Table of Contents

1 General Information ... 1
 1.1 Introduction ... 1
 1.2 Servicing Policy .. 1
 1.3 Product Description ... 1
 1.4 Antistatic Handling, Electro Static Discharge (ESD) 2
 1.5 Construction ... 2

2 Safety Aspects ... 3
 2.1 Safety .. 3
 2.2 Safety Testing ... 3
 2.3 FECG Testing ... 4
 2.4 Cleaning ... 5
 2.5 Preventative Maintenance .. 6
 2.6 CE marking ... 6

3 Functional Testing .. 7
 3.1 BD4000, BD4002 Main Unit 7
 3.2 Ultrasound Transducers ... 7
 3.3 Toco ... 8
 3.4 FECG Functional Testing ... 9
 3.5 Twins Functional Testing - BD4000 9
 3.6 Twins Functional Testing - BD4002 11

4 Specification .. 12

5 Technical Description .. 14
 5.1 The Doppler Principle .. 14
 5.2 Doppler Audio Processing ... 14
 5.3 Heart Rate Processing ... 15
 5.4 Fetal Movement Detection (FMD) 15
 5.5 FECG .. 15
 5.6 IUP ... 15

6 BD4000 overview .. 16
 6.1 BD4000 Micro Section ... 17
 6.2 BD4000 Analogue Section ... 18
 6.3 BD4000 Power Supply Section 20

Issue: 2 DRAFT
Rev: a
6.4 BD4000 Printer Section .. 21
6.5 BD4000 Rear Panel Section 22
6.6 BD4000 Front Panel PCB 23

7 BD4002 overview .. 24
 7.1 BD4002 Micro Section 25
 7.2 BD4002 Analogue Section 26
 7.3 BD4002 Power Supply Section 28
 7.4 BD4002 Printer Section 29
 7.5 BD4002 Rear Panel Section 30
 7.6 BD4002 Front Panel PCB 31

8 BD4000/BD4002 Transducers 32
 8.1 US1 Ultrasound Transducer 32
 8.2 FEGC Leg Plate ... 33
 8.3 IUP Module .. 34

9 Electrostatic Discharge (ESD) Precautions 35
 9.1 What is Static Electricity? 35
 9.2 Protective Measures 35

10 Servicing Procedures - Main Unit 36
 10.1 Torque Settings .. 36
 10.2 Unit Dismantling ... 37
 10.3 Unit Reassembly ... 37
 10.4 Display/Front Panel Switch PCBs Removal 37
 10.5 Display PCBs Refitting 37
 10.6 Display PCB Metalwork Removal 38
 10.7 Refitting Display PCB Metalwork 39
 10.8 Main PCB Removal 40
 10.9 Main PCB Refitting 40
 10.10 Print Head Removal 40
 10.11 Print Head Refitting 41
 10.12 Print Head Alignment Procedure 41
 10.13 Stepper Motor Removal 42
 10.14 Stepper Motor Refitting 42
 10.15 Power Supply Removal 44
 10.16 Power Supply Refitting 44
10.17 Mains Inlet Removal .. 44
10.18 Mains Inlet Refitting .. 44
10.19 Speaker Removal ... 45
10.20 Speaker Refitting ... 45
10.21 Rear Panel Connector PCB Removal 45
10.22 Rear Panel Connector PCB Refitting 45
10.23 Paper Tray Open Microswitch Removal 46
10.24 Paper Tray Open Microswitch Refitting 46
10.25 Paper Tray Removal ... 46
10.26 Paper Tray Refitting ... 47
10.27 Paper Width Microswitch Removal 47
10.28 Paper Width Microswitch Refitting 47
10.29 Front Panel Connector Assembly Removal 47
10.30 Front Panel Connector Assembly refitting 47
10.31 Toco/Ultrasound Transducer Dismantling 47
10.32 Reassembly of Toco/Ultrasound Transducer 48
10.33 Strain Gauge Assembly Removal 48
10.34 Strain Gauge Assembly Refitting 48
10.35 Toco Transducer Alignment 49
10.36 Replacing Transducer Cable 52
10.37 FECG Transducer Servicing 53

11 Fault Finding .. 53

11.1 Error Codes .. 55
11.2 Service Notes .. 56
11.3 Displaying Status .. 56
11.4 Print Head Test .. 57
11.5 Bed number .. 57
11.6 Real time clock battery .. 57
11.7 Address ... 57

12 Spare Parts List .. 58
12.1 Recommended Spare Parts 58

13 Warranty And Service .. 70

14 Overseas Offices. ... 71

15 Appendices. .. 72

Issue: 2 DRAFT
Rev: a
15.1 Appendix A ... 72
15.2 Appendix B ... 73
1 General Information

1.1 Introduction

This service manual provides the technical information required for repair and maintenance of the Huntleigh Diagnostics *Baby Dopplex 4000* and *Baby Dopplex 4002*.

1.2 Servicing Policy

Due to the nature of static-sensitive surface-mount technology, specialised equipment and training is required when working on the surface mounted components used within this product.

For this reason circuit diagrams are not included in this manual. Block diagrams and fault finding sections are included to make fault finding to leaded component level possible.

Units within the warranty period must not be dismantled and should be returned to Huntleigh Diagnostics for repair. Any units returned showing signs of tampering or accidental damage will not be covered under the warranty (refer to user manual for further details).

1.3 Product Description

General

The *Baby Dopplex 4000* and *Baby Dopplex 4002* comprise a main unit (which can be either free-standing, trolley or wall-mounted), two transducers (US* and Toco). A patient event marker and a FECG legplate (optional). *BD4002 is supplied with 2 US transducers.

Main Unit

This houses the printer and electronic circuitry - digital and analogue signal processing, audio, display and power supply systems.

Signals from the transducers are processed and displayed on the large LED displays. The ultrasound signal is also amplified, and output via the integral loudspeaker. A volume control provides adjustment of sound level as required. Processing for the FECG signal is also included.

A liquid crystal display (LCD) displays the system menu and other information. Various parameters can be selected and/or changed as necessary using the adjacent controls.

Also mounted on the control panel are controls for volume up/down, print start/stop, Toco zero and clinical event marker.
Transducers
The transducer connectors are colour coded to indicate function: the US/FECG connector is red, the Toco connector is blue. The transducers are held in place by elasticated straps.

Patient Event Marker
This is a hand-held push-button which is pressed by the patient when she feels fetal or uterine activity.

The patient and clinical event markers are distinguished from each other on the paper, patient at the bottom of the FHR grid and clinical at the top.

1.4 Antistatic Handling, Electro Static Discharge (ESD)
The Baby Dopplex uses Electrostatic Discharge Sensitive Devices (ESD's) in its manufacture. The damage they suffer when handled incorrectly may be catastrophic.

More often and potentially even worse, the damage may be partial or latent, seriously impairing the reliability of the unit.

Due to the nature of the components used within the Baby Dopplex, special precautions must be taken to avoid damage to the circuitry. Static damage may not be immediately evident but could cause premature failure.

The Baby Dopplex must only be dismantled and serviced within an ESD protected area (EPA) as defined by CECC00015 (published by CENELEC) to avoid damage to the assemblies.

1.5 Construction
The main unit comprises five PCB's, the main PCB, display PCB, PSU, end of paper PCB and rear panel connector PCB. All boards with the exception of the PSU are populated with surface mounted components.

The toco transducer consists of a termination PCB and a strain gauge.
The ultrasound transducer contains a single PCB, a multi element piezo crystal array and a circular termination PCB.
The FECG transducer contains a single PCB and isolation amplifier with two scalp electrode connections and a legplate disk for a maternal connection.

All electromechanical and through hole components are serviceable using standard tools and soldering techniques, provided that anti-static precautions are always taken. Recommended servicing is limited to replacement of assemblies detailed in this manual.
2 Safety Aspects

2.1 Safety

- The Baby Dopplex and its transducers are designed to high standards of performance, reliability and safety.
- Functional and safety checks should always be made after carrying out any repairs or dismantling the equipment.

It is recommended that regular inspections are to be made to check the integrity of the unit, and to ensure cables are not showing any signs of wear or noise when flexed.

2.2 Safety Testing

Using suitable safety test equipment, refer to the following guidelines.

Earth Bonding Test points

a) Test the exposed chassis, accessible through the moulding apertures on the underside of the unit.

b) Test the metal shroud of the toco socket.

c) Test the shells of the rear panel D-type connectors.

The maximum allowable reading at all points is 0.1.

Earth Leakage Test

Set the on/off switch on the rear of the unit to the on position.
The maximum allowable leakage current is 100 A.

Breakdown Test

Set the on/off switch on the rear of the unit to the “on” position.
Apply 1500Vac to the mains connector, connecting the low voltage probe to the “EARTH” terminal. Firstly test the “LIVE” terminal and then the “NEUTRAL” for 60 seconds each. The maximum allowable reading is 1mA.
2.3 FEcg Testing

Apply 1500Vac between the;

a) chassis earth and leg electrode plate
b) instrument live terminal and FEcg terminals
c) instrument neutral terminal and FEcg terminals

The maximum allowable reading being \(\frac{10}{9} \) A over 60 secs.

<table>
<thead>
<tr>
<th>Caution</th>
<th>Do not apply test voltages to main unit FEcg input socket directly</th>
</tr>
</thead>
</table>

If you require any assistance with safety testing your Huntleigh Diagnostics equipment, contact Huntleigh Diagnostics. For the U.K. refer to the Health Equipment Information Document No 95 – Code Of Practice For Acceptance Testing Of Medical Equipment.

The following safety summary should be read before operating or carrying out any of the procedures described in this manual:

<table>
<thead>
<tr>
<th>Cautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Do not use the Baby Dopplex in the presence of flammable gases such as anaesthetic agents.</td>
</tr>
<tr>
<td>☐ This product is not designed for sterile use. Do not use in the sterile field unless additional barrier precautions are taken.</td>
</tr>
</tbody>
</table>

Do not

- immerse main unit in any liquid. See section 2.4.
- use solvent cleaners.
- use high temperature sterilising processes (such as autoclaving).
- use E-beam or gamma radiation sterilisation.
2.4 Cleaning

Caution

Switch the unit off and disconnect from the mains before cleaning

Main Unit

If required, this can be wiped with a soft cloth dampened with a mild detergent, avoiding the connectors. Do not allow any fluid to seep into the connectors. Do not allow any fluid to seep into the unit. Ensure the unit is completely dry before reconnecting to the mains.

Ultrasound Transducer and FECG Leg Plate

These should be cleaned by immersing in warm (50°C max.), mild detergent solution, using a bottle brush if necessary. Do not soak, or run under a tap. Rinse with clean water and dry thoroughly before use.

Do NOT immerse connectors

Caution

Phenolic or detergent based disinfectants containing cationic surfactants, ammonia based compounds, or antiseptic solutions such as Stericol or Hibiscrub should never be used on any part of the system as permanent damage will result.

Contractions Transducer (toco)

Wipe with a soft cloth dampened with a mild detergent solution, avoiding the connector. Do not allow any fluid to seep into the transducer. Dry thoroughly before use.

Belts

These may be hand-washed at 40°C max., using a mild detergent solution. Rinse with clean water and dry thoroughly (without using heat) before use.

Disinfection

Transducers and Leg Plate Only.

To assist with disinfection, wipe the transducers and leg plate with a soft cloth dampened with sodium hypochlorite 1000ppm, and wipe dry.

Please be sure to check your local infection control policies or equipment cleaning procedures.
2.5 Preventative Maintenance

The Huntleigh Diagnostics *Baby Dopplex 4000* and *Baby Dopplex 4002* are designed for a minimum amount of maintenance. To support the high standard of performance and safety, the safety and functional checks should be carried out as part of a regular maintenance routine.

Refer to the user manual for details of connection of cables and accessories, and also for the correct setting of controls which may have been altered during maintenance.

No attempt should be made to service the unit unless adequate workshop facilities and suitable staff are available.

2.6 CE marking

All rework procedures detailed in this service manual must be strictly adhered to, to ensure continuing compliance with EC Directive 93/42/EEC.

Any rework routine carried out outside the scope of this manual may result in the equipment no longer meeting this specification and the rework organisation will be responsible for this non-conformance.
3 Functional Testing

3.1 BD4000, BD4002 Main Unit

Switch the unit on by pressing the on/off switch at the back of the unit to the “on” position(I).

The Baby Dopplex displays will illuminate and you will hear a click from the loudspeaker. The message “Huntleigh Diagnostics” appears for an instant while the unit carries out a self-test.

Inspect the transducer cables and plugs for signs of damage and physical condition of the transducers.

The ultrasound transducer face should be free from marks and the toco boot undamaged. Remove any gel from the transducers if present.

Open printer tray, unit should display “Paper tray open” and remove paper pack. Close paper tray, unit should display “End of paper”. Refit paper pack ensuring that the shiny side is uppermost. This sensitive side can be easily marked with a fingernail.

Plug in the ultrasound, toco and event marker transducers, set the printer to 3cm/minute (menu option) and start the unit printing.

Press the patient event marker switch and observe the arrow at the bottom of the printout.

Press the clinical event marker on the display panel and an arrow should appear at the top of the printout.

Increase the volume using the up/down controls on the front panel and flex cable on the ultrasound transducer at the transducer and plug ends checking that no crackling is heard.

Replace the ultrasound transducer with the FECG leg plate. The unit should fast feed for a few seconds if the printer is still running when the ultrasound transducer is removed, and then continue printing.

Ensure that the FECG text appears at the bottom of the FHR scale on the trace.

3.2 Ultrasound Transducers

Reconnect the ultrasound transducer and input a signal by placing it in the palm of the hand and stroke the back of the hand approximately twice per second.

The display should indicate a rate of around 120 BPM after a few seconds. Continue this for one minute and check for a corresponding line on the fetal heart rate trace.

Too strong a signal from an adult heart can overload the unit and result in false counting.
The signal quality will vary during this test and can be observed in the top right hand corner of the LCD display. The four bands are illuminated for a good signal and progressively extinguish as the signal deteriorates. Repeat for FHR1 and FHR2 inputs using front panel to select audio channel (BD4002 only).

3.3 Toco

Place the toco transducer on a solid surface with the rubber boot uppermost and level. Press the zero button on the front panel. Holding the toco transducer steady, flex the cable at the transducer and plug ends. Check the UA loading display and printout to ensure that there is no deviation from the zero line.

Depress the toco rubber boot gently and release, repeat this several times. Check that the UA display registers the change and returns to zero after a short delay.

With the rubber boot still uppermost and level, reset the zero then place a 100g weight in the centre of the boot.

The shape of this weight is important and the contact area on the rubber boot should be 12mm diameter maximum. The UA display should indicate 80% +/-5%.

Ultrasound Mode

FECG Mode

Remove the weight after 30 seconds check for return to zero and turn the printer off, the printer should fast feed a blank section.

Compare the printout with the examples shown above, checking for print quality, date/time stamp, event markers, ultrasound, toco trace and mode (i.e. US/FECG).

3.4 FECG Functional Testing

Reconnect the FECG legplate. Connect the patient terminals to an Fetal ECG simulator setting the voltage to between 25 V and 2mV. Only one FECG transducer can be used at any one time. Use of an adult ECG simulator may cause erroneous readings. The ECG rate should be set between 30-240 and checked across its range.

![FECG Simulation](image)

3.5 Twins Functional Testing - BD4000

Connect two BD4000 units together using the connection lead supplied with the twins kit. The monitor with the cable end marked '1' causes the unit to be the LOCAL unit while the other unit defaults to REMOTE.

The display on the LOCAL BD4000 should display “Remote FHR =” in the top line of the text display.

Connect an ultrasound transducer to both units and input a signal on the REMOTE unit by stroking the ultrasound transducer.

The REMOTE unit LCD should display 'Twins Remote Unit' and the printer should be inoperative.

The FHR should be displayed on both the REMOTE LED and LOCAL LCD displays.

Set the printer on the LOCAL unit to print and with a signal to the REMOTE unit, a corresponding trace should be printed.

When full width paper(210mm) is loaded, the LOCAL unit will print two FHR grids one above the other and one toco trace.

With the normal paper(150mm) fitted, the two FHR traces are overlaid on one grid, and identified periodically by the letters 'R' and 'L'.

Issue: 2 DRAFT

Rev: a
3.6 Twins Functional Testing - BD4002

Fit both US transducers and toco transducer and test as detailed in section 3.2.

Only one FECG transducer can be used at any one time and should be tested as detailed in section 3.4.

When full width paper(210mm) is loaded, the unit will print two FHR grids one above the other and one toco trace.

With the normal paper(150mm) fitted, the two FHR traces are overlaid on one grid, and identified periodically.
4 Specification

General

Product Name: Baby Dopplex 4000/Baby Dopplex 4002
Model No: BD4000/BD4002

Physical

Size - control unit: 93mm x 380mm x 250mm (HxWxD)
Weight: 4.5Kg

Environmental

Operating Temperature: +10°C to +30°C
Storage Temperature: -10°C to +40°C

Electrical

Power Supply: 100-250V a.c. 50/60Hz
Fuse Type: T2A 250V
Audio Power: 1 Watt max

Ultrasound Transducer

Transmitter frequency: US1 - 1.5MHz +/-1%
Acoustic Output: Under the requirements laid down in IEC1157: 1992, the peak negative acoustic pressure does not exceed 1MPa, the output beam intensity does not exceed 20mW/cm² and the spatial-peak temporal-average intensity does not exceed 100mW/cm².

Contractions Transducer

Range: 0 to 100% relative units.
Max. Load: 300g.

Regulatory Compliance/Standards

Complies with: BS5724 : Part 1 : 1989
IEC601-1 : 1988
EN60601-1 : 1990
EN60601-1 Classification: Type of shock protection - Class I

Degree of shock protection - Type B

Leg Plate & IUP Module Type BF

Protection Against Ordinary equipment

Water Ingress

Degree of Safety in Presence of Flammable Gases: flammable gases.

Mode of Operation: Continuous

Performance

FHR Range:
- US 50 to 210 BPM
- FECG 30 to 240 BPM

FHR Accuracy: +/- 1 BPM over full range.

FHR Scale Options:
- 50 to 210 BPM at 20 BPM/cm,
- 30 to 240 BPM at 30 BPM/cm.

Medical Devices Directive 93/42/EEC
5 Technical Description

5.1 The Doppler Principle

The Baby Dopplex uses the Doppler principle for non-invasively monitoring movement within the body.

The Doppler principle states that if a signal is transmitted at a fixed frequency and is reflected by a moving body, the frequency of the received signal will be shifted. An increase in frequency results if the reflector is moving towards the transmitter/receiver, and a decrease results if moving away from the transmitter/receiver. The amount of frequency shift is proportional to the velocity of the reflector relative to the transmitter/receiver.

In the Dopplex range, a fixed frequency ultrasonic signal is transmitted from the transducer into the body. This is reflected from, for example, the fetal heart. The signal is reflected from the heart and is received by the transducer. Due to the movement of the fetal heart, a frequency shift results, which is proportional to the fetal heart velocity.

5.2 Doppler Audio Processing

The Baby Dopplex ultrasound transducer contains a transmitter and receiver. In use, the transducer sends out a pulsed ultrasonic signal, generated by the piezo-ceramic transmitter crystals, at 1.5 MHz.

This signal is scattered by blood cells or any other “interface” such as skin, muscle layers, organs, walls of vessels etc. A small proportion of the scattered signal will be reflected back and detected by the receiver.

By demodulating the received signal (removing the high frequency carrier) the Doppler shifted component (i.e. the difference between the transmitted and received signals) can be produced.

With typical target velocities found in the human body, this Doppler shift signal falls within the audio frequency range. It can therefore simply be amplified and heard through a loudspeaker.

It is important to remember that the sound you hear is an artificial sound, the frequency (pitch) of which is proportional to the velocity of the moving target.

It is not the real sound made by the fetal heart.
5.3 Heart Rate Processing
The Doppler audio signal is amplified and filtered. It's amplitude is then regulated after passing through a low-pass anti-aliasing filter. The signal is then sampled by the microcontroller in order to calculate the fetal heart rate.

5.4 Fetal Movement Detection (FMD)
The BD4000 and BD4002 will annotate the fetal heart trace towards the top of the contraction channel when a fetal movement is detected.

This movement is derived from low frequency Doppler signals from the Ultrasound Transducer.

The FMD can be enabled via the front panel and its sensitivity set. Refer to the user manual for further information.

5.5 FECG
As an alternative to using ultrasound to monitor FHR, a FECG scalp electrode may be used.

This makes a direct connection to the fetal scalp and provides more reliable tracking of the fetal heart rate during the later stages of labour.

The FECG transducer incorporates an isolation amplifier which provides electrical isolation between the patient and the monitor.

5.6 IUP
In some markets Intra Uterine Pressure measurements are made as an alternative to the external Toco transducer supplied as standard.

Patient electrical isolation is provided by an adaptor box plugged into the Toco socket and a corresponding waveform is printed on the contractions trace either shown in millimetres of Mercury (mmHg) or kiloPascals (kPa).

The pressure sensor is either inserted directly into the mother using the Intran Plus IUP 400 Disposable IUP System (Utah Medical Products inc). Alternatively using the SensoNor SP844 pressure sensor and a saline filled catheter system. Refer to user manual for further information.
The BD4000 has been split up into several sections as shown below for clarity.
6.1 BD4000 Micro Section

Real Time Clock, this enables the micro to display and print the date/time on the trace. User setup information is held within the internal memory of the clock.

Watchdog Timer, this monitors the micro and checks for any system errors. Upon detecting a system error the micro is reset. All controls revert to switch-on settings.

Event Marker, this patient event marker records a mark on the printout in a different place from the clinical event marker accessed via the front panel (see user manual).

Serial Ports, the rear connector PCB supports two D-type RS232 connectors for external interfacing and twins mode communication.

Display PCB, is mounted on the top half of the case moulding and consists of two separate PCBs joined by a short ribbon cable. This PCB also carries the system controls.

ROM, the ROM memory contains the program.

RAM, the main PCB has three RAM IC’s, two are used on the Digital Signal Processing section and the third for data processing by the micro.

Digital Signal Processor, processes the information from the ultrasound and ECG transducers implementing autocorrelation and ECG detection for deriving the FHR.
DSP Bootup, this circuitry loads the DSP program from EPROM to the DSP’s internal RAM when the unit is reset.

EEPROM, used for storage of user setup information when the unit is switched off.

Twins Detect, a link in the cable sets the monitor to twins mode.
6.2 **BD4000 Analogue Section**

US/FECG Input, balanced signals from the ultrasound transducer are fed into the differential amplifier which converts them to single ended mode.

The US signal is then low-pass filtered and fed to the FMD section for further filtering/amplification and also to the high-pass filter.

This bandpass filtered signal is then level controlled then boosted to drive the speaker. It is also fed through a sharp low-pass anti-alias filter before arriving at the AGC input. This DAC based stage allows the micro to regulate the ultrasound signal before sampling.

US Timing Logic, the master oscillator for the ultrasound system is also located on the main PCB analogue section.

This 1.5MHz carrier is first amplified before being fed to the ultrasound transducer and the rear connector PCB.

The timing logic controlled by the micro sets the ultrasound transmit timing and fully synchronises the system in the twins ultrasound mode.

FECG, the FECG leg plate output signal is low-pass filtered then fed to the AGC circuit. In FECG mode the ultrasound signal is disabled and the AGC used to regulate the FECG signal amplitude before sampling.

An unfiltered version of the FECG leg plate output signal is also fed to the micro and sampled.
Transducer Type Detect, is used to differentiate between ultrasound and FECG modes.

A probe code circuit detects the connection of an ultrasound transducer and signals this to the micro. The micro then opens or closes the relevant analogue switches depending on the mode selected, to route the appropriate signals through to the A/D converters. A similar system is used to detect IUP/Toco transducers.

Toco/IUP Input, a differential amplifier converts the balanced output from the transducer to single ended mode suitable for micro A/D sampling. A sense line detects when an IUP system is connected.
6.3 BD4000 Power Supply Section

Universal Switch Mode PSU, converts standard international mains power down to +5 and +/-12Vdc.

Boost Regulator, situated on the main board, this converts the +12V to +26V for use by the print head and stepper motor.

Low Noise Regulator, a low noise +/- 10V is also produced to power the ultrasound transducer, anti aliasing filter and automatic gain control circuitry.
6.4 BD4000 Printer Section

Print Head, is a solid state thermal array of heater elements that print onto thermally sensitive paper.

Strobe Control, the strobe control varies the strobe width to the print head, which regulates the intensity of the printout. The strobe width is controlled by the microprocessor.

Temperature Sense, this allows the micro to assess the temperature of the print head by means of a thermistor in the print head. This will vary as the monitor prints and with ambient temperature. Strobe width is adjusted to regulate print density.

Stepper Motor Driver, processes the information from the data bus and converts this to a form acceptable to the stepper motor.

Stepper Motor, drives the printer mechanism.

Paper Width Detector, the paper width switch detects if 150mm or 210mm paper is fitted.

Paper Detector, this detects end of paper. The printer will stop and a message will appear on the LCD when the paper tray is empty.

Tray Open Detector, detects when the paper tray is open and stops printing. Both sides of the paper tray must be latched shut for normal printing.
6.5 BD4000 Rear Panel Section

DUART, Dual Universal Asynchronous Receive Transmit, controls the data flow to and from the microprocessor and converts it into a protocol accepted by the RS232 IC.

Level Converter, this converts the data from the DUART into RS232 voltage levels. The RS232 link allows data to be passed from and to an external device via the rear panel D-type connectors.

Twins Detect, detects when the twins lead connector marked '1' is connected, to place the unit into twins mode (LOCAL). The BD4000 connected to the other end of the twins cable becomes the REMOTE unit.

Synchronisation signals, synchronises the two ultrasound transducers when connected in twins mode.

Port 1, when used in twins configuration sets unit to ‘Local’ mode by monitoring Twins Detect. US timing is set by ‘Remote’ unit and FHR information is received from the ‘Remote’ unit.

Port 2, when used in twins configuration sets unit to ‘Remote’. US timing of ‘Local’ unit is set by ‘Remote’ unit and FHR information sent to the ‘Local’ unit for display and printing.
6.6 BD4000 Display PCB

Interface Connector, is the connector from the main PCB.

LCD Controller, processes the information from the data bus and converts this to a form acceptable to the LCD.

LCD Driver, further processes the information from the LCD Controller and data bus for the Display.

LCD Display, 32 character display showing system setup and other information.

Keypad Matrix, this interface enables the user to set up and operate the monitor.

LED Display Driver, manipulates the data from the data bus into a form acceptable to the LED display.

LED Displays, display the Uterine Activity and FHR.
7 BD4002 overview

The BD4002 has been split up into several sections as shown below for clarity.
7.1 BD4002 Micro Section

Real Time Clock, this enables the micro to display the date/time on the trace and front panel. User setup information is held within internal memory of the clock.

Watchdog Timer, this monitors the micro and checks for any system errors. Upon detecting a system error the micro is reset. All controls revert to switch-on settings.

Event Marker, this patient event marker records a mark on the printout in a different place from the clinical event marker accessed via the front panel (see user manual).

Serial Ports, the rear connector PCB supports two D-type RS232 connectors for external interfacing.

Display PCB, is mounted on the top half of the case moulding and consists of two separate PCBs joined by a short ribbon cable. This also carries the system controls.

ROM, the ROM memory contains the program.

RAM, the main PCB has three RAM IC's, two are used on the Digital Signal Processing section and the third for data processing by the micro.

Digital Signal Processor, processes the information from the ultrasound and ECG transducers implementing autocorrelation and ECG detection for deriving the FHR.

DSP Bootup, this circuitry loads the DSP program from EPROM to the DSP's internal RAM when the unit is reset.

EEPROM, used for storage of user setup information when the unit is switched off.
7.2 BD4002 Analogue Section

US/FECG Input, balanced signals from the ultrasound transducer are fed into the differential amplifier which converts them to single ended mode. This is used on both FH1 and FHR2 inputs.

FHR/FHR2 audio outputs are selected from the display panel when both transducers are utilised.

The US signal is then low-pass filtered and fed to the FMD section for further filtering/amplification and also to the high-pass filter. This bandpass filtered signal is then level controlled then boosted to drive the speaker. It is also fed through a sharp low-pass anti-alias filter before arriving at the AGC input. This DAC based stage allows the micro to regulate the ultrasound signal before sampling.

US Timing Logic, the master oscillator for the ultrasound system is also located on the main PCB analogue section.

This 1.5MHz carrier is first amplified before being fed to the ultrasound transducers.

FECCG, the FECG leg plate output signal is low-pass filtered then fed to the AGC circuit. In FECG mode the ultrasound signal is disabled and the AGC used to regulate the FECG signal amplitude before sampling.
Transducer Type Detect, is used to differentiate between ultrasound and FECG modes.
A probe code circuit detects the connection of an ultrasound transducer and signals this to the micro.
The micro then opens or closes the relevant analogue switches depending on the mode selected, to route the appropriate signals through to the A/D converters.

Probe Detect, detects the presence of one or two US/FECG transducers allowing the micro to monitor the correct channels as required.

Toco/IUP Input, a differential amplifier converts the balanced output from the transducer to single ended mode suitable for micro A/D sampling. A sense line detects when an IUP system is connected.

A probe code circuit detects the connection of an external contractions or IUP transducer and signals this to the micro.
7.3 BD4002 Power Supply Section

Universal Switch Mode PSU, converts standard international mains power down to +5 and +/-12Vdc.

Boost Regulator, situated on the main board, this converts the +12V to +26V for use by the print head and stepper motor.

Low Noise Regulator, a low noise +/- 10V is also produced to power the ultrasound transducers.
7.4 BD4002 Printer Section

Print Head, is a solid state thermal array of heater elements that print onto thermally sensitive paper.

Strobe Control, the strobe control varies the strobe width to the print head, which regulates the intensity of the printout. The strobe width is controlled by the microprocessor.

Temperature Sense, this allows the micro to assess the temperature of the print head by means of a thermistor in the print head. This will vary as the monitor prints and with ambient temperature. Strobe width is adjusted to regulate print density.

Stepper Motor Driver, processes the information from the data bus and converts this to a form acceptable to the stepper motor.

Stepper Motor, drives the printer mechanism.

Paper Width Detector, the paper width switch detects if 150mm or 210mm paper is fitted.

Paper Detector, this detects end of paper. The printer will stop and a message will appear on the LCD when the paper tray is empty.

Tray Open Detector, detects when the paper tray is open and stops printing. Both sides of the paper tray must be latched shut for normal printing.
7.5 BD4002 Rear Panel Section

DUART, Dual Universal Asynchronous Receive Transmit, controls the data flow to and from the microprocessor and converts it into a protocol accepted by the RS232 IC.

Level Converter, this converts the data from the DUART into RS232 voltage levels. The RS232 link allows data to be passed from and to an external device via the rear panel D-type connectors.

Port 1, for connection to external devices, (e.g. NiBP/SpO2 monitors)

Port 2, used for communications with central monitoring stations.
7.6 BD4002 Display PCB

Interface Connector, is the connector from the main PCB.

LCD Controller, processes the information from the data bus and converts this to a form acceptable to the LCD.

LCD Driver, further processes the information from the LCD Controller and data bus for the Display.

LCD Display, 32 character display showing system setup and other information.

Keypad Matrix, this interface enables the user to set up and operate the monitor.

LED Display Driver, manipulates the data from the data bus into a form acceptable to the LED displays.

LED Displays, display the Uterine Activity and FHRs.
8 BD4000/BD4002 Transducers

8.1 US1 Ultrasound Transducer

Timing Logic, is driven by the control and carrier signals fed from the main unit. This logic controls the transmitter and receiver range gating.

5V Regulator, the 5V regulator is supplied from the +10V line.

Range Gate Control, is used to reject any unwanted signal caused by reflections and contact noise.

Transmitter Output, the output is pulsed, the timing of which is controlled by the timing logic section.

Range Gate Switching, the signal from the ultrasound head is selected by the range gating section to ensure that the receiver circuitry is not enabled during the transmit period, this is switched on after a suitable period to reduce unwanted signals.

Demodulator, a reference signal from the main oscillator is used to demodulate the received signal.

Filter Network, the output from the demodulator is low pass filtered to remove any unwanted noise.

Output Buffers, to minimise noise, a balanced output is used.

Ultrasound Faceplate, comprises a multi element array with 7 crystals connected in parallel.
8.2 FECG Leg Plate

Patient Connections, these follow the standard three node connection pattern commonly used in FECG monitoring.

Instrumentation Amplifier, this is used to amplify the FECG signal. An instrumentation amplifier is used as it is very important that this stage has a very high common mode rejection ratio due to the small FECG signal that is presented with large common mode noise and maternal signals.

Isolation Amplifier, to maintain patient safety should an electrical fault occur, an isolation amplifier is used as a barrier to avoid excess leakage through to the patient.

Power Supply, this is used to provide a 15V supply to the isolation amplifier. A +5V supply is derived from the +10V input. The +5V supply is used in conjunction with the -10V line to provide the isolation amplifier with the 15V required.

Signal Conditioning, is used to smooth and amplify the signal from the Isolation amplifier for further processing by the main unit. The unfiltered signal from the isolation amplifier is also provided.
8.3 IUP Module

Power Supply, provides an isolated supply to the amplifier and electronics in the patient connected part of the IUP system for patient safety.

2.5V Reference, is used to power the opto isolator.

Amplifier, provides amplification of the signal received from the IUP pressure transducer and is fed to the driver for transfer over the opto isolated barrier via the opto coupler.

The second amplifier provides an amplified signal with differential outputs for the fetal monitor to interpret and display.
9 Electrostatic Discharge (ESD) Precautions

9.1 What is Static Electricity?
Static electricity is generated when two materials move against one another. The voltage generated depends on the materials generating the electricity, the speed of movement, humidity and rate of discharge. All man made materials generate static, such as plastic coffee cups, plastic bags, binders and folders, all of which are likely to be within the working area.

<table>
<thead>
<tr>
<th>Activity</th>
<th>10-20% Relative Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking across carpet</td>
<td>35,000 Volts</td>
</tr>
<tr>
<td>Walking across vinyl floor</td>
<td>12,000 Volts</td>
</tr>
<tr>
<td>Working at bench</td>
<td>6,000 Volts</td>
</tr>
<tr>
<td>Plastic folder</td>
<td>7,000 Volts</td>
</tr>
<tr>
<td>Poly bag lifted from bench</td>
<td>20,000 Volts</td>
</tr>
<tr>
<td>Foam padded work chair</td>
<td>18,000 Volts</td>
</tr>
</tbody>
</table>

Static electricity is generated very easily, and is only felt by us when we discharge the built up charge rapidly by touching a grounded object such as a grounded door handle. The voltages felt by us are as high as 3kV, but only 20V is necessary to damage some components. Voltages as high as 35kV and current spikes of 40A have been known.

The damage to the component, or assembly can be immediate or latent. Latent damage is not immediately obvious but can lead to the circuitry subsequently failing or becoming erratic.

9.2 Protective Measures
To protect devices (ESDs) from the unwanted effects of ESD, two key measures must be taken to minimise the possibility of damage.

1. All sensitive devices and assemblies must be handled in an ESD Protected Area (EPA).

2. All sensitive devices and assemblies must be transported in a protected state.

For further information on static precautions and soldering equipment refer to Appendix A.
10 Servicing Procedures - Main Unit

Due to the complexity of the product and the use of surface mount technology, the electronic circuitry is not serviceable without specialised training and equipment.

The repairs detailed in this manual are therefore limited to replacement of certain parts.

Fault finding is limited to checking for the presence or absence of signals around suspect components using an oscilloscope or multimeter.

Repairs should only be undertaken by suitably skilled service personnel. Refer to section 2.6.

10.1 Torque Settings

To ensure that the case fixings are not damaged during servicing and that assemblies are securely fixed, it is essential that the torque settings for all assemblies are adhered to.

Failure to torque fixing screws correctly may result in damage requiring case replacement and may affect reliability.

The torque setting are detailed in the relevant procedure and listed in Appendix B.

CAUTIONS

This equipment contains static sensitive devices. Refer to Appendix A for recommended anti-static handling precautions. It is essential that these procedures, or equivalent, are adopted to avoid static damage to the circuitry.

Due to the high density tracking and small size of components, extreme care in handling the PCBs must be taken at all times.

When soldering, take care to ensure that minimum heat is applied to the boards and components for the minimum time necessary to ensure high quality joints. Inspect the area around repairs for solder splashes and bridges. Refer to Appendix A for details of recommended soldering procedures.
10.2 Unit Dismantling

Caution: Ensure that mains supply is removed before opening unit

Fig 5 Case Screw Removal

1. Invert unit on a smooth surface and remove 5 case securing screws.
2. Turn unit over and carefully raise the top case half. Unplug front panel ribbon cable and place case half to one side, avoiding strain to the earth wire.

10.3 Unit Reassembly

1. Ensuring that front panel ribbon cable and safety earths are fitted, locate top case over speaker and front panel alignment guides.
2. Invert unit and refit 5 securing screws and tighten to 45cNm.

10.4 Display/Front Panel Switch PCBs Removal

1. Dismantle unit as previously detailed in 7.2.
2. Remove 6 nuts from front panel switch PCB, 3 nuts from display PCB and their nylon washers.
3. Carefully lift PCBs and earth wire (see Fig 11) clear from case assembly.

10.5 Display PCBs Refitting

1. Place PCBs over pillars, fit nylon washers and torque nuts to 20cNm.
10.6 Display PCB Metalwork Removal

1. Remove Display PCBs as detailed in 7.4.

2. Remove nylon washers and spacers from pillars. Remove remaining 4 retaining nuts and metal washers from metalwork.

3. The front panel metalwork can now be pushed through case moulding cut-out and the label removed.

10.7 Refitting Display PCB Metalwork

1. With case top uppermost, place metalwork in cut-out.

2. Turn case top over, fit metal washers, earth lead (see Fig 11) and securing nuts as shown.

3. Fit washers as Fig 11 and refit display PCBs as detailed in 7.5.

4. Check switch caps, LCDs, LEDs are flush with metalwork, fit label.

Fig 6 Front Panel Removal
10.8 Main PCB Removal

1. Remove print head connector, taking care not to short pins together. Remove all connectors as shown in fig 12 below.
2. Remove 4 nuts and washers at each corner of PCB.

10.9 Main PCB Refitting

1. Place PCB over pillars, fit washers and nuts as above. Torque retaining nuts to 20cNm and fit shakeproof washer under earthing point nut.

2. Replace all connectors as above.

10.10 Print Head Removal

1. Remove print head connector, taking care not to short pins. Pull out paper tray, remove 4 head support plate screws, motor support plate and earth lead.
2. Remove 2 x M3 nuts from head support plate and lift head support plate clear of head. Remove springs and spacers.
3. Remove 6 screws, head mounting plate and print head connector.

Fig 12 Connector layout
10.11 Print Head Refitting

1. Fit print head connector, head mounting plate and tighten 6 screws to 35cNm. Ensure that print head is parallel to head mounting plate.

2. Place spacers over pillars and springs over spacers.

3. Place head support plate over head mounting plate ensuring that metal tongue is located under screw head as fig 13.

4. Push print head support plate past pillars, fit plain washers over pillars, tighten nuts to 35cNm. Ensure that print head support plate and head mounting plate are free to slide up and down spacers.

5. Place print head assembly over mounting pillars and screws. Align print head as detailed in 7.12.

10.12 Print Head Alignment Procedure

Warning - Shock Hazard

Extreme caution must be taken while working in live equipment, ensure that earthed case does not contact live parts. Also note that parts of the power supply are live.

1. With print head assembly screws tightened lightly and ribbon cable connected, pull print head towards front of unit and close paper tray.

2. Ensure that front panel ribbon cable is connected to main PCB and connect mains supply to inlet socket.

Fig 13 Print Head Assembly
3. Start unit printing at 3cm/minute and slide print head towards case rear until print density is acceptable. Refer to 8.4 for setup test pattern.

4. Remove mains supply and tighten head support plate screws to 35cNm.

10.13 Stepper Motor Removal

1. Disconnect stepper motor connector. Remove print head assembly as detailed in 7.10 and cable ties to printhead securing plate.

2. Remove stepper motor assembly clear of monitor. Remove stepper motor mounting plate screws and remove mounting plate.

10.14 Stepper Motor Refitting

1. Fit Stepper motor to mounting plate, passing gear through mounting bracket noting cable orientation and tighten screws to 60cNm.

2. Insert stepper motor assembly to base, fit earth lead, motor support plate and screws, tighten loosely. Secure cables using cable ties.

3. Fit print head as per 7.11 and close paper tray.

4. Align motor gears with roller gears ensuring gears mesh allowing small amount of backlash, see fig 14.

5. Tighten screws to 60cNm.
 Fit stepper motor connector and align print head as per 7.12.

Fig 14 Gear Alignment
10.15 Power Supply Removal

Caution: Ensure that mains supply is disconnected before removing Power Supply Board

1. Remove power supply connectors noting orientation and connector types.
2. Remove 4 retaining nuts and washers. Lift Power Supply Unit clear from assembly.

10.16 Power Supply Refitting

1. Refitting is reversal of removal, ensure that the PSU base insulator is fitted with largest hole at the rear left hand side of the power supply.

10.17 Mains Inlet Removal

Caution: Ensure that mains supply is disconnected before removing Power Supply Board

1. Remove Power Supply Unit connectors.
2. Remove cable ties and disconnect safety earth.
3. Remove Power Supply Unit to mains inlet wiring.

10.18 Mains Inlet Refitting

1. Fit Power Supply unit to mains inlet wiring and secure wiring using cable ties. See fig 15.
2. Fit safety earth.

Fig 15 Mains Inlet Detail
10.19 **Speaker Removal**

1. Remove speaker connector from rear panel PCB.
2. Remove 2 Speaker bracket securing screws, lift speaker assembly and earth wire clear of unit.
3. Remove 4 speaker securing screws nuts and clamp plates.

10.20 **Speaker Refitting**

1. Refitting is reversal of removal, tighten screws and nuts to 35cNm.

10.21 **Rear Panel Connector PCB Removal**

1. Remove rear panel ribbon cable from main PCB.
2. Remove 2 PCB retaining screws.

10.22 **Rear Panel Connector PCB Refitting**

1. Place rear panel PCB over mounting pillars ensuring that the earthing fingers are meshed correctly.
2. Fit screws and washers, tighten to 35cNm. Fit ribbon connector to main PCB.
10.23 Paper Tray Open Microswitch Removal

1. Remove microswitch connector and power supply as detailed in 7.15.

2. Remove microswitch and plate securing screws. Removing one screw at a time will prevent the securing plate from dropping under the chassis. Lift microswitch clear of assembly and clean chassis of sealant.

10.24 Paper Tray Open Microswitch Refitting

1. Place microswitch over securing plate and fit screws loosely.

2. With paper tray fully closed adjust microswitch position to register paper tray closed.

3. Pull the left hand side of the paper tray gently, the unit may display “Paper tray open” briefly as the paper tray is held under tension, this message must disappear when released.

4. The switch must detect as soon as the left hand side catch is depressed and the tray released.

5. Tighten microswitch securing screws to 35cNm.

10.25 Paper Tray Removal

1. Remove Power Supply PCB as per 7.15. Remove 6 chassis mounting screws and disconnect stepper motor plug.

2. Remove print head support plate as detailed in 7.10 steps 1-2. (Cont’d)
3. Lift print head assembly and chassis from inside paper tray. Pull paper tray forward clear of assembly.

10.26 Paper Tray Refitting

1. Lift print head assembly and chassis. Insert paper tray ensuring that the paper tray is located within the base tray guide.

2. Carefully refit chassis screws and tighten to 60cNm, seal with M-Coat-D. Refit Power Supply Unit as detailed in 7.16. Align microswitch as detailed in 7.24

3. Refit print head support plate as per 7.11 step 5 and align print head as detailed in 7.12.

10.27 Paper Width Microswitch Removal

1. Remove main PCB as detailed in section 7.8
Remove 2 securing nuts, washer and lift switch clear of assembly.

10.28 Paper Width Microswitch Refitting

1. Refitting is the reversal of removal, ensuring paper tray is fully open during refitting procedure.

10.29 Front Panel Connector Assembly Removal

1. Remove event marker, toco and US/FECG connectors from the main board and remove cable ties.

2. Lift front panel connector assembly clear.

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Toco</th>
<th>Ultrasound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orange</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>3</td>
<td>Violet</td>
<td>Yellow</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
<td>Violet</td>
</tr>
<tr>
<td>5</td>
<td>Yellow</td>
<td>Brown</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Orange</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Black</td>
</tr>
</tbody>
</table>
10.30 Front Panel Connector Assembly refitting

1. Refitting is the reverse of removal. Take care not to damage the earthing fingers. Renew cable ties.

10.31 Toco/Ultrasound Transducer Dismantling

1. Remove the 5 screws from rear of transducer (one under label). Invert case assembly and lift top clear, care should be taken not to lift seal clear at this stage.

10.32 Reassembly of Toco/Ultrasound Transducer

1. Ensure that seal is located in case before fitting transducer top and that seal assembly is fitted correctly.

2. Fit transducer top and tighten screws to 20 cNm. Replace label.

Water resistance of US transducers can only be ensured if the units are returned to Huntleigh Diagnostics for refurbishment.

10.33 Strain Gauge Assembly Removal

1. Remove case top as detailed in 10.31 and desolder grey cable from termination PCB. Desolder strain gauge wires from PCB.

2. Remove 2 securing screws from strain gauge PCB and lift clear from assembly.

10.34 Strain Gauge Assembly Refitting

1. Fit strain gauge assembly noting orientation.

2. Solder wires to termination PCB and tighten screws to 40 cNm. Solder connector cable to termination PCB. Align transducer as per 10.35.
10.35 Toco Transducer Alignment

Equipment required

a) Power Supply
b) Digital Volt Meter
c) Weight - 1 x 100gm

1. Remove case top as detailed in 10.31.
2. Set up power supply voltage to 5.00Vd.c. +/-0.05V.

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V Supply</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>+Ve O/P</td>
</tr>
<tr>
<td>5</td>
<td>-Ve O/p</td>
</tr>
</tbody>
</table>

3. Connect transducer to power supply and DVM as shown in table above.
4. Turn transducer so that strain gauge is uppermost.
5. Apply power to strain gauge and allow 1 minute to settle. Use a toco socket connected as shown above to supply strain gauge and read values.

6. DVM should read zero +13 to +23mV.
 If offset positive, check that link 'A' is cut and link 'B' intact. Replace 'Zero' resistor with new value as required to bring the offset within specification. If offset negative, check link 'A' is intact and link 'B' is cut. Repair cut link with tinned copper wire as required. Allow time for resistor to cool and readings to settle.

7. Place 100g weight on strain gauge button, observe DVM.
 DVM should read 38.9 - 42.1mV.

Fig 17 Toco Transducer Assembly
8. Change the value of span resistors and repeat until within specification, both span resistors should be of the same value.
If the sensitivity is low, decrease the value of both resistors.
Allow the resistors to cool before repeating process.

9. Assemble the transducer as detailed in 10.34 and check zero value is +5 to +15mV when assembled.

10.36 Replacing Transducer Cable

1. Remove case top as detailed in 10.31 and desolder cable from PCB.
2. Unscrew back of metal plug and pull insert free. Desolder wires and remove plug from cable.
3. Fit plug shroud to cable and attach collet. Solder wires to plug as shown in Fig 19.
 Apply threadlock to plug body and tighten assembly.

 Water resistance of US transducers can only be ensured if the units are returned to Huntleigh Diagnostics for refurbishment.

4. Solder wires to PCB as per Fig 17/18.
 Assemble the transducer as detailed in 10.32.
There are no serviceable parts within the US transducer and repairs are limited to the replacement of the cable.

10.37FE CG Transducer Servicing

Contact Huntleigh Diagnostics Service Department for further information on servicing the FE CG transducer.
11 Fault Finding

In the event of the BD4000/BD4002 developing a fault, the following checklist should be followed.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause - check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit dead</td>
<td>Fuses in mains inlet blown or PSU</td>
</tr>
<tr>
<td></td>
<td>Fault codes on printout - see section 11.1</td>
</tr>
<tr>
<td></td>
<td>No outputs from PSU</td>
</tr>
<tr>
<td>No Audio</td>
<td>Volume level low</td>
</tr>
<tr>
<td></td>
<td>Test with known good ultrasound transducer</td>
</tr>
<tr>
<td></td>
<td>BD4002, check correct channel selected if two transducers fitted.</td>
</tr>
<tr>
<td>Not printing - paper driven</td>
<td>Paper wrong way up. Refit paper pack ensuring that the shiny side is uppermost, this sensitive side can be easily marked with a fingernail</td>
</tr>
<tr>
<td></td>
<td>Print head alignment</td>
</tr>
<tr>
<td></td>
<td>Print head dirty</td>
</tr>
<tr>
<td>Not printing - paper not driven</td>
<td>Paper tray incorrectly shut</td>
</tr>
<tr>
<td></td>
<td>Printer roller gear incorrectly engaged</td>
</tr>
<tr>
<td>US transducer dead</td>
<td>Check transducer cable</td>
</tr>
<tr>
<td></td>
<td>Check twins cable if used</td>
</tr>
<tr>
<td>Twins mode not working</td>
<td>Check twins cable/sockets</td>
</tr>
<tr>
<td></td>
<td>Check address set to 10 on both units. See section 11.3</td>
</tr>
</tbody>
</table>
11.1 Error Codes

Under certain fault conditions the BD4000 will print error codes relating to faults within certain sections of the circuitry.

When an error is detected and is first switched on, a printout will automatically be generated as shown below. The unit will then ‘shut down.’

<table>
<thead>
<tr>
<th>Line No</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCB S’No, date of manufacture</td>
<td>Factory preset</td>
</tr>
<tr>
<td>2</td>
<td>Software version</td>
<td>Factory preset</td>
</tr>
<tr>
<td>3</td>
<td>Language 1 (English), Scale 20 beats/cm, grid on, Chart 3cm/min, Mode (internal use only)</td>
<td>User selectable</td>
</tr>
<tr>
<td>4</td>
<td>Current Time</td>
<td>User selectable</td>
</tr>
<tr>
<td>5</td>
<td>Current Date</td>
<td>User selectable</td>
</tr>
</tbody>
</table>

The error codes on the bottom of the printout indicate the following:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No fault</td>
</tr>
<tr>
<td>1</td>
<td>Boot failure on DSP</td>
</tr>
<tr>
<td>2</td>
<td>Ram U10 - U11</td>
</tr>
<tr>
<td>3</td>
<td>Ram U10</td>
</tr>
<tr>
<td>4</td>
<td>Ram U11</td>
</tr>
<tr>
<td>5</td>
<td>Real Time Clock Battery</td>
</tr>
</tbody>
</table>
11.2 Service Notes

References to servicing information can be stored within the BD4000's memory. This can be changed as shown below:

![Front Panel Button Layout](image)

11.3 Displaying Status

a) Turn unit on and press menu key, then button 1.

b) Press the printer button.

c) The setup information shown on previous page is then printed. The unit then returns to normal use.

Further diagnostic settings can be set as follows;

d) Turn unit on and press setup key(1).

e) Press printer and button 3 simultaneously.

f) Press button 3 until code 14 is displayed.

Then select one of the following options;

g) Using volume +, select test code 0.

h) Press button 3 to select test code 1.

i) Press menu button(1).

j) Start unit printing at the desired speed to print test grid. Remove power from unit to return to normal operation.
Real time clock battery, bed number, address

 g) Using Volume +, select desired option.
 h) Using keys under LCD change setting.
 i) Press menu button to escape or save as appropriate.

11.4 Print Head Test

A series of narrow stripes can be printed, this can be used as an aid to print head alignment, this can be accessed as detailed in 8.3 steps a-f above.

11.5 Bed number

During normal operation the bed number is printed alongside the Huntleigh Diagnostics footnote.

This can be changed as detailed in 8.3.

11.6 Real time clock battery

The real time clock battery can be disabled as detailed in 8.3.

This allows the life of the battery to be extended while in storage. The battery should normally be turned on.

11.7 Address

The address of the monitor may be changed, however this is only used during factory testing and must remain set to 10 for twins mode to function (BD4000 only).
12 Spare Parts List

The following spare parts can be ordered from your dealer, or direct from Huntleigh Diagnostics using the part numbers shown overleaf:

12.1 Recommended Spare Parts

Recommended spare parts are marked with a bold part number.
<table>
<thead>
<tr>
<th>Ref.</th>
<th>BD4000 Part</th>
<th>BD4002 Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>614384</td>
<td></td>
<td>DISPLAY PCB</td>
</tr>
<tr>
<td>30</td>
<td>614385</td>
<td>614385</td>
<td>TOP COVER MOULDING</td>
</tr>
<tr>
<td>40</td>
<td>M3-NUT</td>
<td>M3-NUT</td>
<td>M3 NUT</td>
</tr>
<tr>
<td>50</td>
<td>M3-WASHER</td>
<td>M3-WASHER</td>
<td>M3 WASHER</td>
</tr>
<tr>
<td>55</td>
<td>M3-WASHER-N</td>
<td>M3-WASHER-N</td>
<td>M3 WASHER - NYLON</td>
</tr>
<tr>
<td>60</td>
<td>614386</td>
<td></td>
<td>DISPLAY PANEL LABEL</td>
</tr>
<tr>
<td>70</td>
<td>614387</td>
<td></td>
<td>REAR PANEL LABEL</td>
</tr>
<tr>
<td>80</td>
<td>614389</td>
<td></td>
<td>DISPLAY PANEL METALWORK</td>
</tr>
<tr>
<td>90</td>
<td>BS-7.5-32</td>
<td>BS-7.5-32</td>
<td>SPACER</td>
</tr>
<tr>
<td>100</td>
<td>BS-10.5-32</td>
<td>BS-10.5-32</td>
<td>SPACER</td>
</tr>
<tr>
<td>110</td>
<td>M3-WASHER-S</td>
<td>M3-WASHER-S</td>
<td>M3 WASHER SHAKEPROOF</td>
</tr>
<tr>
<td>120</td>
<td>614388</td>
<td></td>
<td>DISPLAY EARTH ASSY</td>
</tr>
</tbody>
</table>

*Issue: 2 DRAFT
Rev: a*
<table>
<thead>
<tr>
<th>Ref.</th>
<th>BD4000 Part</th>
<th>BD4002 Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>614390</td>
<td>614390</td>
<td>CASE BASE MOULDING</td>
</tr>
<tr>
<td>120</td>
<td>151321</td>
<td>151321</td>
<td>RUBBER FOOT</td>
</tr>
<tr>
<td>200</td>
<td>614391</td>
<td></td>
<td>BASE LABEL SET</td>
</tr>
<tr>
<td>340</td>
<td>CL-117-619</td>
<td>CL-117-619</td>
<td>SERIAL NUMBER LABEL</td>
</tr>
<tr>
<td>Ref.</td>
<td>Part Number</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>614392</td>
<td>PAPER TRAY ASSY</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>614390</td>
<td>BASE MOULDING</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>614393</td>
<td>CHASSIS ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>614394</td>
<td>PRINTER MOTOR ASSY</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>614395</td>
<td>END OF PAPER ASSY</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>WN1412-KB30-8</td>
<td>SELF TAPPING SCREW</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>M3-WASHER-S</td>
<td>M3 WASHER SHAKEPROOF</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>M3X8-POZI-PAN</td>
<td>M3X8 SCREW</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>M3-WASHER-S</td>
<td>M3 WASHER SHAKEPROOF</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>BP190</td>
<td>FOAM PAD</td>
<td></td>
</tr>
</tbody>
</table>

Issue: 2 DRAFT
Rev: a
<table>
<thead>
<tr>
<th>Ref.</th>
<th>BD4000 Part</th>
<th>BD4002 Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>614396</td>
<td></td>
<td>REAR CONNECTOR PCB ASSY</td>
</tr>
<tr>
<td>40</td>
<td>614397</td>
<td></td>
<td>CONNECTOR PANEL ASSY</td>
</tr>
<tr>
<td>80</td>
<td>614419</td>
<td>614419</td>
<td>PRINT HEAD ASSY</td>
</tr>
<tr>
<td>100</td>
<td>614420</td>
<td>614420</td>
<td>PAPER WIDTH MICROSWITCH ASSY</td>
</tr>
<tr>
<td>105</td>
<td>614421</td>
<td>614421</td>
<td>SPEAKER ASSY</td>
</tr>
<tr>
<td>130</td>
<td>WN1412-KB30-10</td>
<td>WN1412-KB30-10</td>
<td>SELF TAPPING SCREW</td>
</tr>
<tr>
<td>160</td>
<td>M3X8-POZI-PAN</td>
<td>M3X8-POZI-PAN</td>
<td>M3X8 POZIPAN</td>
</tr>
<tr>
<td>165</td>
<td>M3-WASHER-S</td>
<td>M3-WASHER-S</td>
<td>M3 WASHER SHAKE</td>
</tr>
<tr>
<td>170</td>
<td>M3-WASHER</td>
<td>M3-WASHER</td>
<td>M3 WASHER</td>
</tr>
<tr>
<td>250</td>
<td>614422</td>
<td>614422</td>
<td>SPEAKER EARTH ASSY</td>
</tr>
<tr>
<td>280</td>
<td>614423</td>
<td>614423</td>
<td>MAINS SOCKET ASSY</td>
</tr>
<tr>
<td>295</td>
<td>614424</td>
<td>614424</td>
<td>MAIN PCB WIRE KIT</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td>EARTHING FINGERS</td>
</tr>
</tbody>
</table>

60

Issue: 2 Draft
Rev: a
<table>
<thead>
<tr>
<th>Ref.</th>
<th>BD4000 Part</th>
<th>BD4002 Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>614425</td>
<td></td>
<td>MAIN PCB ASSY</td>
</tr>
<tr>
<td>110</td>
<td>614433</td>
<td>614433</td>
<td>SWITCH MODE PSU</td>
</tr>
<tr>
<td>165</td>
<td>M3-WASHER-S</td>
<td>M3-WASHER-S</td>
<td>M3 WASHER SHAKEPROOF</td>
</tr>
<tr>
<td>175</td>
<td>M3-NYLOC</td>
<td>M3-NYLOC</td>
<td>M3 NUT</td>
</tr>
<tr>
<td>180</td>
<td>BS-06-32</td>
<td>BS-06-32</td>
<td>BRASS SPACER</td>
</tr>
<tr>
<td>181</td>
<td>NS-06-32</td>
<td>NS-06-32</td>
<td>NYLON SPACER</td>
</tr>
<tr>
<td>185</td>
<td>M3-WASHER-N</td>
<td>M3-WASHER-N</td>
<td>M3 WASHER</td>
</tr>
<tr>
<td>195</td>
<td>BS-04-32</td>
<td>BS-04-32</td>
<td>M3 BRASS SPACER</td>
</tr>
<tr>
<td>205</td>
<td>BP-23-B-M3X10</td>
<td>BP-23-B-M3X10</td>
<td>BRASS PILLAR</td>
</tr>
<tr>
<td>215</td>
<td>614426</td>
<td>614426</td>
<td>CAN INSULATOR</td>
</tr>
</tbody>
</table>

Issue: 2 DRAFT
Rev: a
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>WN1412-KB30-8</td>
<td>POZI PAN SCREW</td>
</tr>
<tr>
<td>165</td>
<td>M3-WASHER-S</td>
<td>M3 WASHER SHAKEPROOF</td>
</tr>
<tr>
<td>175</td>
<td>M3-NYLOC</td>
<td>M3 NUT</td>
</tr>
<tr>
<td>310</td>
<td>543-428</td>
<td>CABLE TIE</td>
</tr>
<tr>
<td>330</td>
<td>MB2A</td>
<td>CABLE TIE BASE 13X13</td>
</tr>
<tr>
<td>335</td>
<td>MB3A</td>
<td>CABLE TIE BASE 19X19</td>
</tr>
<tr>
<td>360</td>
<td>504-978</td>
<td>EARTH LABEL</td>
</tr>
<tr>
<td>Ref.</td>
<td>Part Number</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>614427</td>
<td>MOTOR MOUNTING PLATE</td>
</tr>
<tr>
<td>20</td>
<td>M3X6-POZI-PAN</td>
<td>M3 SCREW</td>
</tr>
<tr>
<td>30</td>
<td>M3-WASHER-S</td>
<td>M3 WASHER SHAKEPROOF</td>
</tr>
<tr>
<td>40</td>
<td>614432</td>
<td>STEPPER MOTOR</td>
</tr>
<tr>
<td>60</td>
<td>614428</td>
<td>MOTOR SUPPORT PLATE</td>
</tr>
<tr>
<td>70</td>
<td>M3X8-POZI-PAN</td>
<td>M3 SCREW</td>
</tr>
</tbody>
</table>

Issue: 2 DRAFT
Rev: a
<table>
<thead>
<tr>
<th>Ref</th>
<th>BD4000 Part</th>
<th>BD4002 Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>FK20</td>
<td>FK20</td>
<td>EVENT MARKER SOCKET</td>
</tr>
<tr>
<td>6</td>
<td>614429</td>
<td></td>
<td>CONNECTOR PANEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EARTH KIT</td>
</tr>
<tr>
<td>10</td>
<td>614430</td>
<td></td>
<td>CONNECTOR PANEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>METALWORK</td>
</tr>
<tr>
<td>20</td>
<td>614431</td>
<td></td>
<td>CONNECTOR PANEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LABEL</td>
</tr>
<tr>
<td>30</td>
<td>EGG1B305-CNL</td>
<td>EGG1B305-CNL</td>
<td>TOCO SOCKET</td>
</tr>
<tr>
<td>40</td>
<td>EGG1B307-CNL</td>
<td>EGG1B307-CNL</td>
<td>ULTRASOUND SOCKET</td>
</tr>
<tr>
<td>250</td>
<td>GCA-1S-255-LT</td>
<td>GCA-1S-255-LT</td>
<td>EARTH WASHER</td>
</tr>
<tr>
<td>260</td>
<td>GEA-1S-240-LN</td>
<td>GEA-1S-240-LN</td>
<td>BACK NUT</td>
</tr>
<tr>
<td>Ref</td>
<td>Part Number</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>614398</td>
<td>SPEAKER WIRE - PREPARED</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>614399</td>
<td>SPEAKER</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>397-792</td>
<td>SLEEVING</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>614400</td>
<td>SPEAKER CLAMP PLATE</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>614401</td>
<td>SPEAKER MOUNT PLATE</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>M3-NYLOC</td>
<td>M3 NUT</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>M3-WASHER</td>
<td>M3 WASHER</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Part Number*</td>
<td>Part Number**</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>20</td>
<td>614404</td>
<td></td>
<td>US1 TDR CABLE ASSY</td>
</tr>
<tr>
<td>40</td>
<td>614402</td>
<td></td>
<td>US1 TRANSDUCER TOP</td>
</tr>
<tr>
<td>50</td>
<td>614408</td>
<td>614408</td>
<td>US1 BUTTON RED</td>
</tr>
<tr>
<td>60</td>
<td>614405</td>
<td>614405</td>
<td>US1 SERIAL NO LABEL</td>
</tr>
<tr>
<td>70</td>
<td>614407</td>
<td>614407</td>
<td>US1 TDR LABEL</td>
</tr>
<tr>
<td>80</td>
<td>M2.5X6-POZI-PAN</td>
<td>M2.5X6-POZI-PAN</td>
<td>POZIPAN SCREW</td>
</tr>
<tr>
<td>90</td>
<td>M2.5-WASHER-S</td>
<td>M2.5-WASHER</td>
<td>M2.5 WASHER SHAKE</td>
</tr>
<tr>
<td>100</td>
<td>M2.5X8-POZI-PAN</td>
<td>M2.5X8-POZI-PAN</td>
<td>POZIPAN SCREW</td>
</tr>
<tr>
<td>110</td>
<td>WN1412-KB22-8</td>
<td>WN1412-KB22-8</td>
<td>POZI PAN SELF TAP SCREW</td>
</tr>
</tbody>
</table>

* Serial numbers up to 895, ** serial numbers over 895
<table>
<thead>
<tr>
<th>Ref</th>
<th>Part Number*</th>
<th>Part Number**</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>614415</td>
<td></td>
<td>TOCO TDR TOP</td>
</tr>
<tr>
<td>20</td>
<td>614409</td>
<td></td>
<td>TOCO TDR BASE</td>
</tr>
<tr>
<td>30</td>
<td>614410</td>
<td>614410</td>
<td>TOCO BUTTON BLUE</td>
</tr>
<tr>
<td>40</td>
<td>614412</td>
<td></td>
<td>TOCO CABLE ASSY</td>
</tr>
<tr>
<td>60</td>
<td>M2.5-WASHER-S</td>
<td>M2.5-WASHER-S</td>
<td>M2.5 WASHER SHAKE</td>
</tr>
<tr>
<td>70</td>
<td>M2.5X8-POZI-PAN</td>
<td>M2.5X8-POZI-PAN</td>
<td>M2.5 POZI PAN</td>
</tr>
<tr>
<td>80</td>
<td>WN1412-KB22-8</td>
<td>WN1412-KB22-8</td>
<td>SELF TAP SCREW</td>
</tr>
<tr>
<td>90</td>
<td>1211</td>
<td>1211</td>
<td>BOOT</td>
</tr>
<tr>
<td>100</td>
<td>1208</td>
<td>1208</td>
<td>SEALING GASKET</td>
</tr>
<tr>
<td>110</td>
<td>1204</td>
<td>1204</td>
<td>TRANSDUCER SPACER</td>
</tr>
<tr>
<td>120</td>
<td>1210</td>
<td>1210</td>
<td>TOCO BUTTON</td>
</tr>
<tr>
<td>140</td>
<td>614411</td>
<td>614411</td>
<td>TOCO TDR SERIAL NO.</td>
</tr>
<tr>
<td>150</td>
<td>WN1412-KB22-8</td>
<td>WN1412-KB22-8</td>
<td>SELF TAP SCREW</td>
</tr>
<tr>
<td>160</td>
<td>614434</td>
<td>614434</td>
<td>TOCO LABEL</td>
</tr>
</tbody>
</table>

* Serial numbers up to 2584, ** serial numbers over 2584
13 Warranty And Service

Huntleigh Diagnostics' standard terms and conditions apply to all sales. A copy is available on request. These contain full details of warranty terms and do not limit the statutory rights of the customer.

In the unlikely event that you need to return this product, please adopt local decontamination procedures and provide documentation which outlines the product's status. Please ensure that this documentation is accessible without having to open the package.

To order spare parts and for price information, contact the Service Department at Huntleigh Diagnostics. Before phoning, be sure to have the following information available to ensure that our Service Department personnel are able to correctly identify your requirements:

- Main unit model number.
- Main unit serial number.
- Transducer types.
- Transducer serial number(s).
- Part numbers of items required.

The Service Department direct line shown below offers a 24 hour service. During office hours, trained staff will be available to assist you. Outside office hours, an answering machine will allow you to leave a message.

Huntleigh Diagnostics,
Service Department,
35, Portmanmoor Road,
Cardiff, CF24 5HN, UK.

Service Department Direct Line: 029 20496793 (24 hr answer service)
Fax: 029 20492520
E-mail: service@huntleigh-diagnostics.co.uk
14 Overseas Offices

U.S.A.

Huntleigh Healthcare Inc.
227 Route 33 East
Manalapan
New Jersey 07726
U.S.A.

Tel: (732) 446-2500 or toll-free 1-800-223-1218
Fax: (732) 446-1938

Germany

Huntleigh Nesbit Evans Healthcare GmbH.,
Im Hülsenfeld 19
40721 Hilden
Germany

Tel: 0049 2103/9711-00
Fax: 0049 2103/9711-80

Australia

Huntleigh Healthcare
63 Buckingham Drive
PO Box 1116
Wangara
W.A. 6065
Australia

Tel: 00168 9309 3083
Fax: 00168 9309 4582

Dopplex® is a registered trade mark of Huntleigh Technology PLC in the UK.

As part of the ongoing development programme the company reserves the right to
modify specifications and materials of the Baby Dopplex without notice.

©Huntleigh Technology plc 2000.
15 Appendices

15.1 Appendix A

A.1 Special Handling Procedures

The PCB assemblies used in the main unit, toco, FECG and ultrasound transducer contain electrostatic sensitive devices. These may be permanently damaged by electrostatic potentials encountered in routine handling of the assemblies during servicing.

We therefore recommend that all servicing be carried out in a specialised handling area (SHA) as defined by CECC00015 (published by CENELEC) to avoid damage to the assemblies.

A.2 Recommended Soldering Equipment for Rework

The following should be used for all soldering operations carried out on any Dopplex product in servicing:

Soldering Iron: 'Mini' type iron, temperature controlled to 375°C with fine tip (typically 0.8mm(1/32")) earth bonded. e.g.Weller EC3100D-ESP.

Solder: SN62 type solder with multi cored flux type RA conforming to QQ-S-571e (US federal specification). e.g. Multicore 'smart wire'.

If further information is required, please contact Huntleigh Diagnostics.
15.2 Appendix B

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque Settings cNm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Panel Metalwork to case</td>
<td>35</td>
</tr>
<tr>
<td>Display PCB</td>
<td>35</td>
</tr>
<tr>
<td>Print Head Mounting Plate</td>
<td>100</td>
</tr>
<tr>
<td>Print Head Support - Nuts</td>
<td>35</td>
</tr>
<tr>
<td>Print Head Support - Screws</td>
<td>35</td>
</tr>
<tr>
<td>Stepper Motor to Bracket</td>
<td>100</td>
</tr>
<tr>
<td>Stepper Motor Bracket to Base</td>
<td>100</td>
</tr>
<tr>
<td>Main PCB</td>
<td>25</td>
</tr>
<tr>
<td>Chassis</td>
<td>60</td>
</tr>
<tr>
<td>PSU</td>
<td>60</td>
</tr>
<tr>
<td>Speaker Bracket Screws</td>
<td>60</td>
</tr>
<tr>
<td>Speaker Bracket Nuts</td>
<td>35</td>
</tr>
<tr>
<td>Rear Panel PCB</td>
<td>35</td>
</tr>
<tr>
<td>Paper Tray Microswitch Plate</td>
<td>20</td>
</tr>
<tr>
<td>Case Lid Screws</td>
<td>45</td>
</tr>
<tr>
<td>Transducer Top</td>
<td>20</td>
</tr>
<tr>
<td>US/Toco PCB</td>
<td>40</td>
</tr>
<tr>
<td>Paper width microswitch</td>
<td>20</td>
</tr>
</tbody>
</table>

Issue: 2 DRAFT 71 Rev: a