</td>
<td>R11, 12, 41, 50, 51</td>
</tr>
<tr>
<td>RESISTOR 200 52</td>
<td>6</td>
<td>R7, 9, 23, 36, 36, 39</td>
</tr>
<tr>
<td>RESISTOR 4,81K 0.1%</td>
<td>1</td>
<td>R46</td>
</tr>
<tr>
<td>RESISTOR 10K 52</td>
<td>11</td>
<td>R2-5, 8, 13, 17, R18, 22, 24, 34</td>
</tr>
<tr>
<td>RESISTOR 267K 0.12</td>
<td>1</td>
<td>R40</td>
</tr>
<tr>
<td>RESISTOR 33K 52</td>
<td>2</td>
<td>R6, 32</td>
</tr>
<tr>
<td>RESISTOR 2.2K 0.1%</td>
<td>1</td>
<td>R42</td>
</tr>
<tr>
<td>RESISTOR 10K 0.12</td>
<td>2</td>
<td>R29, 45</td>
</tr>
<tr>
<td>RESISTOR 5.76K 0.1%</td>
<td>4</td>
<td>R26-28, 30</td>
</tr>
<tr>
<td>RESISTOR 75K 12</td>
<td>2</td>
<td>R15, 25</td>
</tr>
<tr>
<td>RESISTOR 1K 52</td>
<td>2</td>
<td>R16, 19</td>
</tr>
<tr>
<td>RESISTOR 510 52</td>
<td>1</td>
<td>R21</td>
</tr>
<tr>
<td>RESISTOR 51 52</td>
<td>1</td>
<td>R33</td>
</tr>
<tr>
<td>RESISTOR 6.8K 52</td>
<td>1</td>
<td>R1</td>
</tr>
<tr>
<td>RESISTOR VAR 20K</td>
<td>1</td>
<td>R38</td>
</tr>
<tr>
<td>RESISTOR 215 12</td>
<td>1</td>
<td>R10</td>
</tr>
<tr>
<td>RESISTOR POTENTIOMETER, 20 OHMS</td>
<td>1</td>
<td>R52</td>
</tr>
<tr>
<td>RESISTOR 5.9K 0.12</td>
<td>1</td>
<td>R43</td>
</tr>
<tr>
<td>DESCRIPTION QTY SYMBOL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6600-0278-600
Description	Jumper Configuration	Part Number
Service board, units with HCA serial# | JP1 2 3 4 5 6 | Y N Y N Y N 6600-0012-850
Service board, IWS 5000 units without HCA serial# | | N Y N Y N 6600-0013-850

Note: Use Thermacote thermal joint compound (0220-5255-300) between components VR2, VR3 and VR4 and their respective heatsinks.

Figure 7-44
Power Supply Board Layout
Common controller
Units with HCA serial numbers
7/Illustrated Parts

<table>
<thead>
<tr>
<th>RESISTOR, 330, 5%, 1/4W</th>
<th>1</th>
<th>R12</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST PROCEDURE FUNCTIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVE DEVICE HDL/PKG STD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOT NUMBERING SPECIFICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUNCTIONAL DESCRIPTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHEMATIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC BOARD, BLANK</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>THERMCOTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-40 X 1/4 SCREW</td>
<td>2</td>
<td>H1</td>
</tr>
<tr>
<td>4-40 NUT, SL/FLOCKING ELASTIC</td>
<td>3</td>
<td>H4</td>
</tr>
<tr>
<td>NO. 4 LOCK WASHER</td>
<td>2</td>
<td>H2</td>
</tr>
<tr>
<td>4-40 HEX NUT</td>
<td>2</td>
<td>H3</td>
</tr>
<tr>
<td>CONN. HEADER, 3 SOCKET, 350825-1</td>
<td>1</td>
<td>J17</td>
</tr>
<tr>
<td>CONN. HEADER, 3 PIN, 350799-1</td>
<td>2</td>
<td>J13, J16</td>
</tr>
<tr>
<td>CONN. HEADER, 4 PIN, 350792-1</td>
<td>1</td>
<td>J15</td>
</tr>
<tr>
<td>CONN. HEADER, 2 PIN, 350786-1</td>
<td>1</td>
<td>J14</td>
</tr>
<tr>
<td>CONN. HEADER, 16 PIN, 1100-9-116-01</td>
<td>1</td>
<td>J12</td>
</tr>
<tr>
<td>CONN. HEADER, 12 PIN, 1100-9-112-01</td>
<td>1</td>
<td>TP</td>
</tr>
<tr>
<td>CONN. HEADER, 8 PIN, 1100-9-108-01</td>
<td>1</td>
<td>J11</td>
</tr>
<tr>
<td>FUSE, 2A</td>
<td>2</td>
<td>F1, F2</td>
</tr>
<tr>
<td>HEAT SINK, 60708 SF-1 M1</td>
<td>3</td>
<td>H5</td>
</tr>
<tr>
<td>BATTERY HOLDER</td>
<td>1</td>
<td>FGR BT1</td>
</tr>
<tr>
<td>IC, OPTO CY65</td>
<td>1</td>
<td>U3</td>
</tr>
<tr>
<td>IC, MPO6426</td>
<td>2</td>
<td>U1, U2</td>
</tr>
<tr>
<td>RELAY BA E3207-00-102 EICHHOFF</td>
<td>1</td>
<td>K2</td>
</tr>
<tr>
<td>RELAY SS 16 PIN DIP</td>
<td>1</td>
<td>X5</td>
</tr>
<tr>
<td>RELAY 16A, 250V</td>
<td>2</td>
<td>K3, 4</td>
</tr>
<tr>
<td>RELAY 16A, 250V (ALTERNATE)</td>
<td>2</td>
<td>K3, 4</td>
</tr>
<tr>
<td>IC LINEAR 7805C</td>
<td>3</td>
<td>VR2, VR3, VR4</td>
</tr>
<tr>
<td>DIODE BRIDGE 50V 1A</td>
<td>3</td>
<td>CR1, CR2, CR6</td>
</tr>
<tr>
<td>RELAY 20A E3209-00-307</td>
<td>1</td>
<td>K1</td>
</tr>
<tr>
<td>DIODE VSK120</td>
<td>1</td>
<td>CR4</td>
</tr>
<tr>
<td>DIODE IN4001</td>
<td>6</td>
<td>CR3, 5, 8, 9, 10, 11</td>
</tr>
<tr>
<td>CAPACITOR .33 MFD</td>
<td>1</td>
<td>C20</td>
</tr>
<tr>
<td>CAPACITOR .47 MFD</td>
<td>1</td>
<td>C10</td>
</tr>
<tr>
<td>CAPACITOR, 4700 MFD, 35V</td>
<td>2</td>
<td>C11, C12</td>
</tr>
<tr>
<td>CAPACITOR, 15 MFD, 35V, 20%</td>
<td>1</td>
<td>C5</td>
</tr>
<tr>
<td>CAPACITOR .33 MFD, 50V</td>
<td>3</td>
<td>C3, C7, C9</td>
</tr>
<tr>
<td>CAPACITOR, 0.1 MFD, 50V, 20%</td>
<td>3</td>
<td>C4, C6, C9</td>
</tr>
<tr>
<td>CAPACITOR, .01 MFD, 250V RMS</td>
<td>3</td>
<td>C16, C17, C19</td>
</tr>
<tr>
<td>CAPACITOR, .33 MFD, 600V</td>
<td>1</td>
<td>C19</td>
</tr>
<tr>
<td>RESISTOR, 56 5% 1/4W</td>
<td>1</td>
<td>R10</td>
</tr>
<tr>
<td>RESISTOR, VAR 10K</td>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>RESISTOR, VAR 1K</td>
<td>1</td>
<td>R4</td>
</tr>
<tr>
<td>RESISTOR, 47K, 5%, 2W</td>
<td>1</td>
<td>R13</td>
</tr>
<tr>
<td>RESISTOR, 100K, 5%, 1/4W</td>
<td>1</td>
<td>R5</td>
</tr>
<tr>
<td>RESISTOR, 47, 5%, 1/4W</td>
<td>1</td>
<td>R28</td>
</tr>
<tr>
<td>RESISTOR, 470, 5%, 1/4W</td>
<td>1</td>
<td>R11</td>
</tr>
<tr>
<td>RESISTOR, 180, 5%, 1/4W</td>
<td>1</td>
<td>R9</td>
</tr>
<tr>
<td>RESISTOR, 3K, 5%, 1/4W</td>
<td>6</td>
<td>R17, 22, 23, 24, 25, 27</td>
</tr>
<tr>
<td>RESISTOR, 100, 5%, 1/4W</td>
<td>2</td>
<td>R1, R4</td>
</tr>
<tr>
<td>RESISTOR, 22, 5%, 1/4W</td>
<td>2</td>
<td>R18, 21</td>
</tr>
<tr>
<td>RESISTOR, 100K, 10%, 1/4W</td>
<td>1</td>
<td>R2</td>
</tr>
<tr>
<td>RESISTOR, 10, 5%, 1/4W</td>
<td>1</td>
<td>R26</td>
</tr>
<tr>
<td>RESISTOR, 18, 5%, 1W</td>
<td>2</td>
<td>R7, 8</td>
</tr>
<tr>
<td>RESISTOR, 22, 5%, 1W (ALTERNATE)</td>
<td>2</td>
<td>R7, 8</td>
</tr>
<tr>
<td>VARISTOR, 320V AC</td>
<td>1</td>
<td>RV1</td>
</tr>
</tbody>
</table>

DESCRIPTION **QTY** **SYMBOL**

6600-0195-000 B 10/25/93 7-71
Note: Use Thermacote thermal joint compound (0220-5255-300) between components VR2, VR3 and VR4 and their respective heatsinks.

Figure 7-45
Power Supply Board Layout
Model 5000 115/220/240 V
Units without HCA serial numbers
Illustrated Parts

Parts Legend for Power Supply Board 115 V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Battery, 9 Volt Rechargeable</td>
</tr>
<tr>
<td>C3 7 9</td>
<td>Capacitor .33 µF 50V 20% Ceramic</td>
</tr>
<tr>
<td>C4 6 8</td>
<td>Capacitor .1 µF 50V 20% Ceramic</td>
</tr>
<tr>
<td>C5</td>
<td>Capacitor 15 µF 16V 20% Tantalum</td>
</tr>
<tr>
<td>C10</td>
<td>Capacitor .47 µF 50V 20% Ceramic</td>
</tr>
<tr>
<td>C11 12</td>
<td>Capacitor 4700 µF 16V 20% Electrolytic</td>
</tr>
<tr>
<td>C16 17</td>
<td>Capacitor .01 µF 1000V 20% Ceramic</td>
</tr>
<tr>
<td>C19</td>
<td>Capacitor .39 µF</td>
</tr>
<tr>
<td>CR1 2 6</td>
<td>Diode Bridge VM08</td>
</tr>
<tr>
<td>CR3 5 8</td>
<td>Diode IN4001</td>
</tr>
<tr>
<td>CR4</td>
<td>Diode Schottky VSX1200</td>
</tr>
<tr>
<td>H1</td>
<td>Screw, 4-40 x ¼</td>
</tr>
<tr>
<td>H2</td>
<td>Lock-Washer int #4</td>
</tr>
<tr>
<td>H3</td>
<td>Hex Nut 4-40</td>
</tr>
<tr>
<td>H4</td>
<td>Nut Elast 4-40</td>
</tr>
<tr>
<td>H5</td>
<td>Heat Sink</td>
</tr>
<tr>
<td>For BT1</td>
<td>Battery Holder, 9 Volt</td>
</tr>
<tr>
<td>J11</td>
<td>Header 8 Pin</td>
</tr>
<tr>
<td>J12</td>
<td>Header 16 Pin</td>
</tr>
<tr>
<td>J13 16</td>
<td>Header 3 Pin</td>
</tr>
<tr>
<td>J14</td>
<td>Header 2 Pin</td>
</tr>
<tr>
<td>J15</td>
<td>Header 4 Socket</td>
</tr>
<tr>
<td>J17</td>
<td>Header 3 Socket</td>
</tr>
<tr>
<td>K1 2</td>
<td>Relay 9Vdc DPST</td>
</tr>
<tr>
<td>Q3 4</td>
<td>Triac MAC15A-8</td>
</tr>
<tr>
<td>Q5</td>
<td>IC T2300 Zero Crossing Triac</td>
</tr>
</tbody>
</table>

Parts Legend for Power Supply Board 220/240 V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Battery, 9 Volt Rechargeable</td>
</tr>
<tr>
<td>C3 7 9</td>
<td>Capacitor .33 µF 50V 20% Ceramic</td>
</tr>
<tr>
<td>C4 6 8</td>
<td>Capacitor .1 µF 50V 20% Ceramic</td>
</tr>
<tr>
<td>C5</td>
<td>Capacitor 15 µF 16V 20% Tantalum</td>
</tr>
<tr>
<td>C10</td>
<td>Capacitor .47 µF 50V 20% Ceramic</td>
</tr>
<tr>
<td>C11 12</td>
<td>Capacitor 4700 µF 16V 20% Electrolytic</td>
</tr>
<tr>
<td>C16 17</td>
<td>Capacitor .01 µF 1000V 20% Ceramic</td>
</tr>
<tr>
<td>C19</td>
<td>Capacitor .39 µF</td>
</tr>
<tr>
<td>CR1 2 6</td>
<td>Diode Bridge VM08</td>
</tr>
<tr>
<td>CR3 5 8</td>
<td>Diode IN4001</td>
</tr>
<tr>
<td>CR4</td>
<td>Diode Schottky VSX1200</td>
</tr>
<tr>
<td>H1</td>
<td>Screw, 4-40 x ¼</td>
</tr>
<tr>
<td>H2</td>
<td>Lock-Washer int #4</td>
</tr>
<tr>
<td>H3</td>
<td>Hex Nut 4-40</td>
</tr>
<tr>
<td>H4</td>
<td>Nut Elast 4-40</td>
</tr>
<tr>
<td>H5</td>
<td>Heat Sink</td>
</tr>
<tr>
<td>For BT1</td>
<td>Battery Holder, 9 Volt</td>
</tr>
<tr>
<td>J11</td>
<td>Header 8 Pin</td>
</tr>
<tr>
<td>J12</td>
<td>Header 16 Pin</td>
</tr>
<tr>
<td>J13 16</td>
<td>Header 3 Pin</td>
</tr>
<tr>
<td>J14</td>
<td>Header 2 Pin</td>
</tr>
<tr>
<td>J15</td>
<td>Header 4 Socket</td>
</tr>
<tr>
<td>J17</td>
<td>Header 3 Socket</td>
</tr>
<tr>
<td>K1 2</td>
<td>Relay 9Vdc DPST</td>
</tr>
<tr>
<td>Q3 4</td>
<td>Triac MAC15A-10</td>
</tr>
<tr>
<td>Q5</td>
<td>IC T2300 Zero Crossing Triac</td>
</tr>
</tbody>
</table>

For Q5: Transistor Pad T0 5 Case
- R1: Resistor 100Ω ¼w 5% Carbon Film
- R2: Resistor 100k ¼w 1% Metal Film
- R3: Resistor var 10k 3006p-1-103
- R4: Resistor var 1k 3006p-103
- R5: Resistor 100k ¼w 5% Carbon Film
- R7 8 10: Resistor 510 ¼w 5% Carbon Film
- R9: Resistor 180 ¼w 5% Carbon Composition
- R11: Resistor 470 ¼w 5% Carbon Film
- R17 22 24: Resistor 150 ¼w 5% Carbon Film
- R13: Resistor 47K 2w 5% Carbon Composition
- R18 21: Resistor 22 ¼w 5% Carbon Composition
- R26: Resistor 10 ¼w 5% Carbon Composition
- TP: Header 12 Pin
- U1 2: IC VQ1000 CJ
- U3: IC CNV65 Optoisolator
- U5 6 8: IC 3022 Photo Triac Driver
- VR2 3 4: IC 7805C Voltage Regulator 5V

IC VMOS Power FET 6600-0176-800
- U3: IC CNV65 Optoisolator
- U5 6: IC IL420 Tested
- U8: IC 3022 Photo Triac Driver
- VR2 3 4: IC 7805C Voltage Regulator 5V

- 6600-0195-000 B 10/25/93 7-73
Figure 7-46
Power Supply Board Layout
Model 2001, 3000, 3300, and 3500
Units without HCA serial numbers
7/Illustrated Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVE DEVICE HNDL/PKG STD</td>
<td></td>
</tr>
<tr>
<td>LOT NUMBERING SPECIFICATION</td>
<td></td>
</tr>
<tr>
<td>FUNCTIONAL DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>SCHEMATIC</td>
<td></td>
</tr>
<tr>
<td>PC BOARD, BLANK</td>
<td>1</td>
</tr>
<tr>
<td>4-40 X 1/4 SCREW</td>
<td>2 H1</td>
</tr>
<tr>
<td>4-40 ELASTIC STOP NUT</td>
<td>5 H4</td>
</tr>
<tr>
<td>NO. 4 LOCK WASHER</td>
<td>2 H2</td>
</tr>
<tr>
<td>4-40 HEX NUT</td>
<td>2 H3</td>
</tr>
<tr>
<td>HEADER, 3 SOCKET 350825-1</td>
<td>1 J17</td>
</tr>
<tr>
<td>HEADER, 3 PIN 350789-1</td>
<td>1 J13</td>
</tr>
<tr>
<td>HEADER, 2 SOCKET 350824-1</td>
<td>1 J15</td>
</tr>
<tr>
<td>HEADER, 2 PIN 350786-1</td>
<td>1 J14</td>
</tr>
<tr>
<td>HEADER, 16 PIN 1100-9-116-01</td>
<td>1 J12</td>
</tr>
<tr>
<td>HEADER, 12 PIN 1100-9-112-01</td>
<td>1 TP</td>
</tr>
<tr>
<td>HEADER, 6 PIN 1100-9-106-01</td>
<td>1 J11</td>
</tr>
<tr>
<td>SOCKET, 16 PIN MODIFIED FOR U1</td>
<td></td>
</tr>
<tr>
<td>HEAT SINK, 6071B</td>
<td>1 H6</td>
</tr>
<tr>
<td>HEAT SINK, 6070B SF-1 MT</td>
<td>5 H5</td>
</tr>
<tr>
<td>BATTERY HOLDER</td>
<td>1 FOR BT1</td>
</tr>
<tr>
<td>IC 3040</td>
<td>1 U7</td>
</tr>
<tr>
<td>IC 3022</td>
<td>2 U4, U8</td>
</tr>
<tr>
<td>IC CN165</td>
<td>1 U3</td>
</tr>
<tr>
<td>IC ULN2074B</td>
<td>1 U1</td>
</tr>
<tr>
<td>RELAY STIE-DC9Y</td>
<td>1 K1</td>
</tr>
<tr>
<td>TRIAC SPACER</td>
<td>1 FOR O5</td>
</tr>
<tr>
<td>TRIAC MAC 15A-8</td>
<td>2 D1, D2</td>
</tr>
<tr>
<td>TRIAC T2300</td>
<td>1 O5</td>
</tr>
<tr>
<td>VOLTAGE REG 7805C</td>
<td>3 VR2, VR3, VR4</td>
</tr>
<tr>
<td>BRIDGE RECTIFIER VM08</td>
<td>3 CR1, CR2, CR6</td>
</tr>
<tr>
<td>DIODE VSK120</td>
<td>1 CR4</td>
</tr>
<tr>
<td>DIODE</td>
<td>3 CR3, CR5, CR8</td>
</tr>
<tr>
<td>CAPACITOR .47 MFD</td>
<td>1 C10</td>
</tr>
<tr>
<td>CAPACITOR 4700 MFD 35V</td>
<td>2 C11, C12</td>
</tr>
<tr>
<td>CAPACITOR 15 MFD 35V 20</td>
<td>1 C5</td>
</tr>
<tr>
<td>CAPACITOR .33 MFD</td>
<td>3 C3, C7, C9</td>
</tr>
<tr>
<td>CAPACITOR 0.1 MFD</td>
<td>3 C4, C6, C8</td>
</tr>
<tr>
<td>CAPACITOR .01 MFD 250 VRMS</td>
<td>1 C15</td>
</tr>
<tr>
<td>RESISTOR, VAR 10K</td>
<td>1 R3</td>
</tr>
<tr>
<td>RESISTOR, VAR 1K</td>
<td>1 R4</td>
</tr>
<tr>
<td>RESISTOR 47K 5</td>
<td>1 R13</td>
</tr>
<tr>
<td>RESISTOR 100K 5</td>
<td>1 R5</td>
</tr>
<tr>
<td>RESISTOR 510 5 1/4W</td>
<td>2 R6, R10</td>
</tr>
<tr>
<td>RESISTOR 470 5 1/4W</td>
<td>1 R11</td>
</tr>
<tr>
<td>RESISTOR 180 5 1/4W</td>
<td>1 R9</td>
</tr>
<tr>
<td>RESISTOR 150 5 1/4W</td>
<td>3 R12, R16, R24</td>
</tr>
<tr>
<td>RESISTOR 100 5 1/4W</td>
<td>1 R1</td>
</tr>
<tr>
<td>RESISTOR 22 5 1/4W</td>
<td>1 R15</td>
</tr>
<tr>
<td>RESISTOR 100K 1 1/4W</td>
<td>1 R2</td>
</tr>
</tbody>
</table>

DESCRIPTION **QTY** **SYMBOL**

6600-0176-800

6600-0195-000 C 05/01/94 7-75
Figure 7-47
Display Board Layout
<table>
<thead>
<tr>
<th>Description</th>
<th>QTY</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER, 12 PIN, 1100-9-112-01</td>
<td>1</td>
<td>J22</td>
</tr>
<tr>
<td>SOCKET, 12 POS, SSA-112-S-T</td>
<td>2</td>
<td>FOR DS13, DS14</td>
</tr>
<tr>
<td>SOCKET, 20 POS, SSW-120-01-T-S</td>
<td>2</td>
<td>FOR DS7, DS8</td>
</tr>
<tr>
<td>SOCKET, 15 POS, SSA-115-S-T</td>
<td>3</td>
<td>FOR DS1, DS2, DS3</td>
</tr>
<tr>
<td>SOCKET, 12 POS, SSW-112-01-T-S</td>
<td>1</td>
<td>FOR J21</td>
</tr>
<tr>
<td>SOCKET, 4 POS, SSW-104-01-T-S</td>
<td>3</td>
<td>FOR DS15, DS16, DS17</td>
</tr>
<tr>
<td>SOCKET, 14 PIN, 14-8350-10WR</td>
<td>7</td>
<td>FOR DS4, DS5, DS6, DS9, DS10, DS11, DS12</td>
</tr>
<tr>
<td>SOCKET, 40 PIN, 840-AG11D</td>
<td>1</td>
<td>FOR U2</td>
</tr>
<tr>
<td>SOCKET, 24 PIN, 824-AG11D</td>
<td>1</td>
<td>FOR U1</td>
</tr>
<tr>
<td>LED, BAR, 8 ELEM, SEP, RED</td>
<td>1</td>
<td>DS13</td>
</tr>
<tr>
<td>LED, BAR, 4 ELEM, SEP, RED</td>
<td>1</td>
<td>DS14</td>
</tr>
<tr>
<td>LED, BAR, 2 ELEM, SOLID, YELLOW</td>
<td>3</td>
<td>DS15, DS16, DS17</td>
</tr>
<tr>
<td>LED, BAR, 10 ELEM, SEP, YELLOW</td>
<td>2</td>
<td>DS7, DS8</td>
</tr>
<tr>
<td>LED, 7 SEGMENT, .30", RED</td>
<td>7</td>
<td>DS4, DS5, DS6, DS9, DS10, DS11, DS12</td>
</tr>
<tr>
<td>LED, 7 SEGMENT, .56", RED</td>
<td>3</td>
<td>DS1, DS2, DS3</td>
</tr>
<tr>
<td>IC MM5451 OR MM5450</td>
<td>1</td>
<td>U2</td>
</tr>
<tr>
<td>IC 8243</td>
<td>1</td>
<td>U1</td>
</tr>
<tr>
<td>TRANSISTOR MPSA63</td>
<td>4</td>
<td>Q1, Q2, Q3, Q4</td>
</tr>
<tr>
<td>DIODE</td>
<td>1</td>
<td>CRI</td>
</tr>
<tr>
<td>CAPACITOR 15 MFD</td>
<td>2</td>
<td>C3, C4</td>
</tr>
<tr>
<td>CAPACITOR 0.1 MFD 50V 20%</td>
<td>5</td>
<td>C1, C2, C5, C6, C7</td>
</tr>
<tr>
<td>RESISTOR PC 10K</td>
<td>1</td>
<td>R1P</td>
</tr>
<tr>
<td>RESISTOR 221 1/4W</td>
<td>1</td>
<td>R10</td>
</tr>
<tr>
<td>RESISTOR VARIABLE, 5K</td>
<td>1</td>
<td>R9</td>
</tr>
<tr>
<td>RESISTOR 180 5% 1/4W</td>
<td>4</td>
<td>R2, R5, R6, R7</td>
</tr>
<tr>
<td>RESISTOR 4.7K 5%</td>
<td>4</td>
<td>R1, R3, R4, R8</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QTY</td>
<td></td>
<td>SYMBOL</td>
</tr>
</tbody>
</table>
Figure 7-48
ThermaLink Board Layout
Units with HCA serial numbers
Illustrated Parts

Board Components

ThermaLink Board

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTOR 220 5%</td>
<td>1</td>
<td>R1</td>
</tr>
<tr>
<td>RESISTOR 3 K 5%</td>
<td>1</td>
<td>R2</td>
</tr>
<tr>
<td>RESISTOR 3.9 K 5%</td>
<td>2</td>
<td>R3, R4</td>
</tr>
<tr>
<td>CAPACITOR 1 UF</td>
<td>3</td>
<td>C1, C2, C5</td>
</tr>
<tr>
<td>CAPACITOR 4.7 UF</td>
<td>1</td>
<td>C3</td>
</tr>
<tr>
<td>CAPACITOR 0.1 UF</td>
<td>1</td>
<td>C4</td>
</tr>
<tr>
<td>TRANSISITOR MPSA14</td>
<td>1</td>
<td>Q1</td>
</tr>
<tr>
<td>BI-DIR ZENER SA24C</td>
<td>2</td>
<td>CR1, CR2</td>
</tr>
<tr>
<td>DIODE 1N4001</td>
<td>2</td>
<td>CR3, CR4</td>
</tr>
<tr>
<td>RELAY AM ZETTLER AZ696-1C-5DE</td>
<td>1</td>
<td>K1</td>
</tr>
<tr>
<td>TRANSFORMER SCHOTT 67122750</td>
<td>1</td>
<td>TR1</td>
</tr>
<tr>
<td>IC MAX250CPD</td>
<td>1</td>
<td>U1</td>
</tr>
<tr>
<td>IC MAX251CPD</td>
<td>1</td>
<td>U2</td>
</tr>
<tr>
<td>IC 6N136</td>
<td>2</td>
<td>U3, U4</td>
</tr>
<tr>
<td>HEADER 6 PIN</td>
<td>2</td>
<td>J30, J31</td>
</tr>
<tr>
<td>SLIDE SWITCH MSS-1200</td>
<td>1</td>
<td>SW1</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>QTY</td>
<td>SYMBOL</td>
</tr>
</tbody>
</table>

6600-0195-000 C 05/01/94 7-79
Description Stock Number

1 Hinge bracket 6600-0562-500
2 Hinge pin 6600-0608-500
3 Endplate 6600-0484-400
4 Screw, self tapping flat head, 1/4 x 1 6600-0414-400
5 Conical washer* 6600-0440-400
6 Screw, self tapping hex head, .375-16 x 2.5 6600-0173-400
7 Split ring lock washer, .375 6600-0413-400
8 Flatwasher, .81 OD .406 ID 6600-0195-000 C 05/01/94
9 Toggler® Anchor bolt 6600-0195-000 C 05/01/94

* Model 3050 only.

Figure 7-49
Wall mounted units
EMI Noise Suppression

Electrostatic discharge (ESD) shielding and grounding improvements have been made to all new IWS models. Improvements have also been added to reduce IWS susceptibility to power line conducted and radiated electromagnetic interference (EMI).

Older units will require ESD shielding when the controller board is replaced. Each controller service kit includes EMI shielding to minimize susceptibility of the replacement controller board to Electrostatic discharge, power line conducted and radiated electromagnetic interference.

⚠️ WARNING: Do not install the control board without ESD shielding in place. Failure to do so may result in hazardous ESD induced failures.

To confirm that your IWS unit has shielding already in place, remove the controller cover. The large silver control board shield should be the first thing you see. Refer to Figure 7-1.

Order kits:

- 6600-0360-800 EMI Noise Suppression Kit for English IWS Models
- 6660-0360-801 EMI Noise Suppression Kit for French IWS Models
- 6600-0360-802 EMI Noise Suppression Kit for Spanish IWS Models
- 6600-0360-803 EMI Noise Suppression Kit for German IWS Models
- 6600-0360-804 EMI Noise Suppression Kit for Spanish IWS 2001 Models
- 6600-0360-805 EMI Noise Suppression Kit for French IWS 2001 Models
- 6600-0360-806 EMI Noise Suppression Kit for English IWS 2001 Models

Kits include:

- Control board ... 6600-0223-700
- Line filter ... 6600-0170-600
- Switch panel (English) 6600-5129-300
- Ribbon cable ... 6600-0211-700
- Display board EMI shield 6600-0508-500
- Control board EMI shield 6600-0509-500
- Shielded cable assembly 6600-0261-600

Miscellaneous hardware including stand offs, spring clips, screws and washers.
Figure 8-1
Control Board Schematic-units with
8/Schematics

Figure 8-2a
Control Board Schematic-units prior to software revision 4.00
Figure 8-2b
Control Board Schematic-units prior
Figure 8-3
Power Supply Board controllers with HCA serial numbers
Figure 8-4
Power Supply Board Model 5000 pri
Figure 8-5
Power Supply Board Schematic - Model 2001 & Series 3000 prior to HCA serial number
Figure 8-6
Schematic Display Board
Figure 8-7
ThermaLink Schematic
Figure 8-8
Wiring Diagram - Units with HCA s
Figure 8-9
Wiring Diagram - Model 5000 without HCA serial number
Figure 8-10
Wiring Diagram - Model 2001 and S

itch not Present on Model 2001

8/Schematics
A. Test Equipment and Special Tools

The following tools (or their functional equivalents) are required to complete the recommended service procedures. If you do not have these items, they can be ordered from Ohmeda.

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoke check valve socket*</td>
<td>0175-0420-000</td>
</tr>
<tr>
<td>Air/O₂ 500 cc/min fitting & gauge*</td>
<td>0175-0543-000</td>
</tr>
<tr>
<td>Digital Multimeter, 3 1/2 digit</td>
<td>7000-0000-023</td>
</tr>
<tr>
<td>Leakage Current Tester with AAMI Test Load</td>
<td>0175-2305-000</td>
</tr>
<tr>
<td>Static Control Work Station, 3M Model 8005 or Equivalent</td>
<td>0175-2311-000</td>
</tr>
<tr>
<td>Touch-up paint (white) Munsell No. 10Y9-1= — purchase locally.</td>
<td></td>
</tr>
<tr>
<td>Optional items include:</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope, 15 MHz Dual Trace Scope</td>
<td>0175-2302-000</td>
</tr>
<tr>
<td>Ohmeda Temperature Simulator</td>
<td>0217-2788-800</td>
</tr>
</tbody>
</table>

*For units equipped with gas package only

B. Temperature Conversion Chart

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>68.0</td>
</tr>
<tr>
<td>21.0</td>
<td>69.8</td>
</tr>
<tr>
<td>22.0</td>
<td>71.6</td>
</tr>
<tr>
<td>23.0</td>
<td>73.4</td>
</tr>
<tr>
<td>24.0</td>
<td>75.2</td>
</tr>
<tr>
<td>25.0</td>
<td>77.0</td>
</tr>
<tr>
<td>26.0</td>
<td>78.8</td>
</tr>
<tr>
<td>27.0</td>
<td>80.6</td>
</tr>
<tr>
<td>28.0</td>
<td>82.4</td>
</tr>
<tr>
<td>29.0</td>
<td>84.2</td>
</tr>
<tr>
<td>30.0</td>
<td>86.0</td>
</tr>
<tr>
<td>31.0</td>
<td>87.8</td>
</tr>
<tr>
<td>32.0</td>
<td>89.6</td>
</tr>
<tr>
<td>33.0</td>
<td>91.4</td>
</tr>
<tr>
<td>34.0</td>
<td>93.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.0</td>
<td>93.2</td>
</tr>
<tr>
<td>35.0</td>
<td>94.9</td>
</tr>
<tr>
<td>36.0</td>
<td>96.8</td>
</tr>
<tr>
<td>37.0</td>
<td>99.6</td>
</tr>
<tr>
<td>38.0</td>
<td>101.4</td>
</tr>
<tr>
<td>39.0</td>
<td>103.2</td>
</tr>
<tr>
<td>40.0</td>
<td>105.0</td>
</tr>
<tr>
<td>41.0</td>
<td>106.8</td>
</tr>
<tr>
<td>42.0</td>
<td>108.6</td>
</tr>
<tr>
<td>43.0</td>
<td>110.4</td>
</tr>
<tr>
<td>44.0</td>
<td>112.2</td>
</tr>
<tr>
<td>45.0</td>
<td>114.0</td>
</tr>
</tbody>
</table>
Appendix

C. Patient Probe Characteristics

<table>
<thead>
<tr>
<th>Temp °C</th>
<th>Res. Ohms</th>
<th>Temp °C</th>
<th>Res. Ohms</th>
<th>Temp °C</th>
<th>Res. Ohms</th>
<th>Temp °C</th>
<th>Res. Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.9</td>
<td>8071.2</td>
<td>34.0</td>
<td>6778.2</td>
<td>38.1</td>
<td>5716.0</td>
<td>42.2</td>
<td>4839.5</td>
</tr>
<tr>
<td>30.0</td>
<td>8036.5</td>
<td>34.1</td>
<td>6749.8</td>
<td>38.2</td>
<td>5692.5</td>
<td>42.3</td>
<td>4820.1</td>
</tr>
<tr>
<td>30.1</td>
<td>8002.0</td>
<td>34.2</td>
<td>6721.5</td>
<td>38.3</td>
<td>5669.2</td>
<td>42.4</td>
<td>4800.8</td>
</tr>
<tr>
<td>30.2</td>
<td>7967.6</td>
<td>34.3</td>
<td>6693.3</td>
<td>38.4</td>
<td>5646.0</td>
<td>42.5</td>
<td>4781.6</td>
</tr>
<tr>
<td>30.3</td>
<td>7933.4</td>
<td>34.4</td>
<td>6665.3</td>
<td>38.5</td>
<td>5622.9</td>
<td>42.6</td>
<td>4762.5</td>
</tr>
<tr>
<td>30.4</td>
<td>7899.4</td>
<td>34.5</td>
<td>6637.3</td>
<td>38.6</td>
<td>5599.9</td>
<td>42.7</td>
<td>4743.5</td>
</tr>
<tr>
<td>30.5</td>
<td>7865.6</td>
<td>34.6</td>
<td>6609.6</td>
<td>38.7</td>
<td>5577.0</td>
<td>42.8</td>
<td>4724.5</td>
</tr>
<tr>
<td>30.6</td>
<td>7831.9</td>
<td>34.7</td>
<td>6581.9</td>
<td>38.8</td>
<td>5554.3</td>
<td>42.9</td>
<td>4705.7</td>
</tr>
<tr>
<td>30.7</td>
<td>7798.3</td>
<td>34.8</td>
<td>6554.4</td>
<td>38.9</td>
<td>5531.6</td>
<td>43.0</td>
<td>4686.9</td>
</tr>
<tr>
<td>30.8</td>
<td>7765.0</td>
<td>34.9</td>
<td>6527.0</td>
<td>39.0</td>
<td>5509.0</td>
<td>43.1</td>
<td>4668.3</td>
</tr>
<tr>
<td>30.9</td>
<td>7731.7</td>
<td>35.0</td>
<td>6499.8</td>
<td>39.1</td>
<td>5486.6</td>
<td>43.2</td>
<td>4649.7</td>
</tr>
<tr>
<td>31.0</td>
<td>7698.7</td>
<td>35.1</td>
<td>6472.6</td>
<td>39.2</td>
<td>5464.2</td>
<td>43.3</td>
<td>4631.2</td>
</tr>
<tr>
<td>31.1</td>
<td>7665.8</td>
<td>35.2</td>
<td>6445.7</td>
<td>39.3</td>
<td>5441.9</td>
<td>43.4</td>
<td>4612.7</td>
</tr>
<tr>
<td>31.2</td>
<td>7633.1</td>
<td>35.3</td>
<td>6418.8</td>
<td>39.4</td>
<td>5419.8</td>
<td>43.5</td>
<td>4594.4</td>
</tr>
<tr>
<td>31.3</td>
<td>7600.5</td>
<td>35.4</td>
<td>6392.1</td>
<td>39.5</td>
<td>5397.7</td>
<td>43.6</td>
<td>4576.1</td>
</tr>
<tr>
<td>31.4</td>
<td>7568.1</td>
<td>35.5</td>
<td>6365.4</td>
<td>39.6</td>
<td>5375.8</td>
<td>43.7</td>
<td>4558.0</td>
</tr>
<tr>
<td>31.5</td>
<td>7535.9</td>
<td>35.6</td>
<td>6339.0</td>
<td>39.7</td>
<td>5354.0</td>
<td>43.8</td>
<td>4539.9</td>
</tr>
<tr>
<td>31.6</td>
<td>7503.8</td>
<td>35.7</td>
<td>6312.6</td>
<td>39.8</td>
<td>5332.2</td>
<td>43.9</td>
<td>4521.9</td>
</tr>
<tr>
<td>31.7</td>
<td>7471.8</td>
<td>35.8</td>
<td>6286.4</td>
<td>39.9</td>
<td>5310.6</td>
<td>44.0</td>
<td>4503.9</td>
</tr>
<tr>
<td>31.8</td>
<td>7440.0</td>
<td>35.9</td>
<td>6260.3</td>
<td>40.0</td>
<td>5289.0</td>
<td>44.1</td>
<td>4486.1</td>
</tr>
<tr>
<td>31.9</td>
<td>7408.4</td>
<td>36.0</td>
<td>6234.3</td>
<td>40.1</td>
<td>5267.6</td>
<td>44.2</td>
<td>4468.3</td>
</tr>
<tr>
<td>32.0</td>
<td>7376.9</td>
<td>36.1</td>
<td>6208.4</td>
<td>40.2</td>
<td>5246.2</td>
<td>44.3</td>
<td>4450.6</td>
</tr>
<tr>
<td>32.1</td>
<td>7345.6</td>
<td>36.2</td>
<td>6182.7</td>
<td>40.3</td>
<td>5225.0</td>
<td>44.4</td>
<td>4433.0</td>
</tr>
<tr>
<td>32.2</td>
<td>7314.4</td>
<td>36.3</td>
<td>6157.0</td>
<td>40.4</td>
<td>5203.9</td>
<td>44.5</td>
<td>4415.5</td>
</tr>
<tr>
<td>32.3</td>
<td>7283.4</td>
<td>36.4</td>
<td>6131.5</td>
<td>40.5</td>
<td>5182.8</td>
<td>44.6</td>
<td>4398.1</td>
</tr>
<tr>
<td>32.4</td>
<td>7252.5</td>
<td>36.5</td>
<td>6106.2</td>
<td>40.6</td>
<td>5161.9</td>
<td>44.7</td>
<td>4380.7</td>
</tr>
<tr>
<td>32.5</td>
<td>7221.8</td>
<td>36.6</td>
<td>6080.9</td>
<td>40.7</td>
<td>5141.0</td>
<td>44.8</td>
<td>4363.4</td>
</tr>
<tr>
<td>32.6</td>
<td>7191.2</td>
<td>36.7</td>
<td>6055.8</td>
<td>40.8</td>
<td>5120.2</td>
<td>44.9</td>
<td>4346.2</td>
</tr>
<tr>
<td>32.7</td>
<td>7160.8</td>
<td>36.8</td>
<td>6030.7</td>
<td>40.9</td>
<td>5099.6</td>
<td>45.0</td>
<td>4329.1</td>
</tr>
<tr>
<td>32.8</td>
<td>7130.5</td>
<td>36.9</td>
<td>6005.8</td>
<td>41.0</td>
<td>5079.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.9</td>
<td>7100.4</td>
<td>37.0</td>
<td>5981.1</td>
<td>41.1</td>
<td>5058.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>7070.4</td>
<td>37.1</td>
<td>5956.4</td>
<td>41.2</td>
<td>5038.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.1</td>
<td>7040.5</td>
<td>37.2</td>
<td>5931.8</td>
<td>41.3</td>
<td>5017.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.2</td>
<td>7010.8</td>
<td>37.3</td>
<td>5907.4</td>
<td>41.4</td>
<td>4997.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.3</td>
<td>6981.3</td>
<td>37.4</td>
<td>5883.1</td>
<td>41.5</td>
<td>4977.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.4</td>
<td>6951.8</td>
<td>37.5</td>
<td>5858.9</td>
<td>41.6</td>
<td>4957.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>6922.6</td>
<td>37.6</td>
<td>5834.8</td>
<td>41.7</td>
<td>4937.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.6</td>
<td>6893.4</td>
<td>37.7</td>
<td>5810.8</td>
<td>41.8</td>
<td>4917.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.7</td>
<td>6864.4</td>
<td>37.8</td>
<td>5786.9</td>
<td>41.9</td>
<td>4898.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.8</td>
<td>6835.5</td>
<td>37.9</td>
<td>5763.1</td>
<td>42.0</td>
<td>4878.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.9</td>
<td>6806.8</td>
<td>38.0</td>
<td>5739.5</td>
<td>42.1</td>
<td>4858.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix

D. Servo Mode Algorithm

The servo mode uses the difference between the servo mode control temperature and the patient skin temperature to determine the percent of heater power required:

<table>
<thead>
<tr>
<th>Control Temp - Patient Temp</th>
<th>Percent Heater Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 0.45°C</td>
<td>100</td>
</tr>
<tr>
<td>0.44 to 0.30°C</td>
<td>95</td>
</tr>
<tr>
<td>0.29 to 0.25°C</td>
<td>90</td>
</tr>
<tr>
<td>0.24 to 0.20°C</td>
<td>85</td>
</tr>
<tr>
<td>0.19 to 0.15°C</td>
<td>75</td>
</tr>
<tr>
<td>0.14 to 0.10°C</td>
<td>65</td>
</tr>
<tr>
<td>0.09 to 0.05°C</td>
<td>45</td>
</tr>
<tr>
<td>0.04 to -0.04°C</td>
<td>25</td>
</tr>
<tr>
<td>-0.05 to -0.09°C</td>
<td>20</td>
</tr>
<tr>
<td>-0.10 to -0.14°C</td>
<td>15</td>
</tr>
<tr>
<td>-0.15 to -0.19°C</td>
<td>10</td>
</tr>
<tr>
<td>-0.20 to -0.24°C</td>
<td>5</td>
</tr>
<tr>
<td>≤-0.25°C</td>
<td>0</td>
</tr>
</tbody>
</table>

A.2 Infant Warmer System Specifications

A. Electrical specifications

Power requirements

Units with HCA serial numbers
120 V, 50/60 Hz Model: 115 V~ ± 10%, 6.6 Amps.- maximum
220 V, 50/60 Hz Model: 220V~ ± 10%, 3.7 Amps.- maximum
230 V, 50/60 Hz Model: 230V~ ± 10%, - 6%, 3.4 Amps.- maximum
240 V, 50/60 Hz Model: 240 V~ ± 10%, 3.3 Amps.- maximum
100 V, 50/60 Hz Model: 95 V~ ± 10%, 8.2 Amps.- maximum

Units prior to HCA serial numbers
120 V, 50/60 Hz Model: 115 V~ ± 10%, 5.7 Amps.- maximum
220 V, 50/60 Hz Model: 220V~ ± 10%, 3.0 Amps.- maximum
240 V, 50/60 Hz Model: 240 V~ ± 10%, 2.7 Amps.- maximum
100 V, 50/60 Hz Model: 95 V~ ± 10%, 6.4 Amps.- maximum

All models designed to conform to IEC 601-1, UL544, CSA 22.5, SEMKO and TUV requirements.

Line voltage compensation

Input line voltage is monitored and the heater drive is adjusted to compensate for variations in the line voltage. This ensures a stable heater output despite input line voltage fluctuations.

Circuit breaker
Rated Current: 7.5 Amps.
Trip Point: 9.45 Amp Minimum.
Type: Manual Resetting.
Model: Airpax Snapak.
Appendix

Isolation voltage

2500 Vrms 60 Hz from the patient probe to the ac phase and neutral lines for one minute.

⚠️ WARNING: The patient probe is not isolated from earth ground. Any additional equipment used with the Ohmeda Infant Warmer System must comply with UL 544, CSA 22.2, IEC 601, and VDE 750.

Leakage current

With the ground wire open or connected and measured at an exposed metal surface, less than 100 microamperes on 100 V and 120 V units (200 microamperes on 220 V, 230 V and 240 V units).

Ground resistance

0.1 ohms or less

B. IEC 601-1 Specifications

Type of protection against electric shock: Class 1
Degree of protection against electric shock: Type B
Mode of Operation: Continuous
Protection against hazards of explosion: Not Protected
Protection against ingress of liquids: Not Protected

C. Performance Specifications

Controller electronics

Microprocessor-based control system. Self-test functions are performed at power up and during normal operation.

Power control method

Proportional heat control with zero-voltage switching to minimize radiated and conducted EMI.

Observation light

Nominal illuminance output: 100 foot candles at center of mattress.
Estimated lamp life: 3,000 hours.

Temperature sensing system

Range: 30 - 42°C
Accuracy: ±0.3°C
Resolution: ±0.1°C
Probe interchangeability: ±0.1°C
Probe Model Number: LA003 or LA005
Appendix

Elapsed timer

60 minute elapsed timer with hold mode and Apgar tones.

Manual mode heat selector range

All models: 0 to 540 watts in 20 increments of 5% each. Models without HCA serial numbers: 0 to 440 in 20 increments of 5% each.

Servo mode control range

35.0 to 37.5°C in increments of 0.1°C (all models except the 2001 international)

Alarms

Overhead Alarm Light
Large alarm light located on the front of the heater assembly for easy visual identification.

Probe Failure Alarm
The alternating two tone alarm is active only in the servo mode. Activates when the skin temperature probe:

1. Fails electrically due to an open or short circuit, or
2. Is disconnected from the Warmer.
3. Probe senses temperature outside the 01 - 50° C range.

When this alarm condition exists:

1. The heater is turned off and
2. The patient temperature display flashes “HH.H” or “LL.L”.

Note: Temperature is only displayed in the 22.0 - 41.9° C range inclusive. In both the servo and manual modes, temperatures below 22.0° C display “LLL”, and temperature above 41.9° C display “HH.H”. Temperatures above 50° C cause a blank display in the manual mode. Temperatures below 01° C display “HH.H” in the servo mode.

Patient Temperature Alarm
This single tone alarm activates in the servo mode when the difference between the patient temperature and the control temperature is greater than 1°C (can be adjusted to 0.5°C by qualified service person). Alarm cancels when the patient temperature returns to within 0.8°C of the control temperature.
Appendix

System Failure Alarm
This alternating, two tone alarm cannot be silenced. Alarm activates and turns the heater off if any of the following occurs:

1. The analog-to-digital converter calibration drifts by more than 0.3°C.
2. The heater solid state relay fails.
3. The microprocessor fails -
4. The self check functions fail on power-up.

Note: Excessive EMI in the hospital environment can trigger the system failure alarm. Note the error code, if any, and switch off the unit. Wait ten seconds and switch the power back on. If the system fail alarm recurs, remove the warmer from use.

Check Patient Alarm
Manual Mode: Single tone alarm activates if the heater has been energized at greater than 25% heat for 12 continuous minutes.
Servo mode: Alarm activates when the heater has been at full power for 12 continuous minutes. Alternating two tone alarm activates after 3 minutes if the Check Patient Alarm is not silenced.

Power Failure Alarm
Single tone alarm activates if the line power is interrupted. No LEDs illuminate. A rechargeable maintenance-free nickel cadmium battery powers the audio alarm and the microprocessor for up to 10 minutes with a fully charged battery. If power is restored within 10 minutes, the mode of operation and the set point are recalled.

Heat Off Alarm
The Light-Emitting-Diode (LED) indicator activates when the heater is in the side position. The audio alarm activates after the heater has been in the side position for 5 minutes.

D. Environmental

Temperature range

Operating Temperature range: 20 to 30°C (68 to 86°F)
Transport and Storage Temperature range: -25 to 60°C (-13 to 140°F)
Operating and Storage Pressure range: 500 to 1060 hPa
Operating and Storage Relative Humidity range: 0 to 95%.

E. Electromagnetic Compatibility (EMC) Specifications

All models with serial numbers beginning with HCA are designed to conform to the following standards:
Appendix

ANSI C63.16-1991 Electrostatic Discharge 25kV
IEC 62A - Draft standard for Medical Electrical Equipment
IEC 801-2 Electrostatic Discharge Level 4 EMC
IEC 801-3 Radiated Susceptibility (3V/m) Level 2
IEC 801-4 Conducted Fast Transient Level 3
IEC 801-5 Conducted Surge Immunity Level 3
IEC 801-6 Conducted Susceptibility Level 3
CISPR 11 B Radiated or Conducted Emissions

F. Mechanical Specifications

Overall dimensions without accessories

<table>
<thead>
<tr>
<th>Model number</th>
<th>Height in./cm</th>
<th>Depth in./cm</th>
<th>Width in./cm</th>
<th>Max. Wt** lbs/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>73/185</td>
<td>41/104</td>
<td>26/66</td>
<td>210/96</td>
</tr>
<tr>
<td>3000</td>
<td>73/185</td>
<td>45/114</td>
<td>26/66</td>
<td>165/70</td>
</tr>
<tr>
<td>3050</td>
<td>11/28*</td>
<td>33/84</td>
<td>18/46</td>
<td>40/18</td>
</tr>
<tr>
<td>3100</td>
<td>60/152*</td>
<td>33/84</td>
<td>21.5/55</td>
<td>75/34</td>
</tr>
<tr>
<td>3150</td>
<td>60/152*</td>
<td>36/91</td>
<td>21.5/55</td>
<td>110/50</td>
</tr>
<tr>
<td>3300</td>
<td>73/185</td>
<td>41/104</td>
<td>26/66</td>
<td>210/96</td>
</tr>
<tr>
<td>3500†</td>
<td>73/185</td>
<td>40.5/103</td>
<td>24.5/62</td>
<td>228/102</td>
</tr>
<tr>
<td>4000</td>
<td>73/185</td>
<td>52/132</td>
<td>30.5/77</td>
<td>175/80</td>
</tr>
<tr>
<td>4300</td>
<td>73/185</td>
<td>45/114</td>
<td>30.5/77</td>
<td>222/101</td>
</tr>
<tr>
<td>4400</td>
<td>72-80/183-203</td>
<td>45/114</td>
<td>30.5/77</td>
<td>200/91</td>
</tr>
<tr>
<td>5000</td>
<td>72-80/183-203</td>
<td>45/114</td>
<td>32/81</td>
<td>210/96</td>
</tr>
</tbody>
</table>

* Height of equipment itself, height from floor will vary on application.
† Includes bassinet.
** Units without drawers: for units with stationary drawers add 56 lbs (25 kg), for units with rotating drawers add 70 lbs (32 kg).

Mattress dimensions

<table>
<thead>
<tr>
<th>Model number</th>
<th>Width in./cm</th>
<th>Length in./cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>3000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3050</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3150</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>3300</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>3500</td>
<td>18.2/46</td>
<td>25.2/64</td>
</tr>
<tr>
<td>4000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4300</td>
<td>23.2/59</td>
<td>29.2/74</td>
</tr>
<tr>
<td>4400</td>
<td>23.2/59</td>
<td>29.2/74</td>
</tr>
<tr>
<td>5000</td>
<td>23.2/59</td>
<td>29.2/74</td>
</tr>
</tbody>
</table>
Appendix

Casters

Model number
2001 5" (13cm) dia., 2 locking, 2 non locking
3000 5" (13cm) dia., 2 locking, 2 non locking
3050 —
3100 —
3150 —
3300 5" (13cm) dia., 2 locking, 2 non locking
3500 Warmer- 2" dia., 2 (5cm)locking, 4 non locking
 Bassinet -5" (13cm) dia., 2 locking, 2 non locking
4000 5" (13cm) dia., 2 locking, 2 non locking
4300 5" (13cm) dia., 2 locking, 2 non locking
4400 5" (13cm) dia., 2 locking, 2 non locking
5000 5" (13cm) dia., 2 locking, 2 non locking

Drawer†

Model number
2001 3 drawers- 15" x 15.5" x 4" (39 x 39 x 10cm)
3000 —
3050 —
3100 —
3150 3 drawers- 15" x 15.5" x 4" (39 x 39 x 10cm)
3300 3 drawers- 15" x 15.5" x 4" (39 x 39 x 10cm)
3500 1 drawer- 12" x 15" x 3" (39 x 39 x 8cm), 2 drawers- 12" x 15" x 6"
 (39 x 39 x 15cm)
4000 —
4300 3 drawers- 15" x 15.5" x 4" (39 x 39 x 10cm)
4400 3 drawers- 15" x 15.5" x 4" (39 x 39 x 10cm)
5000 3 drawers- 15" x 15.5" x 4" (39 x 39 x 10cm)
†Dimensions for both the stationary and rotating drawer packages are the same.

Bed tilt positions

3500: ± 8° in increments of 4°
All other models: ± 10° continuously adjustable

Bed duty cycle (Elevating models only)

20 seconds on
15 minutes off

3500 Bassinet

Material: Select oak and oak veneer. Optional custom stain colors are available.
Storage: Three Drawer storage opening from either side or the front of the unit, depending on the model ordered.
Accessories

Air/Oxygen Yoke and Regulator
Pin indexed oxygen yokes accommodate two E size oxygen cylinders. Additional yoke accommodates one E-size cylinder of compressed air. Air and oxygen pipeline fittings. Regulators: 52 ± 2 psig (358 ± 14 kPa) (4 bar ± 138 millibar in the U.K.). Cylinder pressure gauges: 0 to 3000 psig (0 to 20700 kPa)

Oxygen Yoke and Regulator
Pin indexed yokes accommodate two E size oxygen cylinders. Oxygen pipeline fittings. Regulator: 52 ± 2 psig (358 ± 14 kPa) (4 bar ± 138 millibar in the U.K.). Cylinder pressure gauge: 0 to 3000 psig (0 to 20700 kPa)

Rail Mounted Accessories

⚠️WARNING: Overloading the shelves can affect the stability of the unit. Limit the load to 20 lbs. (9 kg) per instrument shelf, mounted to a single upright, and 50 lbs. (23 kg) per monitor shelf, mounted between the uprights.

⚠️WARNING: Limit the load of accessories to 50 pounds (23 kg) per side on the Warmer to ensure stability. Accessories should not be mounted more than 56 inches (142 cm) above the floor. For models 3000 and 3500, limit the load of accessories to 20 pounds (9 kg) per side mounted no more than 44 inches (112 cm) above the floor.

⚠️WARNING: Due to the increased height of units with the ECMO option installed, a tipping hazard may exist. Limit the total accessory load to 50 lbs. (23 kg), no more than 25 lbs. (11 kg) per side.

System 2001/3000/3300/4000 Monitor Shelf
Dimensions 12 x 26 inches (30 x 66 cm)
Load limit: 50 lbs (22 kg)

System 5000 Monitor Shelf
Dimensions 12 x 30.5 inches (30 x 77 cm)
Load Limit: 50 lbs (22 kg)

Instrument shelf
Dimensions 12 x 12 inches (30 x 30 cm)
Load limit: 20 lbs (9 kg)
Oxygen flowmeter with DISS fittings: 0 to 15 LPM
Air flowmeter with DISS fittings: 0 to 15 LPM
Airway Manometer: 20 to +100 centimeters of water
IV pole
Appendix

Gas manifold with 1/8 inch NPT fitting

3.5 inch utility post

Utility Post, 22 Inch (0217-5376-800) 1 inch diameter x 22 inch long post Provides a rigid vertical mounting space for stack mounting of equipment. The post should be mounted as low as possible to ensure the stability of the Warmer.

Vacuum Manifold with DISS Adapters
Two DISS vacuum adapters are mounted on a standard manifold block. The locations of these adapters can be changed to any of the other tapped holes in the block to meet special requirements.

Vacuum Bottle Slide Bracket
The standard vacuum bottle slide can be mounted on either upright.

Ventilator Mounting Post
The vertical mounting post is a non-locking 1 inch diameter shaft which pivots in an 8.5 inch radius from the upright. One end of the shaft extends 14 inches while the other extends 6.5 inches. Ventilators, humidifiers, blenders or other user hardware can be pivoted into optional position.

G. Heater Specifications

Heater Output

All models: 540 watts ± 5% at maximum % power setting.
Average Energy at Mattress Level at maximum % power setting:
 34 mW/cm² for Model 2001 and Series 3000 with HCA serial number
 20 mW/cm² for Model 5000 and Series 4000
 22 mW/cm² for Model 2001 and Series 3000

Recommended Bed Level

27 ± 2 inches (69 ± 5cm) from bottom of heater grill.

WARNING: Bed-to-heater spacing which differs from the specified 27 ± 2 inches (69± 5cm) will result in incorrect operation and may affect the patient’s condition.
Appendix

Radiant Energy Distribution

This table lists typical average radiant energy distribution across the patient bed surface for informational purposes only.

Typical Radiant Energy Level on the Mattress Surface

<table>
<thead>
<tr>
<th>Mattress Type</th>
<th>mW/cm²</th>
<th>Zone Average</th>
<th>Mattress Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant Zone, 15" (38cm) wide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mattress - Model 2001/Series 3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mattress - Model 5000/Series 4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2001 and Series 3000 units†</td>
<td>34</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Model 5000 and Series 4000 units</td>
<td>22</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

† The radiant energy values of older models will be 24 zone average and 22 mattress average: units prior to those with HCA serial numbers had a 440 Watt heater.
Appendix

A.3 ThermaLink Option Specifications

A. Serial data

⚠️ WARNING: The computer or RS-232 monitor’s user program must continuously check the data link. The program should constantly verify connection to the warmer controller and check for updated data.

Note: In the event of power failure, all serial communication will cease until power is restored.

RS-232 Connector

The Nurse Call and the serial data output share the same female, nine pin, d-type connector (DB9F).

- Pin 2: Receive Data (warmer input)
- Pin 3: Transmit Data (warmer output)
- Pin 5: Gnd (Signal Ground)

Cable requirements

The user interface cable must have capacitance less than 1500 pF. It should be a shielded cable such as a Belden 9611 with AMP shielding kit 748046-1 and ferrule 747579-8.

Data transmission

The warmer continuously sends data from the time that it is first powered up. Note that the warmer serial data transmission can be controlled through the serial port. Data output stops when the warmer receives a <cntrl>S (XOFF) and resumes when it receives a <cntrl>O (XON).

Data format

1 start bit, 7 data bits (ASCII), 1 parity bit (odd), 1 stop bit, 1200 baud, full duplex.

Serial data has the format: start text character, "<stx>"; IWS header, "IW"; software version; data string; checksum characters; carriage return, "<cr>"; line feed, "<lf>"; end of text character, "<etx>". Data elements are separated by spaces, "_". Each String contains 53 characters:

Sample data:

<stx>IW0500_35.52_XX.XX_P_00085_36.50_00001000_E014_11<cr><lf><etx>

Data for discussion (use the following table):

<stx>IWxxxx_pt.pt_xx.xx_m_ppppp_pc.pc_alrmleds_code_ck<cr><lf><etx>
Appendix

<stx>
Start of text character (ASCII 2) or CTRL B; indicates a string of data will follow.

IWxxxx

IW means the data is from the Infant Warmer; xxxx is the software version in the unit, e.g. 0500 for version 5.00.

pt.pt

This is the patient temperature in degrees centigrade. The patient temperature will always be sent even if it is outside the normal display range. Temperatures less than or equal to 1.00°C indicate an open or a disconnected probe. Any temperature greater than or equal to 50°C is a shorted probe.

xx.xx

Reserved for future use.

m

This is the mode of operation. P means servo control mode. A means manual control mode. Always check the mode of operation before evaluating the patient control temperatures.

ppppp

Percentage of nominal power defined as % of heater wattage.

pc.pc

In the servo control mode, this is the patient control temperature set with the ▲ and ▼ switches in degrees centigrade.

alrmLed

This series of bits represents the alarm LEDs. If an LED is illuminated, the corresponding bit is set to 1 (alarm active). If there is no alarm, the bit is set to 0. Audible alarm status bit is 1 if an alarm condition exists and if the alarm is not silenced. Audible alarm status bit is 0 if there are no active alarms, or if the active alarms are silenced.
Appendix

00000100
 ___ Probe Failure Alarm
 ___ Patient Temperature Alarm
 ___ System Failure Alarm
 ____ Heat Off Alarm
 ____ Check Patient Alarm
 ____ Reserved
 ____ Power Failure Alarm
 _____ Audible Alarm Status Bit

code

This is the error code that appears in the control temperature display during a system failure alarm (e.g. E014). If the system is operating normally (no system failure), zeroes replace the error code (e.g. E000).

ck

This is the two byte ASCII representation of the byte that when added to the sum of all the ASCII data bytes in the string equals zero. Note that all overflows are dropped and the sum of the data bytes DOES NOT INCLUDE the <stx>, checksum, <etx>, <cr>, or <lf> characters or the parity bit of each byte.

<cr>
Carriage return character.

<lf>
Line feed character.

<etx>
End of transmission character (ASCII 3) or CTRL B.

B. Nurse Call specifications

Contact ratings

Maximum resistive load: 4 VA
Maximum DC switching voltage: 100 Vdc
Maximum switching current: 0.25 A
Maximum carrying current: 0.50 A.

Connector

The Nurse Call contacts and the serial data output share the same female, nine pin, d-type connector (DB9F).
Appendix

Pin 6: Closed contact under normal conditions, i.e. power on, no alarm
(recommended configuration)

Pin 1: Common contact

Pin 9: Open contact under normal conditions, power on, no alarm

These contacts are not powered. They only provide closure.

Table A-1 - Nurse Call signals

<table>
<thead>
<tr>
<th>Warmer Status</th>
<th>Nurse Call Signal</th>
<th>Pins 1&6</th>
<th>Pins 1&9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Closed</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Alarm</td>
<td>Open</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Power switch off or power fails</td>
<td>Open</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>Nurse Call cable disconnected</td>
<td>Open</td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

⚠️WARNING: If you use the normally open Nurse call connection, a disconnected Nurse Call cable DOES NOT trigger a remote alarm.

Note: Any interruption of warmer power (deliberately switching off the warmer, accidentally unplugging the power cord, etc.) triggers a Nurse Call alarm.

A.4 Accessory Service Procedures

Figure A-1 Drawer assembly
Appendix

A. Drawer Accessory Kit Stock No. 0217-5379-800

1. Pull drawers forward, release locks on slide channels and remove drawers from cabinet.

2. Loosen bracket retaining screws.

3. Bolt cabinets to bottom of bed support casting with hardware provided.

4. Align rear bracket sets with inner dovetails in uprights and tighten retaining screws. (Figure A-1)

5. Reinstall drawers into cabinet.

<table>
<thead>
<tr>
<th>Description</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Washer</td>
<td>0144-1014-131</td>
</tr>
<tr>
<td>2. Split Washer</td>
<td>0144-1114-331</td>
</tr>
<tr>
<td>3. 1/4-20 # 1" Bolt</td>
<td>6600-0012-400</td>
</tr>
<tr>
<td>4. Bracket Retaining Screws (2)</td>
<td>0140-6627-109</td>
</tr>
</tbody>
</table>

![Figure A-2 APS Drawer Adaptation Kit](image-url)

Figure A-2 APS Drawer Adaptation Kit
Appendix

B. Infant Warmer System 3300
APS Drawer Adaptation Kit Stock No. 6600-0017-800

1. Pull drawers forward, release locks on slide channels and remove drawers
 from cabinet.

2. If the drawer kit is mounted on an IWS, loosen and remove the bracket
 retaining screws and rear bracket sets (2). Loosen and remove the 1/4 -20 x
 1 bolts (4) retaining the drawer kit to the bed casting. Retain screws; dis-
 card bolts and brackets.

3. Place the drawer kit cabinet upside down on a work surface and remove
 the eight screws retaining the drawer kit top to the cabinet sides. Neither
 the top nor the screws and washers just removed will be used for the new
 installation.

4. Install the new top with six of the eight #10-24 x 3/8 screws and washers
 provided, however, do not tighten the screws at this time. The two rear
 screws should not be installed until the rear support panel has been pro-
 perly positioned.

5. Position the lip of the rear support panel between the top and the cabinet
 sides, align screw holes and install the two remaining screws and washers.
 Do not tighten.

6. Reinstall the two bracket retaining screws and tighten.

7. Tighten the eight screws holding the top to the cabinet sides.

8. Position and install the two panel clips.

9. Using the 1/4-20 x 1 bolts and washers supplied with this kit, install the
 drawer kit onto the IWS. Tighten bolts firmly. To make installation of rear
 two bolts easier, you may remove the two screws and nuts holding the
 inner flanges of the cabinet sides together and carefully flex cabinet sec-
 tions out of the way. After installing the rear bolts, realign flanges and
 install screws and nuts.

10. Reinstall drawers.

C. Disassembling and servicing rotating drawer package
 (see Figure 7-24 for part numbers)

⚠️WARNING: On Model 4400 warmers factory equipped with drawers, if the draw-
 ers are removed and not re-installed, a leg weight must be installed in the right leg
 of the unit to ensure the stability before the warmer can be placed in service.
Appendix

1. Remove the drawers from the cabinet by extending the drawer slides and unlatching them from the drawers. Return the slides to the closed position.

2. Place a two by four or some other suitable support across the warmer base legs under the drawer package to sustain the weight of the drawer assembly (approximately 70 lbs).

3. Access to the drawer cabinet mounting screws is different depending on which model you are servicing:

 A. On large bed units (series 4000 & 5000), rotate the drawers to the front of the warmer to locate the screws that secure the cabinet to the bed support casting. Two screws are located inside the drawer cabinet, accessible through 3/4" dia. holes in the cabinet top. Two are located in back of the cabinet.

 B. On standard bed units (series 3000 & 2001), rotate the drawers to the right side of the warmer to remove the screws that secure the cabinet to the bed support casting. All four screws are located inside the cabinet, accessible through 3/4" dia. holes in the cabinet top.

4. Remove the Phillips head screws (located in step 3) that mount the drawer assembly to the warmer. Move the drawer assembly clear of the warmer.

5. On large bed units you must remove two additional mounting screws. To access the mounting screws, turn the drawer cabinet over, so that the top sits flat on the floor. Rotate the cabinet 90° counterclockwise. Remove the mounting screws.

6. Remove the drawer shelf from the top plate.

7. Inspect the operation of the detents and bearings by rotating the upper plate.

8. To disassemble the upper plate remove the cotter pin, slotted nut and ½-13 carriage bolt.

9. Inspect the large plastic bearing, internal cam in the rotation cover, and the function of the sliding cam follower. Replace any worn or broken parts.

10. Lubricate the large plastic bearing and sliding cam follower with Lubriplate (0220-5150-300).

11. Re-install the upper plate with the cotter pin, slotted nut and ½-13 carriage bolt removed earlier. After tightening the slotted nut to remove all slack, tighten it an additional 3/4 turn and install the cotter pin.

12. Complete re-assembly by reversing steps 1 through 7.
Figure A-3 Yoke and Regulator Assembly

D. O₂ Yoke and Regulator Assembly Kit
Stock No. 0304-5260-800
#8-32 3/8" Truss St. St. Screw (8)
(Remove and Retain)

#8 Internal Tooth St. St.
Lockwasher (8)
(Remove and Retain)

Panel

Install from Above (8)

Air/O2 Yoke and Regulator Assembly

#8 x 5/8" Type F.
Round Head Screw (6)

Detail View
Bumper (3)

Figure A-4 Yoke and Regulator Assembly

E. Air/Oxygen Yoke and Regulator Assembly Kit
Stock No. 6600-0006-800
Appendix

F. Installing the X-ray tray
(See Figure 7-20 for part numbers)

Installing Slides

1. Insert a slide (long side down) into the large slot under the bed, then push the slide, threaded studs first, against the forward edge of the bed cavity. The studs should then straddle the diagonal ribs under the bed.

2. Slip a shoulder washer over each of the two threaded studs, (see detail) then screw on the threaded knobs, clamping the slide to the diagonal rib.

3. Repeat above steps for installation of the second slide in the rear.

4. Slip the X-ray tray into the slides under the bed.

![Diagram of X-ray tray installation](image)

Figure A-5 Tray installation
Appendix

Installing Side Panel Decals

1. Before installing the decals, remove the bed side panels and thoroughly clean according to the cleaning recommendations in section 4 of the Infant Warmer System Operation and Maintenance manual. **Note:** Be sure to apply Short Decals only to Short Panels, and Long Decals only to Long Panels.

2. The decals are sandwiched between a Backer and a Front Liner (see Figure A-6). Peel the first long decal, using the Front Liner, away from the Backer, being careful not to allow decal to fold onto itself. **Note:** leave the decal adhered to the back of the Front Liner at this time.

3. Place the first long side panel so that the side WITHOUT an edge bevel on the acrylic faces you (so the decal mounts on the non-beveled side, see Figure A-6). Align left edge and bottom of decal front liner with left edge and bottom of acrylic panel. Keep bottom straight while pressing down remainder of decal working from left to right to remove all air bubbles.

4. With the front liner still applied, rub entire decal down firmly with a smooth tool to ensure good adhesion.

5. SLOWLY Peel off front liner and discard. Repeat steps for remaining three panels. Replace panels onto warmer bed.

Decal Set

Backer

Front Liner

Long Decal

Short Decal

Edge Bevel

Front Liner

(Align to edges and bottom of clear panel)

Bevel on clear panel to the REAR

Figure A-6 Bed panel decals
Appendix

A.5 Installing wall mounted units

WARNING: Carefully follow these installation instructions. Failure to do so may result in serious injury to the operator or patient.

The model 3050, 3100, and 3150 wall mounted warmers were designed for locations where permanent, infant radiant warmers attached directly to the room wall are desired. To adequately install these models, pre-planning at the architectural design phase is required.

The following instructions describe the manufacturer’s recommended method of installation in new construction. Use only the Ohmeda hardware provided to mount the model 3050, 3100, and 3150. The installation should be approved by the appropriate State and Local authorities. Deviation from these recommendations or attempts to retrofit existing construction should only be undertaken by professionals experienced in structural design, who in turn are wholly responsible for the structural integrity of the mounting method they devise.

Pre-Installation Preparation

A pattern of two (2) Extra Duty Drywall Studs (STE-20 gage) and one (1) 4" x 1½" (10 x 4 cm) Drywall Track (16 gage) at 16 inch (41 cm) centers form the basic “rough in” for installing each IWS 3050 unit. See Figure A-7. Verify that the studs and track are securely fastened together at 12 inch intervals and to both the floor and ceiling tracks with #10 sheet metal screws.

![Diagram of wall cross section with drywall, studs, tracks, and sheet metal screws]

Figure A-7 Wall Cross Section
Appendix

Warmer Installation

After the wall is finished and the room is completed you are ready to install the warmer. The distance from the warmer heater head to the bassinet or bed mattress surface is critical for proper operation of the warmer. This distance must be 27 inches, ± 2 inches (69 ± 5cm). Before installing the model 3050 or 3100, you must determine the bed surface height that will be used (for your convenience, a bed height label is provided to attach to the wall to aid in visually aligning the bassinet/bed surface).

1. Locate the stud edges by pre-measurement or by using a stud finder. Find the center of the drywall track 3 3/8 inches (86mm) over from the stud edge. See Figure A - 8.

2. Remove the hinge bracket from the warmer by removing the (2) hinge pins (one on either side) that secure the bracket to the warmer heater head.

3. Utilizing a level, position the hinge bracket on the wall. The bottom edge of the heater mounting bracket on the model 3050 and 3100 must be 27 ± 2 inches (69 ±5cm) from the bed surface of the mattress that will be used. See Figure A - 9.

Note: For proper ventilation and access allow at least 4" (10cm) clearance around the heater assembly.

Figure A-8 Over head view

Figure A-9 Heater to bed spacing
Appendix

The model 3150 integral bed warmer already comes with 27 ± 2 inch (69± 5cm) bed-to-heater spacing.

4. Use the hinge bracket as a template to mark the mounting holes on the wall.

5. Use a 3/4 inch (19mm) diameter metal cutting hole saw to drill (4) holes through the dry wall and through metal drywall tracks behind the wall.

⚠️ WARNING: When installing wall mounted units, to achieve adequate structural strength all four holes must engage tracks. Should the hole saw miss a track do not proceed. Consult the project engineer for further direction.

⚠️ WARNING: Enclosing the heater assembly inside a cabinet may prevent proper ventilation and may create a fire hazard. If the heater is enclosed in a cabinet, it must be equipped with a power cut-off device that prevents operation while the cabinet is closed.

Figure A-10 Anchor installation
6. Perform steps A through C to secure the (4) Toggler® anchor bolts in the wall. See Figure A - 10.

 A. Hold the metal channel flat alongside the plastic straps and slide the channel through the hole in the wall and track.

 B. With one hand, hold the ring so the metal channel rests flush behind the wall. Slide the plastic cap along straps with the other hand until the flange of the cap is flush with the wall.

 C. Place your thumb between the straps, and push from side to side, snapping off the straps level with the flange of the cap.

7. Mount the hinge bracket on the wall with the flat washers, split ring washers and screws provided. See Figure A - 11. Tighten the screws with approximately 80 lb/in of torque.

Figure A-11 Wall mounting
Appendix

Note: The screws provided (3/8 - 16 UNC, 2 ½" long) are for installations in 1/2 inch or 5/8 inch thick drywall. For applications involving double thicknesses of drywall, longer screws will be required. To properly mount the warmer, at least 2 ½ screw threads must be engaged.

Verify that the bracket is level and the distance to the bed surface is 27 inches, ± 2 inches (69 ± 5cm).

⚠️ WARNING: Keep hands clear of the hinge area when installing a wall mounted heater assembly. A possible pinch hazard exists.

⚠️ WARNING: The 3050 heater assembly weighs approximately 30 lbs (14 kg). Proper installation may require two people. Due to the weight of the 3100 and 3150, the 3100 weighs approximately 75 lbs. (34 kg) and the 3150 weighs approximately 110 lbs. (50 kg), proper installation will require two people.

8. Mount the warmer by inserting the back of the unit into the hinge bracket mounted on the wall, then securing it by tapping in the (2) hinge pins. Verify that the heater assembly is rigidly secured to the wall, is level, and is parallel to the floor.

9. For the model 3050 and 3100, attach the “proper bed to heater spacing” label provided with the unit to the wall so that the bottom line of the label is 29 inches (74 cm) from the lower edge of the hinge bracket.

⚠️ WARNING: Bed-to-heater spacing which differs from the specified 27 ± 2 inches (69 ± 5cm) will result in incorrect operation and may affect the patient’s condition.

For the model 3100 or 3150 perform steps 10 through 15. For the model 3050 skip to step 15.

10. Using the lower hinge bracket as a template mark the mounting holes on the wall for the lower bracket.

11. Remove the warmer from the wall by tapping out the (2) hinge pins from the upper bracket.

12. Remove the lower hinge bracket from the warmer by removing the (2) hinge pins (one on either side) that secure the bracket to the warmer.

13. Repeat steps 5, 6 and 7 to properly install the lower mounting bracket.
14. Mount the warmer by inserting the back of the unit into the upper hinge bracket mounted on the wall, then securing by tapping in the (2) hinge pins. Secure the warmer to the lower mounting bracket by tapping in the (2) hinge pins. Verify that the heater assembly and side rails are rigidly secured to the wall and that the heater is level and is parallel to the floor.

USA Customer Service
Ohmeda Inc
Ohmeda Drive
PO Box 7550
Madison WI 53707-7550
Tel 800 345 2700
Fax 608 221 4384

USA Technical Support
Ohmeda Inc
Ohmeda Drive
PO Box 7550
Madison WI 53707-7550
Tel 800 345 2755
Fax 608 222 9147

USA Service and Distribution Center
Ohmeda Inc
7750 The Bluffs NW
Austell GA 30001
Tel 800 345 2755
Tel 404 739 4774
Fax 404 739 4770

Canada Customer Service and Service Center
Ohmeda
5865 McLaughlin Rd
Mississauga Ontario
LSR 186 Canada
Tel 905 568 9533
Fax 905 568 9799
Telex 0698362

International Europe, Africa, Middle East
Ohmeda House
71 Great North Rd
Hatfield Herts
AL9 5EN England
Tel 44 707 2603570
Fax 44 707 260065
Telex 918179

France
Ohmeda SA
Parc De Pissaloup
8 Avenue Jean D'Alembert
78190 Trappes
France
Tel 33 1 30 68 60 00
Fax 33 1 30 68 60 01

Germany
Ohmeda
Langemarckplatz 3
Postfach 2880
D 8520 Erlangen
Germany
Tel 49 91 31 81 01 0
Fax 49 91 31 81 01 11

Latin America, Caribbean
Ohmeda
9200 Dadeland Blvd
Suite 610
Miami FL 33156
Tel 305 670 9338
Fax 305 670 4834

Asia/Pacific
Ohmeda
No 198 Yishun Avenue 7
Singapore 2776
Tel 65 753 6311
Fax 65 753 1817

International Customer Service andTechnical Support
Ohmeda House
71 Great North Rd
Hatfield Herts
AL9 5EN England
Tel 44 707 2603570
Fax 44 707 260191
Telex 915128

United Kingdom
Ohmeda House
71 Great North Rd
Hatfield Herts
AL9 5EN England
Tel 44 707 2603570
Fax 44 707 260065
Telex 918179

Spain
Ohmeda
C/Manuel Tovar 26
28034 Madrid
Spain
Tel 34 1 358 16 76
Fax 34 1 358 12 64
Telex 23795 Mameq E

Italy
Ohmeda
Via Carpaccio 33
20090 Trezzano sul Naviglio
Milan
Italy
Tel 39 2 445761
Fax 39 2 4455614
Telex 314479 I

Sweden
BOC Ohmeda AB
Nordic
PO Box 631
Östra Sandgatan 12
S 251 06 Helsingborg
Sweden
Tel 46 42 178800
Fax 46 42 178747

Netherlands
Ohmeda BV
Rembrandtlaan 1A
3723 BG Bilthoven
Netherlands
Tel 31 30 289 399
Fax 31 30 284 867

Japan
Ohmeda
Marumatsu Shinjuku Bldg
6 24 20 Shinjuku
Shinjuku-ku
Tokyo 160
Japan
Tel 81 3 5272 1881
Fax 81 3 5272 0773
Telex 2323106
PREFIX ECI
INSPECTION INTERVAL 180 Days
PREVENTATIVE MAINTENANCE
DESCRIPTION Infant Warmer
MODEL 3000 and 3300
MANUFACTURER Ohmeda

TEST EQUIPMENT REQUIRED
Safety Analyzer

DECONTAMINATION
1.1 Follow general decontamination procedures.

BREAKDOWN
1.9 Route the unit to the wipe-down station.

CLEANING
1.12 Perform the general wipe-down procedures.

FUNCTIONAL PROCEDURE
3.1 Check the cleanliness of the unit.
3.2 Check for damage to the unit.

2.1 Perform the ground resistance test.
 Record the reading under 2.1 on Form 200A.

2.2 Perform the chassis to ground AC leakage test (I).
 Record the reading under 2.2 on Form 200A.

OVERALL APPEARANCE
1. Disconnect the power cord for the infant Warmer System for the mechanical checks portion of this procedure.
2. Check the overall appearance of the Infant Warmer System. There should be no obvious damage.
3. Place the Infant Warmer System on a level surface. Check that all four casters are in firm contact with the floor and that the warmer moves freely.
4. Lock the two front casters and check that the warmer is held in place.
5. Examine the power cord for damage. Replace the power cord if damage is evident.

This procedure is the property of UHS.
Duplication is permitted only upon the written approval of UHS.
UHS is a registered trademark of Universal Hospital Services, Inc.
HEATER ROTATION

1. Rotate the heater to the X-ray position and back to the normal position. Check for smooth rotation.

MECHANICAL CHECKS

1. Check the operation of the bed sides. The bed sides should operate smoothly.

2. Check the operation of the tilt mechanism. Verify that the bed platform operates smoothly and locks in any position.

B. CONTROL UNIT CHECKS

1. Connect the Infant Warmer power cord to an appropriate power source (see rating plate for proper voltage etc.). Switch the power ON and verify the following:
 a. The alternating two tone audible alarm sounds and all displays and indicators are lit for approximately two seconds.

 NOTE: During this time the controller also performs self check functions. If the controller detects a failure the alarm stays on and service is required.

 b. The manual mode indicator is lit.
 c. An operator prompt tone sounds and the % power display flashes.

2. Adjust the heat output with the increase and decrease touch switches to the high and low limits as indicated by the % power display.

3. Connect the skin temperature probe to the Infant Warmer System.

4. Press the mode touch switch to place the warmer in the servo mode and verify the following:
 Note: An alternating two tone alarm and a flashing overhead alarm light may occur here if the skin temperature probe is below 30 degrees C. Warm the probe with your fingers or silence the alarm.
 a. The servo mode indicator is lit.
 b. An operator prompt tone sounds and the control temperature display flashes 36.5 degrees C.

This procedure is the property of UHS. Duplication is permitted only upon the written approval of UHS. UHS is a registered trademark of Universal Hospital Services, Inc.
5. Press the increase touch switch and verify that the maximum servo control temperature attainable is 37.5 degrees C.

NOTE: A patient temperature alarm occurs if the difference between the patient temperature and the control temperature is greater than one degree C.

6. Press the decrease touch switch and verify that the minimum servo control temperature attainable is 35.0 degrees C.

7. Disconnect the skin temperature probe. Verify the following:

 a. The probe failure indicator light is lit.
 b. There is an alternating two tone alarm.
 c. The overhead alarm light is flashing.
 d. The patient temperature display flashes "HH.H".

8. Press the alarm silence touch switch and verify the following:

 a. The probe failure indicator light is lit.
 b. The alternating two tone alarm is silenced.
 c. The overhead alarm light is lit.
 d. The patient temperature display indicates "HH.H".
 e. After one minute the alternating two tone alarm sounds, the overhead alarm flashed and the patient temperature display flashes HH.H.
 f. Switch to the manual mode and set the heat at 25% power.

ELAPSED TIMER CHECK

1. Press the Start/Hold switch to activate the elapsed timer. Verify that the timer starts operation.

2. Press the On/Off switch for the Apgar tones. Verify that the indicator light for the Apgar tones is not lit.

3. Press the On/Off switch for Apgar tones again. Verify that the indicator light for the Apgar tones is lit.

4. Press the Start/Hold touch switch. Verify that the present elapsed time is held.

5. Press the Start/Hold touch switch and verify that the timer updates to the current elapsed time and the Apgar tones continue to sound at the specified

This procedure is the property of UHS.
Duplication is permitted only upon the written approval of UHS. UHS is a registered trademark of Universal Hospital Services, Inc.
times (at 1 minute and at every 5 minute interval after the elapsed timer is started.).

6. Press the reset touch switch and verify that the timer indicates 00:00. If the elapsed timer is not used for two minutes the display will switch off.

EXAMINATION LIGHT CHECK

1. Press the Light On/Off touch switch. Verify that the examination light functions.

INTERLOCK SWITCH CHECK

1. Place the warmer in the manual mode at 25% power output.

2. Rotate the heater assembly to the X-ray position. Verify that the heater off indicator light is On and the % power display indicates 0% heat.

3. Rotate the heater assembly to the normal operating position. Verify that the heater off indicator light is Off and the % power display indicates 25%.

POWER FAILURE AND MEMORY TEST

1. Operate the unit in the manual mode with the heat set in the "preheat" range for a minimum of hour, to charge the battery.

2. Disconnect the patient temperature probe.

3. Place the Infant Warmer in the servo mode.

4. Silence the probe failure alarm.

5. Set the control temperature at 37.0 degrees C.

6. Remove the Infant Warmer power plug from the power source for about 10 seconds. Do not switch the power Off. Verify that the audio power failure alarm is on.

7. Reconnect the Infant Warmer to the power source. Verify the following:
 a. The Infant Warmer is operating in the servo mode.
 b. The control temperature is 37.0 degrees C.

This procedure is the property of UHS. Duplication is permitted only upon the written approval of UHS. UHS is a registered trademark of Universal Hospital Services, Inc,
c. The audio power failure alarm is off.

BATTERY TEST

NOTE: The battery must be fully charged to pass the 10 minute test or partially charged to pass the two minute test. If the battery is defective, replace it. There is no maintenance required for the battery.

1. Disconnect the patient temperature probe.
2. Place the Infant Warmer in the servo mode.
3. Silence the probe failure alarm.
4. Set the control temperature at 37.0 degrees C.
5. Remove the Infant Warmer power plug from the power source for two minutes. Do not switch the power Off. The power failure alarm should sound for two minutes.

NOTE: If the power failure alarm is tested for 10 minutes, the Infant Warmer must be connected to the correct power source and operated for 24 hours to recharge the battery before allowing a patient to occupy the Infant Warmer.

6. Reconnect the Infant Warmer to the power source. Verify the following:
 a. The Infant Warmer is operating in the servo mode.
 b. The control temperature is 37.0 degrees C.
 c. The audio failure alarm is off.

5.1 Check the Caution sticker.
5.2 Sign and date the Daily Performance sticker.
5.3 Check the Biomedical Inspection sticker.
5.4 Documentation.

6.1 Roll and band the power cord.
6.3 Place a plastic bag over the unit.
6.4 Route the unit to the clean equipment holding area.

This procedure is the property of UHS. Duplication is permitted only upon the written approval of UHS. UHS is a registered trademark of Universal Hospital Services, Inc.