Distributors:

Cynosure, UK Ltd.
The Old Barn Offices
Lower Mount Farm, Long Lane
Cookham, Berkshire SL6 9EE
England
Telephone: 44-1628-522252
Telefax: 44-1628-520525

Cynosure France
86, Avenue Lenine
94250 Gentilly
France
Telephone: 33-1-49.85.6005
Telefax: 33-1-49.85.6004

Cynosure, GmbH.
Robert-Bosch-Strasse 11A
D-63225 Langen
Germany
Telephone: 49-6103-20111-00
Telefax: 49-6103-20111-11

Cynosure KK
Kasuga Business Center Bldg. 1F
1-15-15 Nishikata, Bunkyo-Ku
Tokyo 113-0024
Telephone: +81-3-5844-3651
Telefax: +81-3-5844-3652

Cynosure, Inc.
220 Tagore, #01-01/2
Liberty Warehouse
Singapore 787600
Telephone: 65-9988-4565
Telefax: 65-6853-4309

™ Cynergy is a trademark of Cynosure, Inc.
® Cynosure is a registered trademark of Cynosure, Inc.

This manual is intended for both U.S. and international distribution.
© 2005 Cynosure, Inc. All rights reserved.
Document #850-1065-000, Rev. 6, 6/06
Table of Contents

Glossary of Symbols and Abbreviations ..6

Section 1 **Introduction** ...7

 About the Lasers ..7
 About the Manual ...7

Section 2 **Equipment Safety** ...9

 Potential Hazards ...9
 Optical Hazard ..9
 Electrical Hazard ...10
 Chemical Hazard ...10
 Potential Chemical Accidents and Appropriate Responses ...10
 Hot Water Hazard ...10
 Laser-Induced Fire Hazard ..11
 Electromagnetic Compatibility Hazards ...11
 Laser Safety Features ..12
 Key Switch ..12
 Emergency Laser Stop ...12
 Standby Mode ..12
 Delayed Ready Mode ...12
 Automatic Shutdown Feature ..13
 Remote Interlock ...13
 Audible Tone ...13
 Laser Warning Sign ...13
 Locking Casters ...13
 Device Labels ...13
 Figure 1A–Device Labels in Position ...14
 Figure 1B–Device Labels Used ..15

Section 3 **Site Preparation** ..17

 Spatial Requirements ...17
 Electrical Requirements ..17
 Environmental Requirements ...18
 Storage and Transport Requirements ..18
 Disposal of Waste Electrical and Electronic Equipment ...18
Section 4 Laser Description

Main Components

- Figure 2A–Main Components, Front
- Figure 2B–Main Components, Inside Front Door
- Figure 2C–Main Components, Rear View
- Figure 2D–Main Components, Right Side from Rear

Key Switch

Handpieces and Delivery Optical Fiber

- Connecting the Optical Fiber
- Changing Handpieces
- Figure 3–Handpiece
- Trigger Switches

Front Control Panel

- Figure 4–Front Control Panel
- Emergency Laser Stop
- Cal Port
- Display

Display Screens

- Home Screen
- Figure 5A–Home Screen
- Treatment Screens
- Figure 5B–PDL Screen
- Figure 5C–YAG Screen
- Treatment Screen Elements
- Figure 5D–Laser Screen Elements
- MultiPlex Treatment Screen
- Figure 5E–MultiPlex Laser Screen
- Utility Screen
- Figure 5F–Utility Screen
- Option Screen
- Figure 5G–Option Screen

System Specifications

- General Specifications

Fluence Specifications

- Cynergy PDL
- Cynergy YAG
- Cynergy MultiPlex Option
Section 5 Laser Operation

- Laser Start-Up ... 39
- Laser Shutdown .. 39
- Laser Calibration... 40
- Energy Regulation During Treatment 40
- Laser Operation .. 41
- Changing Treatment Parameters 41

Section 6 Clinical Application–YAG

- Laser Operator Training Requirements–YAG 43
- Indications, Contraindications and Adverse Effects–YAG ... 44
 - Indications ... 44
 - Contraindications .. 44
 - Adverse Effects ... 44
- Pretreatment Recommendations–YAG 45
 - Determine Suitability ... 45
 - Inform Patient About the Treatment 45
 - Photographs ... 45
- Treatment Recommendations–YAG 46
 - Minimizing Adverse Effects 46
 - Setting Energy Level .. 46
 - Number and Length of Treatment Sessions 46
 - Determining End of Treatment 46
- Posttreatment Recommendations–YAG 46

Section 7 Clinical Application–PDL

- Laser Operator Training Requirements–PDL 47
- Indications, Contraindications and Adverse Effects–PDL 48
 - Indications ... 48
 - Contraindications .. 48
 - Adverse Effects ... 48
- Patient Selection–PDL ... 48
- Pretreatment Recommendations–PDL 49
 - Determine Suitability ... 49
 - Inform Patient About the Treatment 49
 - Photographs ... 49
- Treatment Recommendations–PDL 50
 - Minimizing Adverse Effects 50
 - Setting Energy Level .. 50
Section 8 Clinical Application–MultiPlex Option .. 51

Laser Operator Training Requirements–MultiPlex .. 51
Indications, Contraindications and Adverse Effects–MultiPlex 52
 Indications... 52
 Contraindications ... 52
 Adverse Effects .. 52

Patient Selection–MultiPlex .. 52
Pretreatment Recommendations–MultiPlex ... 53
 Determine Suitability ... 53
 Inform Patient About the Treatment ... 53
 Photographs .. 53

Treatment Recommendations–MultiPlex ... 54
 Minimizing Adverse Effects ... 54
 Setting Energy Level ... 54
 Number and Length of Treatment Sessions ... 54
 Determining End of Treatment .. 54

Section 9 Maintenance ... 55

Cleaning and Disinfecting Equipment ... 55
Adding Water to the Reservoir ... 55
Dye Kit Methodology .. 56
 Dye Injection ... 56
Replacing the Dye Kit .. 57
 Figure 6A–Disconnecting and Removing Dye Filter ... 57
 Figure 6B–Detaching/Inserting Dye Inject Bottle .. 58
Troubleshooting .. 59
 Faults .. 59
 Fault Code Table .. 59
 Self Test ... 61
 Troubleshooting Chart .. 62
 Transferring Diagnostic Data .. 63
 Figure 7A–USB Access Panel Location ... 63
 Figure 7B–USB Slot Location .. 64
Section 10 Customer Support

Direct-Purchase Warranty
Distributor-Purchased Warranty
Warranty Claims
Installation
Customer Service
Scope of Service
Contacting Customer Service

Appendix A Service Calibration

Schedule for Calibration
Overview
Required Equipment
Calibration Procedures
Calibrating the Resonator Port, YAG
Calibrating the Resonator Port, PDL
Calibrating the Cal Port, YAG
Calibrating the Cal Port, PDL

Appendix B Electromagnetic Compatibility

Appendix C Declaration of Conformity
Glossary of Symbols and Abbreviations

The following symbols and abbreviations may be used on the Cynergy laser and/or in this manual.

Symbols

- Declaration of Conformity to Medical Device Directive 93/42/EEC
- CE Mark to Directive 93/465/EEC
- Optical Fiber Applicator per EN60601-2-22: 1996
- Type B applied part per EN60601-1: 1990
- Attention, consult accompanying documents
- Off—power disconnection from mains
- Laser Hazard Warning
- On—power connection to mains
- Dangerous Voltage
- Foot Switch
- Non-ionizing Radiation
- WEEE symbol per EN50419
- Remote Interlock Connector per EN60601-2-22: 1996

Abbreviations

- °C Degrees Celsius
- V Volts
- A Amperes
- DVM Digital Voltmeter
- mA Milliamp
- Hz Hertz
- µA Microamp
- J Joule
- AC Alternating Current
- J/cm² Joule per square centimeter
- cm Centimeter
- kW Kilowatt
- mm Millimeter
- ms Millisecond
- nm Nanometer
- Ω Ohms
- CW Continuous Wave
- mΩ Milliohms
Section 1 Introduction

About the Lasers

The Cynergy laser combines two lasers—a high-powered pulse dye laser (PDL) and a Nd:YAG laser—into one unit with a common delivery system. The result is a multi-application dermatological laser that treats small red vessels, scars, rosacea, vascular lesions and sun-damaged skin using the pulse dye wavelength, as well as treating larger facial and leg veins, vascular lesions, and unwanted hair on all skin types using the YAG wavelength. The laser is also available with the Cynergy MultiPlex option that combines both wavelengths in a single pulse offering improved clinical outcome. This manual addresses both lasers including the MultiPlex option.

The laser is designed to effectively couple the laser energy directly to the target while leaving the surrounding tissue unharmed. This principle is known as Selective Photothermolysis (SPT). By careful selection of the wavelength, pulse width, spot size, energy and cooling method, the effectiveness of the laser on the target is maximized, while any heating to surrounding tissue is minimized. Thermokinetic Selectivity®, or TKS®, is a corollary of SPT. It uses a laser pulse width that is much longer than the thermal relaxation time of small surrounding structures, yet less than the thermal relaxation time of the large target. This allows the small surrounding structures to remain cool while the larger target heats up to the destruction point.

The Cynergy with Multiplex™ Option, which allows treatment with both PDL and YAG in a single pulse, further exploits the principles of SPT and TKS for maximum efficacy in the treatment of cutaneous vascular lesions.

About the Manual

The Cynergy Operator Manual provides the following information about the laser:

- Equipment Safety
- Site Preparation
- Laser Operation
- Maintenance
- Customer Support
- Storage and Transport

Although the manual provides useful information on the use and maintenance of the laser, it is not intended to be a complete guide. Cynosure suggests that all health care professionals who plan to use the laser seek further training in its proper use. The custodian of the laser shall take steps to prevent its unauthorized use.

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

® Thermokinetic Selectivity and TKS are registered trademarks of Cynosure, Inc. / Cynergy with Multiplex is a trademark of Cynosure, Inc.
This page has been intentionally left blank.
Section 2 Equipment Safety

Potential Hazards

As with any equipment, there are potential hazards. Before using the laser, operators should be aware of the following types of hazards: optical, electrical and combustible. This section of the manual describes these potential hazards and suggests precautions. This section also describes safety features designed to minimize potential hazards.

Optical Hazard

The laser emits an intense energy beam of invisible and visible laser light radiation that can cause serious eye damage with direct or even indirect optical contact.

WARNING: Always wear the protective eyewear supplied with the laser system. Failure to wear the appropriate protective eyewear can result in serious eye injury.

Please follow these precautions to avoid optical damage to laser operators, assisting personnel and patients.

♦ All persons in the room during treatment must wear the protective eyewear recommended by Cynosure. See “System Specifications” starting on page 34 for recommendations.
♦ Never look directly into the handpiece, fiber or fiber opening, even while wearing protective eyewear.
♦ Mark treatment rooms with the laser warning signs to avoid unnecessary personnel entering room during treatment.
♦ Limit entry to the treatment room only to personnel who are assisting in treatment and are trained in the use of the equipment.
♦ Cover windows and other openings in the treatment room to avoid the inadvertent escape of laser light.
♦ Direct the activated laser only at the intended area of treatment.
♦ Place one person in charge of the laser system’s controls during the treatment.
♦ Cover reflective objects, such as jewelry or mirrors, which could deflect the laser beam to an area other than the intended treatment area.
♦ Put the laser into Standby Mode when the laser is not in use. When in Standby Mode, the laser beam cannot be inadvertently activated.
♦ Ensure that all appropriate staff members are trained to shut off the laser in the case of an emergency.
♦ Keep the laser start-up key in a safe place outside of the treatment room when the laser is not in use.
Electrical Hazard
The laser system uses high voltage. Do not open the protective panels unless you are trained and authorized to do so.

Chemical Hazard
The Cynergy laser uses a dye medium. Handle the dye with care, both to protect against toxicity and against staining. Operators should follow these precautions:
♦ Wear rubber or plastic gloves when handling the dye.
♦ Do not dispose of dye down drains.
♦ Return empty dye bottles and used filters to Cynosure.
♦ Avoid spillage on fabrics or on any porous material.

Potential Chemical Accidents and Appropriate Responses
The following table lists potential chemical accidents and their appropriate emergency responses.

<table>
<thead>
<tr>
<th>Chemical Accident</th>
<th>Appropriate Emergency Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion of dye or solvent</td>
<td>Drink water, induce vomiting, and seek immediate medical attention.</td>
</tr>
<tr>
<td>Excessive inhalation of dye or solvent</td>
<td>Go outdoors and inhale fresh air. Seek medical attention if symptoms appear.</td>
</tr>
<tr>
<td>Eyes exposed to dye or dye solvent</td>
<td>Rinse eyes with water. Seek medical attention if symptoms appear.</td>
</tr>
<tr>
<td>Skin exposed to dye or dye solvent</td>
<td>Immediately wash the exposed skin area with plain water, then with soap and water.</td>
</tr>
</tbody>
</table>

Hot Water Hazard
The laser uses water cooling to maintain the system at its proper operating temperature. This water can become very hot (greater than 50 °C) and could scald. Do not perform any maintenance on the water system while hot. Always let the system cool down before changing the deionizing filter or adding deionized or distilled water.
Laser-Induced Fire Hazard

When the laser beam contacts an exterior surface, that surface can absorb the laser energy. This raises the surface temperature, whether the surface is skin, hair, clothes or any flammable substance. Operators should take the following precautions to prevent a laser-induced fire:

- Use non-flammable substances for uses such as anesthesia, skin preparation, and cleaning or disinfecting instruments.
- Be especially careful with the use of oxygen. Oxygen accelerates both the severity and the extent of a fire.
- Keep a minimum of combustible materials (e.g., alcohol) in the treatment room. If treatment requires the use of gauze, first soak it in water.
- Always keep a small fire extinguisher and water in the treatment room.

Electromagnetic Compatibility Hazards

The Cynergy laser has special precautions regarding electromagnetic compatibility hazards (EMC), and need to be installed and operated according to the EMC information provided in Appendix B, starting on page 73 of this manual.

CAUTION: Portable and mobile radio frequency (RF) communication equipment can affect the Cynergy laser.

CAUTION: The Cynergy laser should not be used adjacent to, or stacked with, other equipment other than the Cynergy PL system. If the laser must be used adjacent to, or stacked with other equipment, then observe the laser in its configuration to verify that operation is normal.
Laser Safety Features

The laser offers several safety features to prevent its misuse or unintentional activation. All personnel who operate the laser or assist in the operation should be familiar with these safety features.

Key Switch
The Key Switch controls the electrical activation of the laser system. Only those authorized personnel who have access to the key can start the laser system. Keep the laser start key in a secure location to prevent use by unauthorized personnel.

Emergency Laser Stop
The Emergency Laser Stop is a dedicated override switch for immediate shut down of the laser system.

Standby Mode
Standby Mode is designed to prevent unintentional or accidental activation of the laser. The system enters Standby Mode when the operator presses the Standby Key on the touch screen, or when laser is selected from the Home screen at start up. The laser status is displayed on the upper-left part of the screen.

When the laser is in Standby Mode, the system is on but the operator cannot activate the laser beam without first pressing the Ready Key on the touch panel.

Delayed Ready Mode
From Standby Mode, press the Ready Key to activate the laser. As required by the Center for Devices and Radiological Health of the U.S. Food and Drug Administration and International Standards (IEC601-2-22 and 825-1), there is a 3-second delay from the time the Ready Key is pressed until the laser can be activated. This delay, during which there is an audible beep and the ready key is lit, provides time for personnel to prepare before the beginning of treatment.
Automatic Shutdown Feature
When certain faults occur, the laser automatically shuts down and a fault code, message and corrective action is displayed. For a complete list of faults and failure analysis information, see “Troubleshooting,” starting on page 59.

Remote Interlock
Cynosure provides a remote interlock circuit that can connect to a door switch of a treatment room. When the remote interlock is wired in series with a door switch, the laser automatically shuts down if anyone enters the treatment room. Contact Cynosure for detailed instructions on how to implement this function.

Audible Tone
Laser emission is indicated by a pulsed tone for the period of the emission.

Laser Warning Sign
Cynosure supplies a laser warning sign with each laser system. We recommend posting the sign at all entrances to rooms with an operating laser. Please check the policy of your hospital or clinic.

Locking Casters
The front casters of the laser may be locked into place. On the top of the front casters is a locking lever. To lock the casters, press down on the front of the lever. To release the casters, lift the lever into the original horizontal position.
Device Labels

The Cynergy laser comes with a series of required safety labels. Be sure that all personnel are familiar with these labels and their meanings.

![Figure 1A–Device Labels in Position](image)

Figure 1A–Device Labels in Position
Figure 1B–Device Labels Used
This page has been intentionally left blank.
Section 3 Site Preparation

When preparing the laser site, operators should consider the spatial, electrical, environmental, transportation and storage requirements of the laser unit.

Spatial Requirements
The Cynergy and Cynergy III systems, which include the Cynergy Pulse Light (PL) system, have the following dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Cynergy Laser</th>
<th>Cynergy III Cynergy w/Cynergy PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height:</td>
<td>40" (101 cm)</td>
<td>48" (121 cm)</td>
</tr>
<tr>
<td>Width:</td>
<td>18" (46 cm)</td>
<td>19" (48 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>31" (79 cm)</td>
<td>31" (79 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>270 lbs (123 kg)</td>
<td>310 lbs (141 kg)</td>
</tr>
</tbody>
</table>

For more information on the pulse light system, please refer to the Cynosure PL Operator Manual.

Electrical Requirements
Please consider the following electrical requirements before installing the laser unit:

♦ The AC line power requirements for the laser are:
 200-240 VAC, Single Phase
 30 Amps
 50-60 Hz
♦ The plug is NEMA L6-30.
♦ Power receptacles must be within 15 feet of the laser site.
♦ The power receptacle must be grounded.
♦ The laser should not share a power line with other heavy power-load equipment such as air conditioners or elevators. Ideally, the laser unit should be on a separate power line with a separate circuit breaker.
Environmental Requirements

Follow these environmental requirements to properly maintain the laser system.

♦ Keep the air free of corrosive substances, such as salts and acids. These pollutants may damage electrical wiring and optical surfaces.

♦ Keep dust and hair particles to a minimum. Shave patient’s skin in a separate room. Dust and hair particles can cause permanent damage to optical components.

♦ Keep humidity in the laser room at 20% to 80%, non-condensing.

♦ Keep the laser room temperature from 50° to 80° F (10° to 27°C).

♦ Do not place laser unit near heating vents or other sources of temperature variation.

NOTE: Most of the heat that is dissipated by the laser exits the rear panel.

Storage and Transport Requirements

To maintain the laser system properly during storage and transport, follow these requirements.

♦ Keep the ambient temperature between 40° and 110° F (4° to 43° C).

♦ Keep the laser system in a location where the humidity is between 10% and 90%, non-condensing.

♦ Lift only with suitable and appropriate equipment.

♦ Minimize shock and vibration.

♦ Do not drop.

♦ Store the laser system where the air is free of corrosive substances, such as salts or acids.

♦ Store the laser system where there is a minimum of dust particles.

♦ When storing or transporting the laser in temperatures less than 40° F (4° C), the laser coolant system must be drained. This is a highly complex process and should be performed by a trained service technician. Please contact Cynosure Customer Service, as detailed on page 66 to arrange for a service call.

Disposal of Waste Electrical and Electronic Equipment

To comply with European Commission Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE) and other country and state regulations, please DO NOT dispose of this laser equipment in any location other than designated locations.
This section of the manual gives a general description of the laser including the system’s specifications.

Main Components

Refer to Figures 2A and 2B to identify the main components of the laser system.
Figure 2B–Main Components, Inside Front Door
Figure 2C–Main Components, Rear View
Key Switch

The key switch and key turn the system on and off. There are two positions on the switch: ON (\(|\)) and OFF (\(\circ\)). To turn the laser on, insert the key and turn the key switch to the start position. Always remove the key after use to prevent access by unauthorized users.
Handpieces and Delivery Optical Fiber

The delivery system of the laser consists of a fused silica optical fiber that attaches to a handpiece. The optical fiber is 1.5 mm in diameter and 3 meters long. From the laser head, a lens couples the treatment and aiming source into the delivery optical fiber. The optical fiber delivers the laser beam through the handpiece to the treatment area. To initiate treatment, position the handpiece tip against the target site.

WARNING: There is a potential hazard when inserting, steeply bending, or inadequately tightening the proximal end of the fiber optic cable. Always follow the recommendations in this manual to avoid damaging the fiber or delivery system and/or harming the patient or user.

If the aiming beam is not present at the distal end of the delivery system, its intensity is reduced, or it looks diffused, this indicates a possible problem with the delivery system. Refer to the “Troubleshooting Chart,” starting on page 62 for more information.

Connecting the Optical Fiber

Refer to **Figures 2C and 3** for an illustration of the fiber assembly and handpiece.

WARNING: Using cables other than provided may result in increased emissions or decreased immunity of the equipment. Inspect the fiber ends to verify that they are clean and free of all dust.

1. Screw the fiber connector into the laser aperture on the rear of the laser. See **Figure 2C** for laser aperture location. Firmly tighten by hand.
2. Firmly seat the electrical connector into the handpiece electrical port on the rear of the laser. See **Figure 2C** for the location of handpiece electrical port.
3. Attach the optical fiber connector to the handpiece.
4. Connect the handpiece electrical cable to the handpiece.
5. Wind the fiber onto the fiber pole’s pigtail end. Adjust the position of the fiber by sliding the fiber assembly through the pigtail. Secure the assembly to the fiber pole with Velcro. If the fiber pole needs to be raised or lowered, use the fiber pole adjustment level on the rear of the laser.
6. Verify that all connections are tight.
7. Place the handpiece into the handpiece holder or calibration port.

Changing Handpieces

To change handpieces, remove the optical fiber connector to disconnect the fiber from the handpiece, see **Figure 3**. Then disconnect the handpiece electrical cable by pulling it from the handpiece. Connect the new handpiece, and then reconnect the handpiece electrical cable. Be sure to calibrate the laser before initiating treatment with a new handpiece.
Trigger Switches

When the laser system is in the Ready Mode and the three-second delay has passed, the operator can activate the laser beam by pressing either of the following switches:

♦ The Finger Switch, an electrical switch located on the handpiece, as shown in **Figure 3**.
♦ The Foot Switch, a pneumatic switch that reduces the chance of electrical hazard in a wet environment. To connect the foot switch, insert the foot switch into the footswitch port on the rear of the laser. See **Figure 2C**.
Front Control Panel

The Front Control Panel, Figure 4, contains the controls and displays for operating and monitoring the laser. It is essential that operators understand and use these controls properly.

Emergency Laser Stop

The Laser Stop shuts down the system immediately, and should be reserved for emergency use only. Use the Key Switch to routinely shut down the laser.

Cal Port

The Cal Port is where the handpiece (distal end) is placed during calibration. As the handpiece fires laser light into the Cal Port, a sensor measures the energy of the beam and, by knowing which handpiece is inserted, displays the fluence (energy per unit area, J/cm²) on the display. The window in the Cal Port must be kept clean to ensure proper calibration. Clean the window with a tissue or soft cloth weekly or whenever debris or smudges are present.

WARNING: Failure to keep the Cal Port window clean may result in incorrect fluence leading to patient injury.

Display

The display is at the center of the user interface and consists of a high-resolution color display with a touch screen.
Display Screens

Home Screen
After the laser is turned on, the computer initializes and displays the Cynosure logo. After the system completes a diagnostic routine, the Home Screen is displayed. From the Home Screen menu, the user can choose the PDL laser, the YAG laser, the Cynosure MultiPlex function, a Utility program or a Database of laser treatment parameters. These screens and functions are discussed in detail in the following pages.

Figure 5A–Home Screen

After the laser has warmed up and before the user can begin treatment, the user is prompted to press System Check. System check is performed with the delivery system connected and the handpiece seated firmly into the calibration port. System check initiates a sequence in which the PDL and YAG lasers fire automatically and evaluate the basic performance level of the system. This check also includes the delivery systems. Following the system check, the user is instructed to take some action based on its results.
Treatment Screens

If the PDL is chosen, the screen shown in Figure 5B will appear that allows the user to set the parameters of the PDL. When the appropriate values are chosen for fluence (for a given handpiece), pulse width and repetition rate, the user can begin treatment by pressing Ready. The laser status is displayed along the top row and the user messages along the bottom rows.

![Figure 5B–PDL Screen](image)

The treatment screens are designed so that the user can see at a glance which wavelength has been chosen. For example the YAG screen, Figure 5C, uses blue fields with white text, while the PDL screen uses the opposite—white fields with blue text.

![Figure 5C–YAG Screen](image)
Treatment Screen Elements

1–Laser Status Bar
At the top left of the status bar, the status of the laser is displayed, i.e., Ready mode, Standby mode or Calibration (Cal) mode. At the center of the status bar, the type of laser and the spot size chosen are displayed.

2–Fluence
The Fluence Display shows the selected fluence from the handpiece. The units are expressed in joules per square centimeter (J/cm²). Before or after calibration, press the (▲) key to increase the fluence, or press the (▼) key to decrease the fluence. After the correct fluence is achieved and the system is calibrated, the handpiece can be removed from the Cal Port.

3–Pulse Width
Pulse Width indicates the period for one laser pulse. The pulse width can be set from 0.3 ms to 300 ms depending on the laser. See, “System Specifications,” starting on page 34 for further information. To increase the pulse width, press the (▲) key. To decrease the pulse width, press the (▼) key.

![Figure 5D–Laser Screen Elements](image-url)
4–Pulse Rate
Pulse Rate indicates the selected frequency of laser pulses. Depending on the laser and spot size, pulse rate can be adjusted from ‘single’ (one pulse at a time) to ‘5 Hz’ (five pulses per second). See, “System Specifications,” starting on page 34 for further information. Press the display box to toggle through the available pulse rates.

5–Counter
The counter displays a count of the treatment pulses as they occur (since the last reset). To reset the counter to zero, press the counter box. Each wavelength, as well as the MultiPlex option, has a separate counter.

6–Wavelength
The wavelength box allows the user to toggle between the PDL and YAG lasers. When changing wavelengths, the system prompts the user to verify the change by pressing wavelength again to confirm, or by pressing the text message area to cancel. To enter the Cynergy MultiPlex screen, exit to the Home Screen and access the MultiPlex screen from there.

7–Home
Press the Home key box to access the Home screen.

8–Ready/Standby
This button changes the status of the laser to either Standby mode or Ready mode. Press the display box directly to change the laser status.

9–Text Message Area
The text message area is where helpful information is provided for the user, such as instructions or error messages.
MultiPlex Treatment Screen

The basic format of the MultiPlex Screen, see Figure 5E, is the same as the other treatment screens. The MultiPlex Screen has a laser status bar, home key, a reset counter, standby and ready keys, as well as a text message area. Unlike the other treatment screens, the MultiPlex screen can only be accessed from the Home Screen. Where the MultiPlex Screen differs in both look and function is in the way treatment parameters can be changed.

![Figure 5E–MultiPlex Laser Screen](image)

1–Fluence

The fluence settings for the PDL and YAG now appear side-by-side, since the Multiplex option delivers light from both wavelengths in one pulse. **NOTE:** Currently, one Multiplex configuration is available consisting of a PDL followed by the YAG. The fluence settings can still be changed by pressing the up (▲) and down (▼) keys.

2–Pulse Groups

There are eight pulse groups that can be selected in Multiplex mode. Each pulse group has a fixed pulse width for each of the lasers, a range of acceptable fluence parameters, and an appropriate range in which the delay can be set. See, “Cynergy MultiPlex Option,” table on page 37 for specific settings.

3–Delay

There is no repetition rate adjustment for the MultiPlex option since the laser uses only the one shot per second (1 Hz) repetition rate. The delay between multiplex pulses is adjusted by using the left/right arrows in the display window. The delay can be short, medium, long or extended depending on the pulse group and handpiece selected.
Utility Screen

The Utility Screen, see Figure 5F, displays helpful diagnostic information about the status of the laser, such as the number of shots on the flashlamps. Additionally, it provides access to system control parameters that can be changed, e.g., LCD brightness.

1–Software Version

The type of laser is displayed and the version number of the software installed on the unit.

2–Home

This field allows the user to exit the utility screen and return to the home screen.

3–Brightness

Brightness allows the screen brightness to be adjusted. Press the touch key to increase or decrease the brightness.

4–Aim Beam

Aim allows the red treatment aim beam intensity to be adjusted. Press the touch key to adjust the beam intensity from (0), where aim beam is off, to (5), where aim beam intensity is maximized.

5–PDL Count Reset

When a dye kit is changed, the dye counter is reset. This is analogous to a trip odometer for the dye kit. The total number of shots is still recorded in addition to the dye kit count, which equals the shots delivered for that dye kit. See “Dye Kit” under “7–System Status Area,” on page 32 for more information.
6–Fault Log

The fault log enters a new page that displays the fault history of the laser. This is useful for diagnostic purposes.

7–System Status Area

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM</td>
<td>This field generates a number used for diagnostic purposes only. It is an indication of the general health of both lasers and their associated delivery transmission system. NOTE: PDL info is followed by YAG laser info.</td>
<td>CYDH9876 (Serial Number)</td>
<td>This field is the serial number: a four-character alphanumeric product code, followed by a sequential number. The number used here is only an example.</td>
</tr>
<tr>
<td>System Count PDL</td>
<td>The total number of laser pulses for the PDL is displayed.</td>
<td>System Count YAG</td>
<td>The total number of laser pulses for the YAG laser is displayed.</td>
</tr>
<tr>
<td>Lamp Count PDL</td>
<td>The total number of flashlamp pulses since the last flashlamp change is displayed for the PDL.</td>
<td>Lamp Count YAG</td>
<td>The total number of flashlamp pulses since the last flashlamp change is displayed for the YAG laser.</td>
</tr>
<tr>
<td>Dye Kit/Days Used Since Reset/Date of Reset</td>
<td>The total number of pulses delivered since the PDL count reset button was pressed, usually the number of shots on a dye kit. Additionally the number of days the laser has been used since reset was pressed is displayed, as well the date it was reset.</td>
<td>DYE ABS/Sig</td>
<td>The dye absorbance is displayed. The normal range is from 0.7 to 1.1. Sig is the signal level of the dye concentration monitor and is used only by service personnel for diagnostics purposes.</td>
</tr>
<tr>
<td>HVPS</td>
<td>The voltage on the capacitor is displayed. This voltage is used only by service personnel. It normally is observed to drop near zero from the operating voltage of 400 to 1200 VDC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8–Options

The options field, when pressed, provides access to the option screen where additional user functions can be performed.
Option Screen

1–Home
This field allows the user to exit the utility screen and return to the home screen.

![Option Screen](image)

2–Language
Press the language field to change the display language to German, Spanish or French. The default language is set to English.

3–Dye Inject
By pressing the dye inject field, the normal sequence of adjusting the dye concentration is initiated manually. See, “Dye Injection,” on page 56 for more information. **IMPORTANT:** This function should only be pressed on the advisement of Cynosure Service personnel.

4–Run Diagnostics
Pressing display diagnostics generates a report of pertinent laser diagnostic information.

5–Display Dump to USB
This field allows users and service personnel to transfer diagnostic information to a USB stick for transfer and further analysis by Cynosure. For more information refer to “Transferring Diagnostic Data,” in the Troubleshooting section starting on page 63.
System Specifications

General Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Cynergy</th>
<th>Pulse Dye Laser (PDL)</th>
<th>YAG Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (Flashlamp-excited):</td>
<td></td>
<td>Pulse Dye</td>
<td>YAG laser</td>
</tr>
<tr>
<td>Wavelength:</td>
<td></td>
<td>585 nm +/- 2%</td>
<td>1064 nm</td>
</tr>
<tr>
<td>Method of Optical Output:</td>
<td></td>
<td>Fused silica optical fiber</td>
<td></td>
</tr>
<tr>
<td>Cooling Method:</td>
<td></td>
<td>Water, internally circulated with heat exchanger to air</td>
<td></td>
</tr>
<tr>
<td>Protective Safety Eyewear (min):</td>
<td></td>
<td>> 5.4 O.D. at 585 nm</td>
<td>> 5.8 O.D. at 1064 nm</td>
</tr>
<tr>
<td>Nominal Ocular Hazard Distance (NOHD):</td>
<td></td>
<td>100 meters</td>
<td></td>
</tr>
<tr>
<td>Electrical Power:</td>
<td></td>
<td>200-240 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5 kVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/60 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single phase</td>
<td></td>
</tr>
<tr>
<td>Electrical Service Requirement:</td>
<td></td>
<td>30 Amp dedicated outlet</td>
<td></td>
</tr>
<tr>
<td>Aiming Beam Source and Wavelength:</td>
<td></td>
<td>red diode laser (635 nm)</td>
<td></td>
</tr>
<tr>
<td>Max. Delivered Output Power:</td>
<td></td>
<td>< 5.0 mW</td>
<td></td>
</tr>
</tbody>
</table>

Handpiece Characteristics

<table>
<thead>
<tr>
<th>Handpiece Type</th>
<th>Spot Size:</th>
<th>Beam Divergence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm</td>
<td>3 mm ± 0.5 mm</td>
<td>½ angle, 1.9°</td>
</tr>
<tr>
<td>5 mm</td>
<td>5 mm ± 0.5 mm</td>
<td>½ angle, 2.2°</td>
</tr>
<tr>
<td>7 mm</td>
<td>7 mm ± 0.5 mm</td>
<td>½ angle, 2.1°</td>
</tr>
<tr>
<td>10 mm</td>
<td>10 mm ± 0.5 mm</td>
<td>½ angle, 2.1°</td>
</tr>
<tr>
<td>12 mm</td>
<td>12 mm ± 1.0 mm</td>
<td>½ angle, 2.6°</td>
</tr>
<tr>
<td>15 mm</td>
<td>15 mm ± 2.0 mm</td>
<td>½ angle, 2.2°</td>
</tr>
</tbody>
</table>
Fluence Specifications

Cynergy PDL

<table>
<thead>
<tr>
<th>Handpiece (mm)</th>
<th>Rep Rate (Hz)</th>
<th>Maximum Rep Rate (Hz)</th>
<th>Minimum Fluence (J/cm²)</th>
<th>Maximum Fluence (J/cm²)</th>
<th>Max Power (W)</th>
<th>Pulse Width (ms)</th>
<th>Starting Fluence (J/cm²)</th>
<th>Fluence Increment (J/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1, 1.5, 2</td>
<td>2</td>
<td>10</td>
<td>40</td>
<td>15.7</td>
<td>0.5</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1, 1.5</td>
<td>1.5</td>
<td>10</td>
<td>40</td>
<td>11.8</td>
<td>2-40</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1, 1.5, 2</td>
<td>2</td>
<td>5</td>
<td>20</td>
<td>15.4</td>
<td>0.5</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>1, 1.5</td>
<td>1.5</td>
<td>5</td>
<td>20</td>
<td>11.5</td>
<td>2-40</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>1, 1.5, 2</td>
<td>2</td>
<td>2.5</td>
<td>10</td>
<td>15.7</td>
<td>0.5</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>1, 1.5</td>
<td>1.5</td>
<td>2.5</td>
<td>10</td>
<td>11.8</td>
<td>2-40</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>1, 1.5, 2</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>15.8</td>
<td>0.5</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>1, 1.5</td>
<td>1.5</td>
<td>2</td>
<td>7</td>
<td>11.9</td>
<td>2-40</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Pulse Widths: 0.5, 2, 6, 10, 20, 40 ms

Key
- Yellow = PDL
- Blue = YAG
Cynergy YAG

<table>
<thead>
<tr>
<th>Handpiece</th>
<th>Rep Rate</th>
<th>Rep Rate</th>
<th>Maximum Fluence</th>
<th>Minimum Fluence</th>
<th>Maximum Power</th>
<th>Pulse Width</th>
<th>Starting Fluence</th>
<th>Fluence Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm)</td>
<td>(Hz)</td>
<td>(Hz)</td>
<td>(J/cm²)</td>
<td>(J/cm²)</td>
<td>(W)</td>
<td>(ms)</td>
<td>(J/cm²)</td>
<td>(J/cm²)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>300</td>
<td>21.2</td>
<td>5-300</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>50</td>
<td>300</td>
<td>31.8</td>
<td>5-300</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>300</td>
<td>42.4</td>
<td>5-300</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1, 1.5, 2, 5</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>24.5</td>
<td>0.3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>240</td>
<td>47.1</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.5</td>
<td>15</td>
<td>240</td>
<td>70.7</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>150</td>
<td>58.9</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1, 1.5, 2, 5</td>
<td>5</td>
<td>10</td>
<td>17</td>
<td>32.7</td>
<td>0.3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>160</td>
<td>61.6</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>1.5</td>
<td>15</td>
<td>120</td>
<td>69.3</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>75</td>
<td>57.7</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>80</td>
<td>62.8</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>1.5</td>
<td>15</td>
<td>60</td>
<td>70.7</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>50</td>
<td>56.5</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>1.5</td>
<td>15</td>
<td>40</td>
<td>67.9</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>35</td>
<td>61.9</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>1.5</td>
<td>15</td>
<td>25</td>
<td>66.3</td>
<td>5-300</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

Pulse Widths: 0.3, 5, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 250, 300 ms
Cynergy MultiPlex Option

<table>
<thead>
<tr>
<th>Pulse Group</th>
<th>Fixed Pulse Width Settings</th>
<th>Fluence Range</th>
<th>Delay Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PDL (ms)</td>
<td>YAG (ms)</td>
<td>PDL (J/cm²)</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>15</td>
<td>4–8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>15</td>
<td>4–8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>15</td>
<td>6–12</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>15</td>
<td>6–12</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20</td>
<td>7–12</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>40</td>
<td>8–15</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>40</td>
<td>4–8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>40</td>
<td>6–12</td>
</tr>
</tbody>
</table>

Key
- **Yellow = PDL**
- **Blue = YAG**
This page has been intentionally left blank.
Section 5 Laser Operation

This section of the manual explains how to start the laser, calibrate the laser energy output, correct an out of range fault, and turn the laser off.

Laser Start-Up

WARNING: Always wear the protective eyewear supplied with the laser system. Failure to wear the appropriate protective eyewear can result in serious eye injury.

WARNING: Failure to keep the cal port window clean may result in incorrect energy leading to patient injury.

1. Make sure that the handpiece is connected and in the cal port.
2. Insert the key into the key switch and turn it to ON.
3. Verify that the front panel display comes on and displays the Cynosure logo.
4. Verify that the system completes its diagnostic routine, and displays the Home screen.
5. When the system is warmed up, press System Check. The system check sequence takes about fifteen seconds. The system will automatically begin firing into the cal port during this period.
6. When all interlock conditions are met (the fiber is connected, the laser panels are closed, etc.), the Standby key is activated.

NOTE: If any interlock conditions are not met, or if any faults occur refer to, “Troubleshooting,” starting on page 58 for information on correcting the problem.

If “ADD WATER” appears on start up or at any time during operation, please refer to “Adding Water to the Reservoir” on page 55. The “ADD WATER” fault will not occur in Ready Mode.

Laser Shutdown

1. To shut down the laser, press the Standby Key, to place the laser in Standby Mode.
2. Turn the key OFF.
3. Remove the key to prevent access by unauthorized users.

IMPORTANT: At any time, press the emergency laser stop to shut down the laser immediately.
Laser Calibration

Calibrate the laser according to the procedure below each time you turn on the laser, change fibers, handpieces, fluence, pulse width and pulse rate.
The window in the Cal Port must be kept clean to ensure proper calibration. Clean the window with a tissue or soft cloth weekly or whenever debris or smudges are present.

1. With the system on, place the distal end of the handpiece in the cal port.
2. Select the desired laser and laser settings.
3. Check the status of the laser in the upper left corner. If the laser has just been started, the laser will default to Standby. Press Ready to change the laser to Ready mode.
4. After the system is Ready, the output must be verified. Press the front panel as instructed to initiate the CAL sequence, which is the laser adjusting and verifying the settings measured into the cal port.
 NOTE: If the handpiece is not in the cal port, the operator is instructed to do so from the text message display before proceeding.
5. When calibration is complete, a message is displayed on the screen. The handpiece can be removed from the cal port and treatment may begin.
 NOTE: At any time the laser can be calibrated again by simply returning the handpiece to the cal port, and repeating the steps above.

Energy Regulation During Treatment

During treatment, an automatic internal adjustment occurs to maintain a constant level of energy output determined during calibration.
If during treatment, the energy increases or decreases by more than 20% of the calibrated energy output, an energy “Out of Range” fault occurs, and is displayed on the touch screen. This fault causes the laser to exit Ready Mode. To activate the laser again and begin treatment, follow the steps below.
1. Press the Ready Key to return to the Ready Mode.
2. Place the handpiece into the Cal Port, and then fire the laser until “FLUENCE VERIFIED” appears on the display.
3. The laser will return to the selected energy output level, and then treatment can continue.
Laser Operation

1. Select the desired fluence, pulse width, wavelength and pulse rate (repetition rate). If using the Cynergy MultiPlex option, select pulse group, fluence and delay. Calibrate the setting.
2. Press the Ready Key to place the laser in Ready Mode. **NOTE:** In Ready Mode, no laser light is generated until the finger switch or foot switch is depressed.
3. Place the handpiece over the treatment site, contacting the handpiece tip to the treatment area.
4. Press either the finger switch or the foot switch to deliver laser pulses. **NOTE:** After each laser pulse, the counter increments displaying treatment pulses.
 WARNING: If the foot switch or handpiece switch malfunctions and remains on unintentionally while the laser is firing, quickly aim the handpiece at a wet sponge to absorb the laser energy. **Press the Emergency Laser Stop immediately.**
5. To check energy during treatment, place the handpiece, without the treatment tip, into the Cal Port and press the foot switch to verify fluence. In accordance with federal regulations, energy is maintained within a narrow range.

Changing Treatment Parameters

When a setting change is made during treatment, it may be necessary to return the handpiece to the cal port for a calibration.

1. Check the status of the laser in the upper left corner. If the laser status reads, Cal, the system must be calibrated.
2. Place the handpiece into the cal port and press the text message area. The system will automatically calibrate the output at the current setting, and then return the laser status to Ready mode.
Section 6

Clinical Application–YAG

The section covers training requirements, indications, contraindications, possible adverse effects, patient selection and treatment recommendations for the Cynergy YAG laser only. Refer to Section 7 starting on page 47 for clinical information regarding the pulse dye laser. If using the MultiPlex option, see Section 8 starting on page 51.

Laser Operator Training Requirements–YAG

This manual is not intended to be a complete guide to laser use. Cynosure recommends that all qualified personnel who operate the laser system first seek training that includes, but is not limited to, the following aspects of laser operation:

- Basic Laser Physics
- Laser Safety
- Soft Tissue Interaction
- Laser Operating Procedures
- Laser Set-up Procedures
- Potential Hazards
- Hands-on Experience
Indications, Contraindications and Adverse Effects–YAG

Indications
The Cynergy YAG laser is indicated for hair removal, leg and facial veins, vascular lesions, pigmented lesions, and wrinkle reduction.

Contraindications
Therapy using the Cynergy YAG laser is contraindicated for those patients who:
♦ Are hypersensitive to light in the 1064-nm wavelength region
♦ Take medication which is known to increase sensitivity to sunlight
♦ Take anticoagulants
♦ Have seizure disorders triggered by light
♦ Are pregnant

Adverse Effects
Adverse effects such as blistering, scarring, hypopigmentation or hyperpigmentation may result from the use of excessive energy levels.
Pretreatment Recommendations—YAG

At the time of the initial visit, the physician should determine the suitability of the laser treatment, inform patients about the treatment, and take photographs of the target site.

Determine Suitability
In determining suitability, physicians should consider the following factors for each individual case.

♦ Patient’s age
♦ Patient’s skin type
♦ Family history of the patient
♦ Current medications
♦ Reason patient is seeking treatment
♦ Patient’s expectations

Inform Patient About the Treatment
After determining suitability, the physician should inform the patient of the following:

♦ The expected outcome of the treatment versus other possible outcomes
♦ The probable number of treatments needed to achieve the desired outcome
♦ Possible side effects resulting from laser treatment

Photographs
It is helpful to have photographs of the pretreatment area to assess precisely the success and progression of the treatment.
Treatment Recommendations–YAG

The operator should be able to determine the appropriate energy level of the laser, number of treatment sessions, size of treatment area at each session, and when no further treatment is warranted. At the time of treatment, the laser operator should also take precautions to prevent fire, see “Laser-Induced Fire Hazard,” page 11.

Minimizing Adverse Effects
Adverse effects, such as erythema, blistering, burns and scarring may be reduced by air-cooling or coolant gel. Prior to treatment, remove all make up, lotions or creams from the area to be treated. Apply cooled, clear gel to freshly prepared clean areas.

Setting Energy Level
Depending on the patient’s skin color, different energy levels are needed. Generating test spots prior to treatment is recommended.

Number and Length of Treatment Sessions
The number and length of treatment sessions depends on the size of the treatment area, the success rate of the treatment, and the patient’s tolerance of the treatment.

Determining End of Treatment
The physician should determine the end of treatment by the acceptable success of treatment, non-compliance on the part of the patient, or adverse effects of the treatment.

Posttreatment Recommendations–YAG
After each treatment session, physicians should advise their patients on the proper care of the treated area.
♦ Wash the treatment area gently with soap and water. Do not soak.
♦ Do not shave the treated area if crusting is evident.
♦ Avoid contact sports or any other activity that could cause bruising of the treated area.
Section 7 Clinical Application–PDL

The section covers training requirements, indications, contraindications, possible adverse effects, patient selection and treatment recommendations for the Pulse Dye Laser (PDL) only. Refer to Section 6, starting on page 42, for clinical information regarding the YAG laser. If using the MultiPlex option, see Section 8 starting on page 51.

Laser Operator Training Requirements–PDL

This manual is not intended to be a complete guide to laser use. Cynosure recommends that all qualified personnel who operate the laser system first seek training that includes, but is not limited to, the following aspects of laser operation:

♦ Basic Laser Physics
♦ Laser Safety
♦ Soft Tissue Interaction
♦ Laser Operating Procedures
♦ Laser Set-up Procedures
♦ Potential Hazards
♦ Hands-on Experience
Indications, Contraindications and Adverse Effects–PDL

Indications
The Cynergy pulse dye laser is indicated for the treatment of benign cutaneous vascular or vascular dependent lesions.

Contraindications
Therapy using the Cynergy pulse dye laser is contraindicated for those patients who:
♦ Are hypersensitive to light in the 580–605 nm wavelength region
♦ Have a personal or family history of skin cancer
♦ Are pregnant

Adverse Effects
Adverse effects, such as scarring, hypopigmentation and hyperpigmentation, may result from the use of excessive energy levels.
The recently tanned (skin types of III or greater) are more prone to adverse effects.

Patient Selection–PDL
The best candidates for treatment with the PDL of the Cynergy laser are the following:
♦ Patients with cutaneous vascular lesions such as port wine stains, verruca, hemangiomas, telangiectasia, scars with vascular components, vascular related gynecological disorders and other vascular dependent lesions.
♦ Patients who have previously undergone unsuccessful alternative treatment for vascular lesions, providing that the previous treatment did not cause excessive damage or scarring.
Pretreatment Recommendations—PDL

At the time of the initial visit, the physician should determine the suitability of the laser treatment, inform patients about the treatment, and take photographs of the vascular lesion.

Determine Suitability

In determining suitability, physicians should consider the following factors for each individual case:

- Type of lesion
- Color of lesion
- Patient’s age
- Location of lesion
- Patient’s skin type
- Family history of the patient
- Reason patient is seeking treatment
- Patient’s expectations

Inform Patient About the Treatment

After determining suitability, the physician should inform the patient of the following:

- The expected outcome of the treatment vs. other possible outcomes
- The number of treatments it is likely to take to achieve the desired outcome
- Possible side effects resulting from laser treatment.
- The gradual clearing of the lesion

Photographs

It is helpful to have photographs of the pre-treated lesions in order to precisely assess the success and progression of the treatment.
Treatment Recommendations—PDL

The operator should be able to determine the appropriate energy level of the laser, number of treatment sessions, size of treatment area at each session, and when no further treatment is warranted. At the time of treatment, the laser operator should also take precautions to prevent fire, see “Laser-Induced Fire Hazard,” page 11.

Minimizing Adverse Effects

Air cooling with the SmartCool™ air-cooling system is recommended before and after treatment. Adverse effects, such as erythema, blistering, burns and scarring may be reduced by air-cooling or coolant gel. Prior to treatment, remove all make up, lotions or creams from the area to be treated. Apply cooled, clear gel to freshly prepared clean areas.

Setting Energy Level

Depending on the patient’s skin color, different energy levels are needed. Generating test spots prior to treatment is recommended.

Number and Length of Treatment Sessions

The number and length of treatment sessions depends on the size of the treatment area, the success rate of the treatment, and the patient’s tolerance of the treatment.

Determining End of Treatment

The physician should determine the end of treatment by the acceptable success of treatment, noncompliance on the part of the patient, or adverse effects of the treatment.

Posttreatment Recommendations—PDL

After each treatment session, physicians should advise their patients on the proper care of the treated area.

♦ No rubbing or scratching treated area. No picking crusted area. Keep moist and let it fall off on its own.
♦ No shaving treated area if crusting is evident.
♦ No swimming or using a whirlpool while discoloration is present.
♦ Apply antibiotic ointment twice a day while discoloration is present
♦ Applying make-up is permitted if no crusting is present.
♦ Discomfort may be relieved by ice packs or acetaminophen.
♦ Avoid contact sports or any other activity that could cause bruising of the treated area.
♦ Use a sunblock with an SPF of 30+ when treated area is exposed to the sun.

™SmartCool is a trademark of Cynosure, Inc.
Section 8 Clinical Application–MultiPlex Option

The section covers training requirements, indications, contraindications, possible adverse effects, patient selection and treatment recommendations when using the Cynergy with MultiPlex option. Refer to Section 6, starting on page 42, for clinical information regarding the YAG laser. If using the PDL refer to Section 7 starting on page 47.

Laser Operator Training Requirements–MultiPlex

This manual is not intended to be a complete guide to laser use. Cynosure recommends that all qualified personnel who operate the laser system first seek training that includes, but is not limited to, the following aspects of laser operation:

♦ Basic Laser Physics
♦ Laser Safety
♦ Soft Tissue Interaction
♦ Laser Operating Procedures
♦ Laser Set-up Procedures
♦ Potential Hazards
♦ Hands-on Experience
Indications, Contraindications and Adverse Effects–MultiPlex

Indications
The Cynergy with MultiPlex option is indicated for the treatment of benign cutaneous vascular or vascular dependent lesions.

Contraindications
Therapy using the Cynergy with MultiPlex option is contraindicated for those patients who:
♦ Are hypersensitive to light in the 580–605 nm or the 1064-nm wavelength region
♦ Have a personal or family history of skin cancer
♦ Are pregnant

Adverse Effects
Adverse effects, such as scarring, hypopigmentation and hyperpigmentation, may result from the use of excessive energy levels.
The recently tanned (skin types of III or greater) are more prone to adverse effects.

Patient Selection–MultiPlex
The best candidates for treatment with the Cynergy with MultiPlex option are the following:
♦ Patients with cutaneous vascular lesions such as port wine stains, verruca, hemangiomas, telangiectasia, scars with vascular components, vascular related gynecological disorders and other vascular dependent lesions.
♦ Patients who have previously undergone unsuccessful alternative treatment for vascular lesions, providing that the previous treatment did not cause excessive damage or scarring.

IMPORTANT: The Cynergy PDL remains the first choice for treatment of uncomplicated vascular birthmarks.
Pretreatment Recommendations–MultiPlex

At the time of the initial visit, the physician should determine the suitability of the laser treatment, inform patients about the treatment, and take photographs of the vascular lesion.

Determine Suitability

In determining suitability, physicians should consider the following factors for each individual case:

♦ Type of lesion
♦ Color of lesion
♦ Patient’s age
♦ Location of lesion
♦ Patient’s skin type
♦ Family history of the patient
♦ Reason patient is seeking treatment
♦ Patient’s expectations

Inform Patient About the Treatment

After determining suitability, the physician should inform the patient of the following:

♦ The expected outcome of the treatment vs. other possible outcomes
♦ The number of treatments it is likely to take to achieve the desired outcome
♦ Possible side effects resulting from laser treatment.
♦ The gradual clearing of the lesion

Photographs

It is helpful to have photographs of the pretreated lesions in order to precisely assess the success and progression of the treatment.
Treatment Recommendations–MultiPlex

The operator should be able to determine the appropriate energy level of the laser, number of treatment sessions, size of treatment area at each session, and when no further treatment is warranted. At the time of treatment, the laser operator should also take precautions to prevent fire, see “Laser-Induced Fire Hazard,” page 11.

Minimizing Adverse Effects
Aggressive air cooling with the SmartCool air-cooling system is highly recommended before and after treatment. Adverse effects, such as erythema, blistering, burns and scarring may be reduced by air-cooling or coolant gel. Prior to treatment, remove all make up, lotions or creams from the area to be treated. Apply cooled, clear gel to freshly prepared clean areas.

Setting Energy Level
Depending on the patient’s skin color, different energy levels are needed. Generating test spots prior to treatment is recommended.

Number and Length of Treatment Sessions
The number and length of treatment sessions depends on the size of the treatment area, the success rate of the treatment, and the patient’s tolerance of the treatment.

Determining End of Treatment
The physician should determine the end of treatment by the acceptable success of treatment, non-compliance on the part of the patient, or adverse effects of the treatment.

Posttreatment Recommendations–MultiPlex
After each treatment session, physicians should advise their patients on the proper care of the treated area.

♦ No rubbing or scratching treated area. No picking crusted area. Keep moist and let it fall off on its own.
♦ No shaving treated area if crusting is evident.
♦ No swimming or using a whirlpool while discoloration is present.
♦ Apply antibiotic ointment twice a day while discoloration is present
♦ Applying make-up is permitted if no crusting is present.
♦ Discomfort may be relieved by ice packs or acetaminophen.
♦ Avoid contact sports or any other activity that could cause bruising of the treated area.
♦ Use a sunblock with an SPF of 30+ when treated area is exposed to the sun.
Section 9

Maintenance

This section of the manual discusses maintenance practices, such as cleaning and disinfecting equipment. The section also provides a troubleshooting chart with fault codes.

Cleaning and Disinfecting Equipment

Cynosure suggests that operators periodically clean and disinfect the exterior of the laser system. Always turn off the system before cleaning. The handpiece and tip should be cleaned and disinfected after each treatment session in the following manner:

1. Clean the exterior of the laser system with a mild soap and water.
2. When necessary, disinfect the exterior parts of the equipment with a hospital-grade disinfectant.
3. Use a soft cloth for both cleaning and disinfecting.
4. Be careful not to contaminate the optics with soap or disinfectant.

Disinfect the handpiece by wiping the exterior surfaces, especially the tip, with hospital-grade disinfectant. Be careful not to allow the disinfectant to have contact with the internal optics or seep into the finger switch.

Adding Water to the Reservoir

During normal operation, fill the reservoir when “ADD WATER” is indicated on the text message area of the display.

The water level can be checked by opening the front door and locating the water level indicator on the lower right side.

WARNING: The water is very hot and could scald. Do not perform any maintenance on the water system while it remains hot. Always let the system cool down before adding deionized or distilled water.

1. After a cool down period, turn the laser ON
2. Connect the Filler Tube and Funnel Assembly to the Quick Connect Fitting located inside the front door marked Water Fill/Drain, see Figure 2B.
3. Fill the reservoir with distilled or de-ionized water until the water level reads “FULL.” Be careful not to overfill the laser, or water will pool under the laser system.
 CAUTION: Use distilled or de-ionized water only when filling the reservoir; tap water can damage the system.
4. Remove the Filler Tube and Funnel Assembly.
Dye Kit Methodology

The dye laser uses an organic dye suspended in a solvent as the lasing media. The dye filter and the inject bottle serve as reservoirs to maintain an acceptable concentration of fresh dye. As the dye laser pulses, the dye undergoes a chemical transformation after each pulse and must pass through the dye filter to be rejuvenated. This process can continue so long as the dye filter is less than 12 months old or the filter has less than 100,000 shots after its last change. If either of these conditions is met, the dye kit (dye filter and inject bottle) should be replaced, see page 57.

The dye concentration is maintained by a monitoring system that will inject more dye as needed. This additional supply of dye is pulled from the inject bottle.

Dye Injection

At startup, the system must warm up in order for the dye solvent to reach and maintain its operating temperature. One the system is warm, the dye concentration is checked. Normally, the dye concentration is correct and the system will complete the startup process. Occasionally, however, additional dye concentrate may be required. When this occurs, the system will automatically add more dye concentrate through a series of inject and mix cycles. This process usually takes only a few minutes, but in extreme cases may take up to thirty minutes. Once the process has finished, the laser will go to the Home Screen and the user may proceed as normal. The system will continue to monitor the dye concentration level, but will not require another injection cycle unless the laser is restarted. If the laser is not started for more than a week, it is more likely that additional dye concentrate will be required.
Replacing the Dye Kit

CAUTION: Dye easily stains. Always wear gloves for protection and proceed careful to avoid spilling or dripping dye.

1. Turn off the laser.
2. Open the front door.
3. Disconnect the dye filter by squeezing the tab of the quick-connect, and then sliding the fitting up toward the top of the laser. See left side of Figure 6A. Repeat for the other dye filter connector.

4. Once the dye filter connectors are disengaged from the fittings, slide the dye filter down and away from the laser, as shown in right side of Figure 6A.
5. Reverse steps 3-4 to install a new filter. Be sure that the two quick-disconnects are fully seated and “click” in place.
6. Remove the dye inject bottle by squeezing the tab of the quick-disconnect, and then pulling the bottle down and away from the fitting. See left side of Figure 6B.

![Figure 6B–Detaching/Inserting Dye Inject Bottle](image)

7. Unsnap the gray clamp to loosen.
8. Reverse steps 6-7 to install a new dye filter bottle. Once the fluid connections are made, squeeze the gray clamp to fasten. See right side of Figure 6B.
9. Turn on the laser.
10. Reset the PDL count reset button located on the Utility screen, as detailed on page 31. The dye kit count in the system status area of the Utility screen should read zero.
Troubleshooting

Errors faults are critical and will cause the laser to stop operating. These faults codes begin with the prefix ‘E’ meaning error. Some of these errors require that you contact the Cynosure Service Department.

Warnings are faults that indicate an improper laser state or operator error. These fault codes begin with the prefix ‘W’ meaning warning. For example, an attempt to fire the laser without a fiber present causes a warning fault to occur. The operator can usually correct these faults.

All faults codes and messages are listed in the following table, along with the probable cause and corrective action if applicable.

<table>
<thead>
<tr>
<th>Fault Code and Text Message</th>
<th>Probable Cause/Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01 Water Flow Fault; Cycle Power</td>
<td>Broken water pump or blown fuse. Needs service.</td>
</tr>
<tr>
<td>E02 Open Shutter Fault</td>
<td>Safety shutter stuck closed. Do not use laser until serviced.</td>
</tr>
<tr>
<td>E03 Close Shutter Fault</td>
<td>Safety shutter stuck open. Do not use laser until serviced.</td>
</tr>
<tr>
<td>E04 Fuse Open; Call Service</td>
<td>Blown capacitor bank fuse or shorted dump circuit. Needs service.</td>
</tr>
<tr>
<td>E05 Checksum Error; Call Service</td>
<td>Computer program memory error. Needs service.</td>
</tr>
<tr>
<td>E07 IGBT Fault - YAG</td>
<td>YAG IGBT overload sensed. Cycle power to continue.</td>
</tr>
<tr>
<td>E08 Heater Fault; Call Service</td>
<td>Open thermostat or heater. Blown heater fuse. Needs service.</td>
</tr>
<tr>
<td>E09 Coolant Sensor Fault; Call Service</td>
<td>Open thermistor sensor or unplugged. Needs service.</td>
</tr>
<tr>
<td>E10 No High Voltage</td>
<td>Capacitor bank or HVPS wire shorted. No read back voltage. Needs service.</td>
</tr>
<tr>
<td>E13 No Simmer YAG</td>
<td>Broken lamp or blown fuse. Needs service.</td>
</tr>
<tr>
<td>E14 HVPS Fault</td>
<td>HVPS over-temperature.</td>
</tr>
<tr>
<td>E15 Dump Fault; Call Service</td>
<td>Fuse fault at power up. Needs service.</td>
</tr>
<tr>
<td>E17 Dump Fault; Call Service</td>
<td>Dump not working. Needs service. Fiber connections broken to cap bank. HVPS disconnected or failed.</td>
</tr>
<tr>
<td>E18 H2o Flowmeter</td>
<td>Defective water flow sensor. Needs service.</td>
</tr>
<tr>
<td>E19 HVPS Fault</td>
<td>HVPS over-voltage or open-circuit.</td>
</tr>
<tr>
<td>E23 Low Trans; Replace Fiber/Handpiece</td>
<td>Damaged fiber, handpiece or focus lens, needs replacement.</td>
</tr>
<tr>
<td>E24 YAG Calibration Error; Call Service</td>
<td>Incorrect Resonator Port or Cal Port sensor calibration. Needs service.</td>
</tr>
<tr>
<td>E25 YAG Cal Failed, Energy Low; Call</td>
<td>YAG cal port energy too low to use. Needs service.</td>
</tr>
<tr>
<td>Fault Code and Text Message</td>
<td>Probable Cause/Corrective Action</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>E26 No Energy; Check Fiber/Handpiece</td>
<td>Broken fiber or severely damaged focus lens. Needs replacement.</td>
</tr>
<tr>
<td>E27 DYE Flow Fault</td>
<td>No dye filter or it is not installed properly. Broken pump. Blown fuse</td>
</tr>
<tr>
<td>E28 IGBT Fault - Dye</td>
<td>Dye IGBT overload sensed. Cycle power to continue.</td>
</tr>
<tr>
<td>E29 IGBT Fault - Pulse Simmer</td>
<td>Pulse simmer IGBT overload sensed. Cycle power to continue.</td>
</tr>
<tr>
<td>E30 No Simmer PDL</td>
<td>Broken lamp or blown fuse. Needs service.</td>
</tr>
<tr>
<td>E32 Flow Switch DYE</td>
<td>Broken dye pump or blown fuse. Needs service.</td>
</tr>
<tr>
<td>E33 PDL Calibration Error, Call Service</td>
<td>Transmission too high. Miscalibrated resonator or cal port sensor. Needs service.</td>
</tr>
<tr>
<td>E34 PDL Cal Failed, Energy Low; Call Service</td>
<td>Low delivered dye energy. Needs service.</td>
</tr>
<tr>
<td>E35 PDL Misfire</td>
<td>Possible delivered dye fault. Service if problem reoccurs.</td>
</tr>
<tr>
<td>E36 YAG Misfire</td>
<td>Possible delivered dye fault. Service if problem reoccurs.</td>
</tr>
<tr>
<td>E40 PDL and YAG Cal Failed, Call Service</td>
<td>Fiber, handpiece, or focus lens damaged. Needs service.</td>
</tr>
<tr>
<td>E41 Display Fault; Call Service</td>
<td>Corrupted internal display files. Needs service.</td>
</tr>
<tr>
<td>E42 Blocking Diode; Call Service</td>
<td>Shorted blocking diodes. Needs service.</td>
</tr>
<tr>
<td>E43 Ext Shutter</td>
<td>Shutter positioning failure on power-up. Retry. If continued failure, do not use laser until serviced.</td>
</tr>
<tr>
<td>E44 Keypad</td>
<td>Object on touchscreen. Broken touchscreen.</td>
</tr>
<tr>
<td>E45 File Open Error; Call Service</td>
<td>Defective compact flash memory card. Corrupted internal files. Needs service.</td>
</tr>
<tr>
<td>E46 PDL Temp Sensor Fault; Call Service</td>
<td>Open dye thermostat or heater. Blown heater fuse. Needs service.</td>
</tr>
<tr>
<td>E47 Internal Math Error; Call Service</td>
<td>Corrupted program or data file. Needs service.</td>
</tr>
<tr>
<td>E48 Checksum Error; Call Service</td>
<td>Computer calibration data error. Needs service.</td>
</tr>
<tr>
<td>W50 Open Interlock; Check Interlock</td>
<td>Install remote interlock connector or, if using interlock, close laser room door.</td>
</tr>
<tr>
<td>W51 No Fiber; Connect Fiber</td>
<td>Install delivery fiber and handpiece.</td>
</tr>
<tr>
<td>W52 Wavelength Unavailable</td>
<td>Wavelength use disabled. See second line message for the reason.</td>
</tr>
<tr>
<td>W53 Low Water; Add Water</td>
<td>Water is low. Add water to reservoir.</td>
</tr>
<tr>
<td>W54 HVPS EOC Warning</td>
<td>High fluence when using 120 VAC. Press standby to continue using laser.</td>
</tr>
<tr>
<td>W56 Invalid Handpiece; Change Handpiece</td>
<td>Handpiece from another laser model or handpiece not allowed for selected wavelength. Install correct handpiece.</td>
</tr>
<tr>
<td>W57 No Handpiece; Install Handpiece</td>
<td>Install handpiece.</td>
</tr>
<tr>
<td>W58 Handpiece Changed</td>
<td>Handpiece changed. Press screen message box to continue.</td>
</tr>
<tr>
<td>W59 Low Trans; Check Fiber and Handpiece</td>
<td>Fiber, handpiece, or focus lens damaged but still displays.</td>
</tr>
<tr>
<td>Fault Code and Text Message</td>
<td>Probable Cause/Corrective Action</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>W60 YAG Cal Failed, Energy Low; Call Service</td>
<td>Low delivered yag energy. Needs service</td>
</tr>
<tr>
<td>W61 PDL Cal Failed, Energy Low; Call Service</td>
<td>Low delivered dye energy. Needs service</td>
</tr>
<tr>
<td>W63 Fluence Meter Error; Call Service</td>
<td>Miscalibrated cal port meter. Defective cal port. Needs service.</td>
</tr>
<tr>
<td>W64 Internal Meter Error; Call Service</td>
<td>Miscalibrated res port meter. Defective res port. Needs service.</td>
</tr>
<tr>
<td>W65 Energy Out of Range, YAG</td>
<td>Capacitor bank did not recharge properly or overcharged. Retry operation.</td>
</tr>
<tr>
<td>W66 Handpiece Removed</td>
<td>Handpiece removed from cal port during system check or calibration.</td>
</tr>
<tr>
<td>W67 Unable to Reach Fluence; Decrease</td>
<td>Max fluence reached for handpiece and/or treatment settings. Lamps near end-of life.</td>
</tr>
<tr>
<td>W70 Coolant Over Temp; Let Laser Cool</td>
<td>Water is too hot for continued operation. Fans are on to cool laser. Let laser cool.</td>
</tr>
<tr>
<td>W71 Add Water Soon</td>
<td>Water level low - refill water reservoir.</td>
</tr>
<tr>
<td>W72 Energy Out of Range, PDL</td>
<td>Capacitor bank did not recharge properly or overcharged. Retry operation.</td>
</tr>
<tr>
<td>W73 PDL Over Temp; Let Laser Cool</td>
<td>Dye is too hot for continued operation. Fans are on to cool laser. Let laser cool.</td>
</tr>
<tr>
<td>W74 Warning: Purge Dye Concentrate Bottle</td>
<td>Air in dye line, squeeze bottle</td>
</tr>
<tr>
<td>W75 Dye Mix Warning; Call Service</td>
<td><ABS 0.85 after 30 min cycle (30 injects)</td>
</tr>
</tbody>
</table>

Self Test

During startup, the laser runs a self test. If the fault occurs during this process, consult the fault code chart above for information on resolving the fault.
Troubleshooting Chart

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser does not turn on.</td>
<td>Power lines are not properly connected.</td>
<td>Check and secure power cables.</td>
</tr>
<tr>
<td></td>
<td>Laser circuit breaker is in OFF position.</td>
<td>Turn on circuit breaker (near power cord in back.</td>
</tr>
<tr>
<td></td>
<td>Main panel circuit breaker of wall service is in OFF position.</td>
<td>Turn circuit breaker on at panel.</td>
</tr>
<tr>
<td></td>
<td>Key switch is not in the ON position.</td>
<td>Turn the key switch to the ON position.</td>
</tr>
<tr>
<td>Laser turns on (display lights and pumps on), but does not stay running.</td>
<td>Multiple causes: Self check failure displayed</td>
<td>Follow prompt on text message area to resolve. If unable to resolve, call Cynosure Service Dept.</td>
</tr>
<tr>
<td>Laser does not go into the PDL mode.</td>
<td>Dye solvent is not warmed up to 40 °C</td>
<td>Wait for warm up.</td>
</tr>
<tr>
<td>Laser unable to inject dye during warm-up mix cycle</td>
<td>Extremely low dye concentration</td>
<td>Check dye inject bottle is properly connected and that the dye inject bottle is not empty.</td>
</tr>
<tr>
<td></td>
<td>Inject bottle depleted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air in inject lines</td>
<td>Turn system off, gently squeeze inject bottle for approximately 5 seconds to remove air bubbles. Check ABS reading. Manually press dye inject button via the Option screen to speed up process. If unable to resolve, call Cynosure Service Dept.</td>
</tr>
<tr>
<td>Laser does not enter Ready or Standby modes.</td>
<td>The delivery optical fiber or handpiece is disconnected.</td>
<td>Connect the optical fiber and the electrical connector to the handpiece.</td>
</tr>
<tr>
<td>The laser does not fire from Ready mode.</td>
<td>Foot switch is not connected or hand switch wires are broken.</td>
<td>Fully seat foot switch connection and make sure hose is not kinked or crushed by equipment. Replace handpiece to try another.</td>
</tr>
<tr>
<td>Laser will not enter Ready mode from Standby mode</td>
<td>Foot switch or hand switch is depressed</td>
<td>Release switch.</td>
</tr>
</tbody>
</table>

NOTE: If any problems occur that are not covered in the troubleshooting chart, or the suggested solutions do not work, call the Cynosure Service Department, see page 66 for contact information.
Transferring Diagnostic Data
During a live troubleshooting event, you may be asked to download data from the laser via a USB stick (use only a SanDisk USP flash drive with a minimum of 128 MB storage) and forward that data to Cynosure service personnel for analysis. This data helps service personnel to diagnose the condition of the laser and be prepared should a service call be necessary. To access the USB slot and download data, follow these steps.

1. Open the front door of the laser, and locate the access panel that covers the USB slot, see Figure 7A.
2. Using a flathead screwdriver or a coin, turn the access panel screw one quarter turn to the right. Take off the panel and place aside.

![Figure 7A–USB Access Panel Location](image)
3. Once the panel is off, locate the USB slot, and then insert the USB stick into the slot. See Figure 7B. Make sure the LED is illuminated on the USB stick.

4. Verify that the laser is on and the handpiece is in the Cal Port.

5. Initiate and complete a System Check.

6. Access the Option Screen from the Utility Screen from the Home Screen. Press Diagnostic on the Option Screen. This initiates a test sequence lasting several minutes where the laser fires into the cal port.

7. When the report is complete a summary will appear on the screen. Press Dump Data to USB to download results to USB stick.

8. Remove the USB stick from the slot, and then email the data files electronically as directed by Cynosure service personnel.

9. Replace the panel, and then tighten the screw in place by turning it in the opposite direction.
Section 10 Customer Support

This section of the manual provides information regarding customer support, such as Warranty, Warranty Claims, Installation, Customer Service and a list of laser accessories.

Direct-Purchase Warranty

Please refer to the signed Warranty information detailed in the Terms and Conditions of your Sales Contract.

Distributor-Purchased Warranty

Since exact terms and periods may vary when a laser system is purchased through a distributor, contact your distributor for warranty information.

Warranty Claims

If merchandise is damaged and you want to return the merchandise for repair or replacement, please be aware of the following:

♦ You should make the claim as soon as possible.
♦ Before returning merchandise, obtain prior approval from Cynosure.
♦ Cynosure will provide shipping instructions.
♦ Returned merchandise must be sent insured and prepaid.
♦ The cost of shipping is the responsibility of the customer.
♦ Cynosure has the sole responsibility to determine the cause of merchandise defect.
Installation

Cynosure or its authorized personnel installs the laser, gives a demonstration of operation, and provides a basic training service for each new customer.

Customer Service

Scope of Service

Cynosure’s Customer Service Policy includes the following support for customers:

♦ On-site customer training for operating the laser
♦ On-site repair and maintenance of laser
♦ Telephone troubleshooting

Service personnel make periodic safety checks and functional evaluations as a part of maintenance.

Contacting Customer Service

If there is a technical problem with the laser, contact the Cynosure Service Department.

Normal Business Hours Monday–Friday, 7:30 am–7:00 pm EST
Call: 1-888-523-2233;
or fax to (978) 256-6556 or (978) 256-4888.

After Hours and Weekends Call: 1-888-692-2966.

If there is a question regarding clinical information call Cynosure.

Normal Business Hours Monday–Friday, 9:00 am–5:00 pm EST
Call: 1-800-886-2966 ext. 443
Appendix A

Service Calibration

CAUTION: This procedure should be performed by authorized service personnel only. See, “Laser Calibration,” on page 40 for laser calibration performed by the operator.

Schedule for Calibration

Cynosure calibrates the laser’s energy meter at the factory prior to shipment. The energy meter should be calibrated once a year by authorized service personnel. Call your local Cynosure representative to arrange for annual calibration by authorized personnel. The energy meter is calibrated by checking that the displayed fluence value corresponds to the actual laser pulse energy as measured by an independent energy meter of known accuracy.

Overview

The laser is provided with a built-in energy meter that allows the laser to be calibrated by measuring the actual energy delivered from the handpiece. Energy measurements are obtained by inserting the handpiece into the cal port, and then firing the laser. The front panel display indicates the energy per unit area (or fluence in joules per square centimeter, J/cm²), taking into account the area of the laser focal spot for the handpiece in use.

The energy meter consists of these main components:

♦ The cal port built into the front panel. The cal port includes an internal switch to sense the presence of the handpiece, which allows the laser to fire while in calibration mode only if a handpiece is inserted.

♦ A sapphire window that protects the internals of the cal port and is damage resistant. It should be cleaned frequently using a tissue or cloth.

♦ A pinhole within the cal port that allows only a small fraction of the incident light through a fiber optic cable to an optical sensor.

♦ An optical sensor that receives the laser light incident on it, and produces an electrical signal proportional to the absorbed optical pulse energy. The signal is amplified and calibrated at the Laser Control PCB.

♦ A front panel display that shows the selected fluence in joules/cm².
Required Equipment

CAUTION: The accuracy of the calibration depends completely upon the measurement of laser pulse energy using a separate instrument as an independent calibration standard. If the calibration standard is inaccurate or not used correctly, then the built-in energy meter will also be inaccurate after calibration.

♦ An accurate, NIST-traceable, laser power meter for use as a calibration standard. The selected calibration standard must be accurate for the appropriate wavelength and range of pulse energies. The meter’s sensor element or input attenuator must withstand, without damage, the range of fluence and peak power per unit area typical of the laser.
♦ Laptop computer with RS-232 interface

Calibration Procedures

There are three detectors in the system: 1) a resonator port that samples the full energy of the beam prior to coupling into the optical fiber, 2) a calibration port that samples the full energy leaving the handpiece, and, 3) the internal monitor for monitoring pulse-to-pulse stability of the dye laser. All three detectors must be calibrated as part of a complete service calibration. These calibration procedures are detailed in the following pages. Before starting the calibration, however, verify that these preparatory steps are taken.

♦ Verify that the cal port window is clean.

WARNING: Failure to keep the cal port window clean may result in incorrect calibration.

♦ Be sure that the fiber optic is properly routed and secured.
♦ Install a 7-mm handpiece.
Calibrating the Resonator Port, YAG

1. Remove the SMA focusing mount from the rail assembly.
2. Type ‘CV’ from the C:\ prompt.
3. Set laser to the following settings
 - Wavelength = YAG
 - CV Voltage = 450
 - Pulse Width = 5 ms
 - Rep Rate = 1 Hz
4. Set NOVA II power meter to the following settings:
 - Laser type = “NIR”
 - Average = 3 seconds
5. Connect NOVA II power meter analog out to laser J2.
6. Align the Ophir detector so it is facing toward the beam combiner output within 14 to 16 inches.
7. Fire the laser one shot, and then verify the energy pulse is not clipping on the Ophir detector head.
8. Set the CV Voltage to approximately 750V.
9. Continue to fire the laser adjusting the laser voltage until the NOVA II power meter reads from 44W to 46W. Make note of the NOVA II power meter reading.
10. Make note of the laser voltage setting.
11. Press lowercase ‘d’ to keep the external shutter closed while firing the laser.
12. Set laser resonator gain to 7.
13. Fire the laser six shots and read the resonator voltage from the CV screen.
14. Verify the voltage is from 0.5 to 1.25 volts.
 If the voltage is too low, increase the gain number (press uppercase ‘M’).
 If the voltage is too high, decrease the gain number (press lowercase ‘m’).
15. Fire the laser six shots again, and read the resonator voltage from the CV screen.
16. Make note of the resonator voltage.
17. Make note of the resonator gain.
18. Press lowercase ‘u’, and then enter the NOVA II power meter reading from step 9.
19. Fire the laser again into the resonator port, and then verify that the resonator energy measures from 43W to 47W.
20. Press lowercase ‘e’ to return the external shutter to normal function.
Calibrating the Resonator Port, PDL

1. Remove the SMA focusing mount from the rail assembly.
2. Type ‘CV’ from the C:\ prompt.
3. Set laser to the following settings
 - Wavelength = PDL
 - CV Voltage = 600
 - Pulse Width = .5 ms
 - Rep Rate = 1 Hz
4. Set NOVA II power meter to the following settings:
 - Laser type = “VIS”
 - Average = 3 seconds
5. Verify that NOVA II power meter analog out is connected to laser J2.
6. Align the Ophir detector so it is facing toward the beam combiner output within 14 to 16 inches.
7. Fire the laser one shot, and then verify the energy pulse is not clipping on the Ophir detector head.
8. Set the CV Voltage to approximately 700V.
9. Fire the laser adjusting the laser voltage until the NOVA II power meter reads from 7.5W to 8.5 W. Make note of the NOVA II power meter reading.
10. Make note of the laser voltage setting.
11. Press lowercase ‘d’ to keep the external shutter closed while firing the laser.
12. Set laser resonator gain to 2.
13. Fire the laser six shots and read the resonator voltage from the CV screen.
14. Verify the resonator voltage is from 0.5 to 1.25 volts.
 - If the resonator voltage is too low, increase the gain number (press uppercase ‘M’).
 - If the resonator voltage is too high, decrease the gain number (press lowercase ‘m’).
15. Fire the laser six shots again, and read the resonator voltage from the CV screen.
16. Make note of the resonator voltage.
17. Make note of the resonator gain.
18. Press lowercase ‘u’, and then enter the NOVA II power meter reading from step 9.
19. Fire the laser again into the resonator port, and then verify that the resonator energy measures from 7W to 9W.
20. Press lowercase ‘e’ to return the external shutter to normal function.
Calibrating the Cal Port, YAG

1. Remove the SMA focusing mount from the rail assembly.
2. Type ‘CV’ from the C:\ prompt.
3. Set laser to the following settings
 - Wavelength = YAG
 - CV Voltage = 700
 - Pulse Width = 5 ms
 - Rep Rate = 1 Hz
4. Set NOVA II power meter to the following settings:
 - Range = “AUTO”
 - Laser type = “NIR”
 - Average = 3 seconds
5. Verify that NOVA II power meter analog out is connected to laser J2.
6. Position the handpiece, so that is facing the Ophir detector head.
7. Press lowercase ‘e’ to allow the external shutter to open when the laser is fired.
8. Fire the laser adjusting the laser voltage until the NOVA II power meter reads from 34W to 36W. Make note of the NOVA II power meter reading.
9. Make note of the laser voltage setting.
10. Move the handpiece to the cal port.
11. Set YAG cal port gain to 10.
12. Fire six shots into the cal port.
13. Verify cal port voltage reads from 0.50 to 1.25 volts.
 - If the cal port voltage is too low, increase the gain number (press uppercase ‘C’).
 - If the cal port voltage is too high, decrease the gain number (press lowercase ‘c’).
 - NOTE: Most gain is 0; least gain is 15.
14. Fire the laser six shots again, and read the cal port voltage from the CV screen.
15. Make note of the cal port voltage.
16. Make note of the cal port gain.
17. Press uppercase ‘U’, and then enter the NOVA II power meter reading from step 8.
18. Fire the laser again into the cal port, and then verify that the cal port energy measures from 34W to 36W.
Calibrating the Cal Port, PDL

NOTE: Before this calibration is performed, the dye temperature should be approximately 39 °C.
1. Remove the SMA focusing mount from the rail assembly.
2. Type ‘CV’ from the C:\ prompt.
3. Set laser to the following settings
 - Wavelength = PDL
 - CV Voltage = 700
 - Pulse Width = 5 ms
 - Rep Rate = 1 Hz
4. Set NOVA II power meter to the following settings:
 - Range = 30W
 - Laser type = “VIS”
 - Average = 3 seconds
5. Verify that NOVA II power meter analog out is connected to laser J2.
6. Position the handpiece, so that is facing the Ophir detector head.
7. Press lowercase ‘e’ to allow the external shutter to open when the laser is fired.
8. Fire the laser adjusting the laser voltage until the NOVA II power meter reads from 5W to 7W. Make note of the NOVA II power meter reading.
9. Make note of the laser voltage setting.
10. Move the handpiece to the cal port.
11. Set YAG cal port gain to 3.
12. Fire six shots into the cal port.
13. Verify cal port voltage reads from 0.50 to 1.25 volts.
 If the cal port voltage is too low, increase the gain number (press lowercase ‘C’).
 If the cal port voltage is too high, decrease the gain number (press uppercase ‘c’).
 NOTE: Most gain is 0; least gain is 15.
14. Fire the laser six shots again, and read the cal port voltage from the CV screen.
15. Make note of the cal port voltage.
16. Make note of the cal port gain.
17. Press uppercase ‘U’, and then enter the NOVA II power meter reading from step 8.
18. Fire the laser again into the cal port, and then verify that the cal port energy measures from 5.5W to 6.5W.
Guidance and Manufacturer’s Declaration—Electromagnetic Emissions

The *Cynergy* is intended for use in the electromagnetic environment specified below. The customer or the user of the *Cynergy* should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Emissions test</th>
<th>Compliance</th>
<th>Electromagnetic Environment—Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emissions CISPR 11</td>
<td>Group 1</td>
<td>The Cynergy uses RF energy only for its internal function. Therefore, its RF emission is very low and is not likely to cause any interference in nearby electronic equipment.</td>
</tr>
<tr>
<td>RF emissions CISPR 11</td>
<td>Class A</td>
<td>The Cynergy is suitable for use in all establishments other than domestic and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.</td>
</tr>
<tr>
<td>Harmonic emissions IEC 61000-3-2</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>Voltage Fluctuations / Flicker emissions IEC 61000-3-3</td>
<td>Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>
Guidance and Manufacturer’s Declaration—Electromagnetic Immunity

The Cynergy is intended for use in the electromagnetic environment specified below. The customer or the user of the Cynergy should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC60601 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD)</td>
<td>± 6kV contact ± 8kV air</td>
<td>± 6kV contact ± 8kV air</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%</td>
</tr>
<tr>
<td>Electrical transient/burst</td>
<td>± 2kV for power supply lines ± 1kV for input/output lines</td>
<td>± 2kV</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Surge</td>
<td>± 1kV Line-to-Line ± 2kV Line-to-Earth</td>
<td>± 1kV ± 2kV</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Voltage dips, short interruptions, and voltage variations on power supply input lines</td>
<td>< 5% (U_t) (> 95% dip in (U_t)) for 0.5 cycle 40% (U_t) (60% dip in (U_t)) for 5 cycles 70% (U_t) (30% dip in (U_t)) for 25 cycles < 5% (U_t) (> 95% dip in (U_t)) for 5 sec</td>
<td>Not Applicable</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If the user of the Cynergy requires continued operation during power mains interruptions, it is recommended that the Cynergy be powered from an interruptible power supply or a battery.</td>
</tr>
<tr>
<td>Power frequency (50/60Hz) magnetic field</td>
<td>3A/m</td>
<td>3A/m</td>
<td>Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.</td>
</tr>
</tbody>
</table>

NOTE: \(U_t \) is the AC mains voltage prior to application of the test level.
Guidance and Manufacturer’s Declaration—Electromagnetic Immunity

The *Cynergy* is intended for use in the electromagnetic environment specified below. The customer or the user of the *Cynergy* should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC60601 test level</th>
<th>Compliance level</th>
<th>Electromagnetic Environment—Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted RF</td>
<td></td>
<td></td>
<td>Portable and mobile RF communications equipment should be used no closer to any part of the Cynergy, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.</td>
</tr>
<tr>
<td>IEC61000-4-6</td>
<td>3Vrms 150kHz to 80MHz</td>
<td>3Vrms</td>
<td>d = 1.17*(\sqrt{p}) 150kHz to 80MHz</td>
</tr>
<tr>
<td>Radiated RF</td>
<td>3V/m 80MHz to 2.5GHz</td>
<td>3V/m</td>
<td>d = 1.17*(\sqrt{p}) 80MHz to 800MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d = 2.33*(\sqrt{p}) 800MHz to 2.5GHz</td>
</tr>
</tbody>
</table>

\(p\) is the maximum output power rating of the transmitter in Watts (W) according to the transmitter manufacturer and \(d\) is the recommended separation distance in meters (m).

Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range. Interference may occur in the vicinity of equipment marked with the following symbol.

NOTE 1: At 80MHz and 800MHz, the higher frequency range applies.

NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structure, objects and people.

\(a\) Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the *Cynergy* is used exceeds the applicable RF compliance level above, the *Cynergy* should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the *Cynergy*.

\(b\) Over the frequency range 150kHz to 80MHz, field strengths should be less than 3V/m.
Recommended Separation Distances Between Portable and Mobile RF Communications Equipment and the Cynergy

The **Cynergy** is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the **Cynergy** can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the **Cynergy**, as recommended below, according to the maximum output power of the communications equipment.

<table>
<thead>
<tr>
<th>Rated Maximum Output Power of Transmitter (W)</th>
<th>Separation Distance According to Frequency of Transmitter (m)</th>
<th>150kHz to 80MHz</th>
<th>80MHz to 800MHz</th>
<th>800MHz to 2.5GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td></td>
<td>0.12</td>
<td>0.12</td>
<td>0.23</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>0.37</td>
<td>0.37</td>
<td>0.74</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.17</td>
<td>1.17</td>
<td>2.33</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>3.69</td>
<td>3.69</td>
<td>7.38</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>11.67</td>
<td>11.67</td>
<td>23.33</td>
</tr>
</tbody>
</table>

For transmitters rated at a maximum output power not listed above, the recommended separation distance \((d) \) in meters \((m) \) can be estimated using the equation applicable to the frequency of the transmitter, where \((P) \) is the maximum output power rating of the transmitter in Watts \((W) \) according to the transmitter manufacturer.

NOTE 1: At 80MHz and 800MHz, the separation distance for the higher frequency range applies.

NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.
Appendix C Declaration of Conformity

We,

Cynosure, Inc., 5 Carlisle Road, Westford, MA, USA 01886
declare under our sole responsibility that the product

Type of equipment: Pulsed Dye Laser and Long Pulse Infrared Laser
Model designation: Cynergy
Model number: 105-0065-004
to which this declaration applies,
is in conformity with the following European, harmonized, and published standards:
Standards: EN60601-1, EN60601-1-2, EN60601-1-4, EN60601-2-22, EN60825-1

following the provisions of the Directives:
EMC Directive 89/336/EEC
Medical Device Directive 93/42/EEC

Cynosure’s applied quality and design systems have been examined and
certified per Registration No. MD19.2613 by the notified body, NSAI.

The name, address and phone number of the authorized EU representative is:

Cynosure, GmbH
Robert-Bosch-Strasse 11-11B
D63225 Langen, Germany
Telephone: +49-6103-20111-00
Telefax: +49-6103-20111-11

Stephen Moszka
Quality Assurance Manager