SUMMARY

CHAPTER 1 – EVOLUTION OF STENOSCOP LINE 1.1

CHAPTER 2 – THEORY ... 2.1
 2–1 STENOSCOP ... 2.1
 2–2 IMAGER 16 OR 22 ... 2.43
 2–3 MEMORIES ... 2.71
 2–4 MONITOR DISTAR ... 2.109

CHAPTER 3 – ADJUSTMENT – TROUBLESHOOTING – DIAGNOSIS 3.1
 3–1 GENERAL ... 3.1
 3–2 JOB CARDS SYNOPTIC TABLE ... 3.1
 3–2 IMAGEUR ADJUSTMENTS SHEETS 3.3
 3–4 IMAGEUR TROUBLESHOOTING SHEETS 3.61
 3–5 MDA MEMORY DIAGNOSIS SHEETS 3.85
Blank page
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>TYPE OF MODIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>November, 1996</td>
<td>Preliminary release from engineering validation.</td>
</tr>
<tr>
<td>0</td>
<td>March, 1997</td>
<td>Product document release.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imager Adjustments Sheets:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RG351: Gain adjustment procedure revised because of the release of a new Sony CCD module.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDA Memory Diagnosis Sheets:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three JC added.</td>
</tr>
<tr>
<td>2</td>
<td>March, 1999</td>
<td>Pegase Plus program M3 Milestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Introduction of TH 9466 HP 16 cm Image Intensifier tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Introduction of MDn memory</td>
</tr>
<tr>
<td>3</td>
<td>2–July, 1999</td>
<td>Pegase Plus program, M4 Milestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Job Card DI 572 updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spare part list updated</td>
</tr>
</tbody>
</table>

LIST OF EFFECTIVE PAGES

<table>
<thead>
<tr>
<th>PAGE NUMBER</th>
<th>REVISION NUMBER</th>
<th>PAGE NUMBER</th>
<th>REVISION NUMBER</th>
<th>PAGE NUMBER</th>
<th>REVISION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>3</td>
<td>3 . 1 to 3 . 124</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Instructions</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>i to ii</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision history</td>
<td>iii to iv</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table of contents</td>
<td>1 . i to 1 . ii</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 . i to 1 . ii</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table of contents</td>
<td>2 . i to 2 . iv</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 . i to 2 . 122</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table of contents</td>
<td>3 . i to 3 . iv</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1 – EVOLUTION OF STENOSCOP LINE

TABLE OF CONTENTS

None.
1 – EVOLUTION OF STENOSCOP LINE

<table>
<thead>
<tr>
<th>Product</th>
<th>Stenoscop 2</th>
<th>Stenoscop Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCD – 6000/9000</td>
<td>6000/9000</td>
</tr>
<tr>
<td>First release</td>
<td></td>
<td>April 1999</td>
</tr>
<tr>
<td>16 cm II tube</td>
<td>TH 9449 HP</td>
<td>TH 9466 HP</td>
</tr>
<tr>
<td>22 cm II tube</td>
<td>TH 9438 HX</td>
<td>TH 9438 HX</td>
</tr>
<tr>
<td>Memories</td>
<td>DR4</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>MD10</td>
<td>MDn</td>
</tr>
<tr>
<td></td>
<td>MDA</td>
<td>MDA (PC 2211044)</td>
</tr>
<tr>
<td>TV monitor</td>
<td>Distar, Distar M</td>
<td>Distar M</td>
</tr>
<tr>
<td>SM</td>
<td>826 921 P615</td>
<td>2240906–100</td>
</tr>
<tr>
<td>ASM</td>
<td>826 921 P635</td>
<td>826 921 P635</td>
</tr>
</tbody>
</table>
CHAPTER 2 – THEORY

TABLE OF CONTENTS

2–1 STENOSCOP

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1–1</td>
<td>GENERALITIES</td>
<td>2.3</td>
</tr>
<tr>
<td>2–1–1–1</td>
<td>IDENTIFICATION</td>
<td>2.3</td>
</tr>
<tr>
<td>2–1–1–2</td>
<td>IDENTIFICATION SCHOTTKY DIODES</td>
<td>2.3</td>
</tr>
<tr>
<td>2–1–1–3</td>
<td>LIST OF SYMBOLS</td>
<td>2.3</td>
</tr>
<tr>
<td>2–1–1–4</td>
<td>USE OF THE SCHEMATICS</td>
<td>2.8</td>
</tr>
<tr>
<td>2–1–2</td>
<td>DESCRIPTION OF OPERATION</td>
<td>2.9</td>
</tr>
<tr>
<td>2–1–2–1</td>
<td>GENERAL POWER SUPPLY (DIAGRAM 1–10)</td>
<td>2.9</td>
</tr>
<tr>
<td>2–1–2–2</td>
<td>OPERATION OF INVERTER (DIAGRAM 11–20)</td>
<td>2.11</td>
</tr>
<tr>
<td>2–1–2–3</td>
<td>OPERATION OF THE X-RAY HEAD (DIAGRAM 11–20)</td>
<td>2.14</td>
</tr>
<tr>
<td>2–1–2–4</td>
<td>OPERATION OF THE kV/mA PWB 3A12 (DIAGRAM 21–30)</td>
<td>2.16</td>
</tr>
<tr>
<td>2–1–2–5</td>
<td>OPERATION OF SCR CONTROL PWB 3A19 (DIAGRAM 31–35, 36–40)</td>
<td>2.18</td>
</tr>
<tr>
<td>2–1–2–6</td>
<td>OPERATION OF TIMER PWB 3A5 (MINUTERIE) (DIAGRAM 41–50)</td>
<td>2.21</td>
</tr>
<tr>
<td>2–1–2–7</td>
<td>OPERATION OF 3A7 PWB AD/kV (DIAGRAM 51–60)</td>
<td>2.22</td>
</tr>
<tr>
<td>2–1–2–8</td>
<td>OPERATION OF 3A7 PWB AD/kV (DIAGRAM 61–70)</td>
<td>2.23</td>
</tr>
<tr>
<td>2–1–2–9</td>
<td>OPERATION OF THE PWB 3A9 CONSINE kV/mA (DIAGRAM 71–80)</td>
<td>2.24</td>
</tr>
<tr>
<td>2–1–2–10</td>
<td>OPERATION OF FILAMENT 4 HEATING PWB 3A26 (DIAGRAM 81–85)</td>
<td>2.26</td>
</tr>
<tr>
<td>2–1–2–11</td>
<td>OPERATION OF FILAMENT 4 HEATING PWB 3A26 (DIAGRAM 86–90)</td>
<td>2.27</td>
</tr>
<tr>
<td>2–1–2–12</td>
<td>OPERATION OF THE CONSINE kV/mA PWB 3A9 (DIAGRAM 91–100)</td>
<td>2.29</td>
</tr>
<tr>
<td>2–1–2–13</td>
<td>EXPOSURE PB – FLUORO TIMER (DIAGRAM 101–110)</td>
<td>2.30</td>
</tr>
<tr>
<td>2–1–2–14</td>
<td>OPERATION OF THE COLLIMATOR 3A3 PWB (DIAGRAM 111–115)</td>
<td>2.31</td>
</tr>
<tr>
<td>2–1–2–15</td>
<td>OPERATION OF THE COLLIMATOR PWB 3A3 (DIAGRAM 116–120)</td>
<td>2.34</td>
</tr>
<tr>
<td>2–1–2–16</td>
<td>C-ARM UP/DOWN MOTION (DIAGRAM 121–130)</td>
<td>2.35</td>
</tr>
<tr>
<td>2–1–2–17</td>
<td>OPERATION OF 3A5 TIMER PWB (MINUTERIE) (DIAGRAM 131–140)</td>
<td>2.36</td>
</tr>
<tr>
<td>2–1–2–18</td>
<td>WORKING OF THE INTERFACE BOARD DSM 3A1 (DIAGRAM 201–205)</td>
<td>2.39</td>
</tr>
</tbody>
</table>

2–2 IMAGER 16 OR 22 CCD FOR STENOSCOP 2 6000/9000

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–2–1</td>
<td>PRESENTATION</td>
<td>2.44</td>
</tr>
<tr>
<td>2–2–2</td>
<td>II TUBE</td>
<td>2.49</td>
</tr>
<tr>
<td>2–2–3</td>
<td>EHV POWER SUPPLY</td>
<td>2.51</td>
</tr>
<tr>
<td>2–2–4</td>
<td>OPTICAL SYSTEM</td>
<td>2.52</td>
</tr>
<tr>
<td>2–2–5</td>
<td>CCD MODULE</td>
<td>2.53</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT.)

2–2–6 CCD POWER SUPPLY BOARD ... 2.54
2–2–7 CCD VIDEO BOARD ... 2.54
 2–2–7–1 Video signal processing ... 2.55
 2–2–7–2 ABD signal generation .. 2.56
 2–2–7–3 Control signal generation 2.57
2–2–8 CCD INTERFACE BOARD ... 2.67
 2–2–8–1 Interface ... 2.67
 2–2–8–2 Remote control of EHV power supply 2.68
 2–2–8–3 Iris servo—control .. 2.68
 2–2–8–4 Analog circular masks .. 2.69
2–3 MEMORIES ... 2.71
 2–3–1 DR4 IMAGE MEMORY ... 2.73
 2–3–1–1 DR4 Block diagram (Rev. 2). 2.73
 2–3–1–2 Input block .. 2.74
 2–3–1–3 Noise reducer ... 2.74
 2–3–1–4 FIFO .. 2.75
 2–3–1–5 Frame Buffer .. 2.75
 2–3–1–6 Edge Enhancer .. 2.75
 2–3–1–7 Images Transfer ... 2.76
 2–3–1–8 Display Buffers ... 2.76
 2–3–1–9 Indicator Insertion .. 2.76
 2–3–1–10 Output Block .. 2.76
 2–3–1–11 Power supply .. 2.77
 2–3–1–12 Control Block .. 2.77
 2–3–1–13 Timing Functions ... 2.78
 2–3–2 MD10 IMAGE MEMORY .. 2.79
 2–3–2–1 MD10 Block diagram (Rev. 2). 2.79
 2–3–2–2 Input block .. 2.80
 2–3–2–3 Noise reduction ... 2.80
 2–3–2–4 INTERLACE TO PROGRESSIVE CONVERTER 2.81
 2–3–2–5 Frame Buffer .. 2.81
 2–3–2–6 Edge Enhancer .. 2.81
 2–3–2–7 PROGRESSIVE TO INTERLACE CIRCUIT 2.82
 2–3–2–8 PATTERN AND CIRCLE ... 2.82
 2–3–2–9 DISPLAY BUFFERS .. 2.82
 2–3–2–10 CHARACTER GENERATOR 2.83
 2–3–2–11 OUTPUT BLOCK ... 2.83
 2–3–2–12 POWER SUPPLY ... 2.83
 2–3–2–13 CONTROL BLOCK .. 2.83
 2–3–2–14 TIMING FUNCTIONS .. 2.84
TABLE OF CONTENTS (CONT.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–3–3</td>
<td>MDN MEMORY</td>
<td>2.85</td>
</tr>
<tr>
<td>2–3–3–1</td>
<td>Block Diagram</td>
<td>2.85</td>
</tr>
<tr>
<td>2–3–3–2</td>
<td>Interfaces</td>
<td>2.86</td>
</tr>
<tr>
<td>2–3–3–3</td>
<td>Description</td>
<td>2.87</td>
</tr>
<tr>
<td>2–3–3–4</td>
<td>Operation</td>
<td>2.91</td>
</tr>
<tr>
<td>2–3–4</td>
<td>MDA MEMORY</td>
<td>2.94</td>
</tr>
<tr>
<td>2–3–4–1</td>
<td>Introduction</td>
<td>2.94</td>
</tr>
<tr>
<td>2–3–4–2</td>
<td>AVIAS: analogue section</td>
<td>2.95</td>
</tr>
<tr>
<td>2–3–4–3</td>
<td>MIDAS: digital section</td>
<td>2.99</td>
</tr>
<tr>
<td>2–4</td>
<td>MONITOR DISTAR</td>
<td>2.109</td>
</tr>
<tr>
<td>2–4–1</td>
<td>OPERATION THEORY</td>
<td>2.111</td>
</tr>
<tr>
<td>2–4–2</td>
<td>LOW VOLTAGE POWER SUPPLY BOARD</td>
<td>2.113</td>
</tr>
<tr>
<td>2–4–3</td>
<td>HIGH VOLTAGE POWER SUPPLY BOARD</td>
<td>2.115</td>
</tr>
<tr>
<td>2–4–4</td>
<td>DEFLECTION BOARD</td>
<td>2.117</td>
</tr>
<tr>
<td>2–4–5</td>
<td>VIDEO BOARD</td>
<td>2.119</td>
</tr>
<tr>
<td>2–4–6</td>
<td>SELECTION BOARD</td>
<td>2.121</td>
</tr>
<tr>
<td>2–4–7</td>
<td>LIGHT SENSOR BOARD</td>
<td>2.121</td>
</tr>
</tbody>
</table>
2 – THEORY

2–1 STENOSCOP
2–1–1 GENERALITIES

2–1–1–1 IDENTIFICATION

The electronic circuits in the mobile intraoperative radiology system are grouped together in the modules identified as follows:

- module 1: block (item 1)
- module 2: control console (item 2)
- module 3: card rack assembly (item 3)
- module 4: inverter (item 4)
- module 5: power supply (item 5)
- module 6: X-ray head (item 6).
- module 7: X-ray head, collimator (item 7)
- module 8: image intensifier and CCD camera (item 8)
- module 9: interface installed on the rear side of the monitor cart (item 9).

Examples:
- the "kV/ma reference" board in module 3, position 9, is marked 3A9,
- the HV divider board in module 6 is marked 6A1,
- the supply transformer in module 5 is marked 5TR1.

2–1–1–2 IDENTIFICATIONSCHOTTKY DIODES

Schottky diodes (1N6263), commonly used in the mobile system electronic circuits, are in fact used as ordinary diodes.

2–1–1–3 LIST OF SYMBOLS

2–1–1–3–1 DESIGNATION OF THE COMPONENTS

Examples:

- . 3A1 : 3 is module number (give a location information), A means PWB (PL for plug, a and b for PWB connector), 1 is order number.
- . 3A1 R58 : number 58 resistor which is on 3A1 PWB.
- . 4R29 : number 29 resistor which is in module 4 (not on a PWB).

BP = Pushbutton
C = Capacitor
D = CR = Diode, thyristor or rectifier bridge
DS = Light
E = Test point
F = Fuse
G = Logic circuit
K = Relay
L = Coil
M = Motor
A = OP = Operational amplifier, FET switch voltage regulator
Q = Transistor
R = Resistor
S = SW = Switch
B = TB = Terminal board
T = TR = Transformer
W = Jumper
PL = Plug
LIST OF THE ABBREVIATIONS USED IN THE SCHEMATICS

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>PWB NAME</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>3A7–51A</td>
<td>Automatic FLUORO mode selection</td>
</tr>
<tr>
<td>BP01</td>
<td>3A13–112B</td>
<td>Upper blades of collimator : opening control</td>
</tr>
<tr>
<td>BP02</td>
<td>3A13–112B</td>
<td>Lower blades of collimator : opening control</td>
</tr>
<tr>
<td>BPF1</td>
<td>3A13–112B</td>
<td>Upper blades of collimator : closing control</td>
</tr>
<tr>
<td>BPF2</td>
<td>3A13–112C</td>
<td>Lower blades of collimator : closing control</td>
</tr>
<tr>
<td>BPmA(s) Up</td>
<td>3A17–66C</td>
<td>mA or mAs selection : increase control</td>
</tr>
<tr>
<td>BPmA(s) Down</td>
<td>3A7–66C</td>
<td>mA or mAs selection : diminution control</td>
</tr>
<tr>
<td>BP OFF</td>
<td>3A3–116D</td>
<td>Unit switching OFF Push–button</td>
</tr>
<tr>
<td>BPCL</td>
<td>2A1–102B</td>
<td>Request of X–Ray emission – Fluoro and RAD</td>
</tr>
<tr>
<td>BUS kV/20</td>
<td>3A7–60C</td>
<td>8 bits coded information of kV/20 value</td>
</tr>
<tr>
<td>CAG ON/OFF</td>
<td>3A3–119A</td>
<td>Gain automatic control switching</td>
</tr>
<tr>
<td>CAPA PREPO</td>
<td>3A19–35C</td>
<td>Prepositioning of converter capacitors (C3/C4 discharge control)</td>
</tr>
<tr>
<td>Consigne mAs</td>
<td>3A7–78E</td>
<td>Analog signal of mAs reference for RAD exposure (mAs integration).</td>
</tr>
<tr>
<td>Consigne mA SC</td>
<td>3A9–78B</td>
<td>Analog signal of mA reference for the regulation of Fluoro filament heating.</td>
</tr>
<tr>
<td>Consigne kV/20</td>
<td>3A9–97A</td>
<td>Analog signal of kV reference for kV regulation</td>
</tr>
<tr>
<td>CLIGN</td>
<td>3A12–106A</td>
<td>Square wave signal for display lights and intermittent operation of the buzzer.</td>
</tr>
<tr>
<td>CLOCK</td>
<td>3A19–31E</td>
<td>Pulse generated by the control oscillator of the mains thyristors</td>
</tr>
<tr>
<td>DEM X</td>
<td>3A12–28D</td>
<td>Signal of kV regulation obtained by comparison of composite kV (actual kV and kV/20 reference)</td>
</tr>
<tr>
<td>DETECTION I</td>
<td>3A19–36B</td>
<td>Detection of the presence of current through main thyristors.</td>
</tr>
<tr>
<td>ER</td>
<td>3A7–66B</td>
<td>ELECTRONIC RADIOGRAPHY mode selection</td>
</tr>
<tr>
<td>FC01</td>
<td>3A9–76C</td>
<td>Minimum value of mA : 0,1 mA</td>
</tr>
<tr>
<td>FC0</td>
<td>3A9–76C</td>
<td>Minimum value of mAs (RAD mode) : 0,16 mAs</td>
</tr>
<tr>
<td>FCGR</td>
<td>3A9–76C</td>
<td>Maximum value of mAs (RAD mode) : 160 mAs</td>
</tr>
<tr>
<td>FCGR1</td>
<td>3A3–114B</td>
<td>Upper collimator blades limit switch : RAD size</td>
</tr>
<tr>
<td>FCGR2</td>
<td>3A3–114B</td>
<td>Lower collimator blades limit switch : RAD size</td>
</tr>
<tr>
<td>FCSC1</td>
<td>3A3–114B</td>
<td>Upper collimator blades limit switch : FLUORO size</td>
</tr>
<tr>
<td>FCSC2</td>
<td>3A3–114C</td>
<td>Lower collimator blades limit switch : FLUORO size</td>
</tr>
</tbody>
</table>
FC40 3A9–91A Minimum kV value (40 kV)

FC110 3A9–91A Maximum kV value

FL 3A7–66C FLUORO mode selection

Fmax 3A19–31D Maximum frequency operation of the converter. Not used

FS 31B X–Ray request from foot switch

GR 3A7–66B RAD mode selection

HLC 2A1–71A High definition fluoro selection. HLC does not refer to "Hi level control" operation above 5 or 10 R/min. In both Hi definition and low dose operation, the entrance exposure rate remains below 10 R/min.

Hold kV 3A1–201E Latching of the kV regulation loop after T1 delay (delay of automatism kV stabilization)

INT 4 CLQ 3A12–28B Exposure interruption after 4 VHV leakages

kV C0 3A7–57C Counter locking when kV bus is at "0"

kV 85% 3A12–28C Signal generated when kV reach 85% of selected kV value.

kV 120 3A12–28C Safety: stops the converter if kV value is 120 kV

kV/20 Auto 3A5–45D kV reference in automatic Fluoro mode

kV composite 3A12–23D Actual kV value (V A + VC)

Mesure mA Sc 3A12–20C FLUORO mA measure (1 mA = 1V)

Mesure mA GR 3A12–20C RAD mA measure (10 mA = 1V)

OX 3A19–31A Control the X–RAY emission bistable (through 3A1 PWB when a memory is used)

OX.HLC 3A3–119F Hold of HLC selection during pulsed Fluoro mode operation.

PRE 3A19–35A Control of mA reference in RAD mode (delayed signal)

PRI 3A19–40B Signal present when current is detected in one of main thyristors.

PRX 3A12–24A Signal present when X–Ray are emitted

PRX.CP 3A12–106B Synchronous signal (50 Hz) with X–Ray emission

RAD 3A19–40A RAD mode selection signal

RP 3A26–81A Reduced power signal in RAD mode when unit is used with the 100, 108 or 120V mains

RX req. 3A12–28C Not used

Sa Th2 MOD 6–16E X–Ray head temperature detection (68[°C]) Switch ON thermal overload display

SC 3A17–63A Signal (SC or SC) generated by the RAD or RAD selection.

SEC BELLOWS MOD 6 – 16E Safety of X–Ray head temperature Bellow compensation switch: inhibition of exposure

SEXP 3A19–35B Control signal of main thyristors oscillator
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>3A7–66B PULSED FLUORO mode selection</td>
</tr>
<tr>
<td>STOP mAs</td>
<td>3A26–85D RAD exposure end signal (elapsed mAs = selected mAs)</td>
</tr>
<tr>
<td>SX</td>
<td>3A19–33A X–Ray emission safety (BPCL + PWB presence)</td>
</tr>
<tr>
<td>SYX SC</td>
<td>3A19–35A Control signal of heating in FLUORO. Latch Fluoro mA reference.</td>
</tr>
<tr>
<td>SYX GR</td>
<td>3A19–35B Control signal in RAD mode : not used</td>
</tr>
<tr>
<td>TROU CLQ</td>
<td>3A12–28A Momentary stop of the control oscillator of the main thyristor when a VHV leakage occurs</td>
</tr>
<tr>
<td>Va</td>
<td>6A1–20C Actual anodic volts value</td>
</tr>
<tr>
<td>Vc</td>
<td>6A1–20C Actual cathodic volts value</td>
</tr>
<tr>
<td>Z(ZOOM)</td>
<td>3A3–111E ZOOM selection with II 22 cm (2 fields)</td>
</tr>
<tr>
<td>0 logic from 0,16 to 5 mAs mAs mas integrator selection : low or High mAs integrator</td>
<td></td>
</tr>
<tr>
<td>4’26”</td>
<td>3A12–103B Warning signal of 4’26” X–Ray emission time</td>
</tr>
<tr>
<td>4’57”</td>
<td>3A12–106B Stop signal of X–Ray emission after 4’ 57” of Fluoro sequence</td>
</tr>
<tr>
<td>12V CI</td>
<td>15F–18F Detection of the PWB presence Permit the operation of main thyristors</td>
</tr>
</tbody>
</table>
INTERFACE DSM 3A1 828988 G 035

ACP 201C Anode Cooling Pause : generate a delay between exposures in ER mode selection if SW602.B is in ON position

HYST 45C not used

MCH 202B Mode change : signal generated during the switching of an operating mode to an other

ON REST + MCH 203B Reset of the monostable when the unit is switching ON or during an operating mode switching

OX* 204C RX emission order generated through the adaptation operating logic network

OX* R1 204D Signal delayed according to the rising edge of the OX* signal but synchronous with the falling edge of OX*

OX* R2 204D Signal synchronous with the rising edge of the OX* signal but delayed according to the falling edge of OX*

RAZ ROTATION 206D Rotation to the start position of the monitor rotation coils when mode A/B is selected in the memory

SN 203F NORMAL FLUORO MODE selection generated by default of other mode selections

STOP DSM 208D Signal generated by X PERM from the memory

T 114F Signal generated during the field change with a 22 cm (9") imager

T1 to T5 Control delays of RX emission sequence in the different operating mode

T6 202A Control of RX pulses emission in PULSED FLUORO mode.

X PERM 207E Signal from memo unit : availability of the memory or end of the image processing
2-1-1-4 USE OF THE SCHEMATICS

- The schematics are in flow chart form.
- As much as possible, the relation between control and action has been respected.
- Each signal is indexed and addressed in the schematics.

Example: SEXP signal

The SEXP signal is generated on PWB 3A19 commande SCR2 – output a18 – schematic reference 35B.

The signal is used on PWB

3A12– input a14
3A5– input b8
3A3– input a17

The index of the signal is marked in front of the use terminal.

3A12.a14 – 21B

In front of 3A12.a14 terminal, SEXP signal has the index of the terminal where the signal is generated: 3A19.a18–35B

- The wiring between terminal is respected and so permits an easier localization of interconnection default.
2–1–2 DESCRIPTION OF OPERATION

2–1–2–1 GENERAL POWER SUPPLY (DIAGRAM 1–10)

The general power supply comprises the transformers 9TR1 and 5TR1 which supply the voltage needed by the various subassemblies of the HF mobile unit.

9TR1 TRANSFORMER (Module 9 – monitor cart)

The primary winding of 9TR1 is supplied by the mains through 9Sm1 and 9K1 contacts.

The primary winding has 2 winding with adaptation taps for mains of 100, 108, 120, 200, 208, 220, 228 and 240V.

The secondary windings supply the voltages:
- 275 V for the inverter
- 220V for peripheral unit: monitors, memory, reprograph

5TR1 TRANSFORMER (module 5 – mobile unit)

5TR1 primary winding 1–2 is supplied to 275V by 9TR1 through the 9F4 fuse.

The primary winding 2–3 supplies the low voltage power supply.

The secondary winding 6–7 supplies the 27V for memory (DR4/MD10) and X–ray lamp.

The secondary winding 16–17 supply filament heating circuit.

The secondary winding 21–23 supply C–arm up/down motion circuit and Imager system (module 8).

POWER ON SEQUENCE

The system is switched ON by pressing 9Sm1.

When 9Sm1 is depressed, 9TR1 transformer is supply through resistor 9R1 and 9R2 (current limiter).

9K1 relay is energised through 9F2 fuse, safety plug bridge 9PL1–32–33, delay system (M) and 9A1.F31 fuse.

After the delay, 9K1 switch ON and supply 9TR1 through its contacts.

SWITCH OFF SEQUENCE

Its contact applies a 220V on the auxiliary coil of 9Sm1.

9Sm1 turns OFF

CONNECTOR SAFETY.

If the plug 9PL1 is removed, 9K1 relay is deenergised.

ILLUSTRATION 1–1
DIAGRAM OF THE MODULATOR

ILLUSTRATION 1–2
SIMPLIFIED DIAGRAM

ILLUSTRATION 1–3
THYRISTOR VOLTAGE AND CURRENT CURVES
2–1–2–2 OPERATION OF INVERTER (DIAGRAM 11–20)

THEORY

In alternate operation, capacitors C2 and C3 are in parallel, as they have a common terminal and the two other terminals are separated by a DC voltage Va.

For a description of operation, (see figure 1–2), where C is equal to the sum of C2 and C3. Suppose at the start that capacitance C has a charge voltage Va (0 V at terminal 2 and Va at terminal 1) and capacitance CF has a charge voltage Vz, which must respect 0 < Vz < Va/2. The value of CF will be very high in relation to C.

Suppose that the HV transformer ratio is 1 and that Va = 500 V and Vz = 100 V.

At t0, CR6 is made to conduct; capacitor C therefore discharges through the HV transformer primary, coil L3 and CR6. Capacitor Cf voltage remains almost constant throughout conductance of CR6.

The polarity of this voltage is therefore positive at terminal 1 and negative at terminal 2. Capacitor discharge is sinusoidal and corresponds to equation

\[V_C = V_Z + (V_a - V_Z) \cos \frac{t}{L_C}. \]

At t1 (figure 1–3), capacitor voltage tends to invert, diode CR5 conducts and keeps voltage from reaching the capacitor terminals. Through conductance of CR5, voltage Vz is applied directly to the terminals of coil L3, and since Vz is practically constant, current decrement in CR6 will be linear.

At t2, current I stops and CR6 locks. A sufficient period must elapse (around 20 μsec) before CR1 can be made to conduct, if HV adjustment so requires. A cycle identical may then start again with CR1, L1 and CR2. As current I crosses the HV transformer primary, it develops a secondary voltage. Since the rectifier bridge also conducts, it will allow the current to charge capacitor CF.

The energy supplied at each cycle of HV capacitor CF is therefore equal to:

\[\int_{t_0}^{t_2} V_Z I dt \]

i.e. 1/2 C. V_a^2

The power supplied to the secondary is therefore equal to:

1/2 C.V_a.f (f is the pulse rate frequency)

If the power supplied to the secondary is less than that absorbed by charge RL, the voltage at CF terminals decrements. To respect the operating condition 0 < Vz < Va/2, the only way to change the HV is to change the inverter control pulse rate frequency.
ILLUSTRATION 1–4
DIAGRAM OF THE MODULATOR

ILLUSTRATION 1–5
SIMPLIFIED DIAGRAM

ILLUSTRATION 1–6
THYRISTOR VOLTAGE AND CURRENT CURVES
REALISATION:

Capacitance C will be selected so that the inverter can supply its nominal power under any circumstances. However, this has a disadvantage: at low consumption levels, inverter control frequency is low, which generates high residual HV ripple. To get around this, two groups of capacitances are used, selected as function of the charge.

At low charge, group 4C2 and 4C3 of 2 x 2 \(\mu F \) is always selected. If the charge increments, a second group, 4C1 and 4C4 (2 x 5 \(\mu F \)), selected by 4CR4, is added to the first. These two groups offer the choice between 4 \(\mu F \) and 14 \(\mu F \).

In practice, capacitance C is replaced by two capacitances C2 and C3, enabling better adjustment of Va supply consumption (figure1–1).

Control of capacitance selection thyristor 4CR4 is always in synchronism with 4CR6. Thyristor CR7 makes it possible to preset capacitances at energization. A core is used to detect current crossing thyristors 4CR1 and 4CR6 (PRI). This data is taken into account by SCR control PWB 3A19, which synchronizes triggering of 4CR4, CR7, 4CR1 and 4CR6.

In particular, 4CR1 and 4CR6 must not conduct simultaneously.

The inverter is supplied by a DC voltage, approx. 380 V. This DC voltage is filtered by capacitances 4C5.

CAUTION:

Lamp 4DS1 comes on when the inverter is energized. If the modulator is de–energized, lamp 4DS1 remains on while the capacitances discharge into resistor1R3, indicating that the voltage at the terminals of these capacitances is still dangerously high.
OPERATION OF THE X–RAY HEAD (DIAGRAM 11–20)

PRESENTATION

The X–ray head consists mainly of the following elements:

- a VHV transformer with its filter and a rectifier circuit
- a filament heating transformer
- an X–ray tube
- two heat switches
- overvoltage protection spark gaps.

These components are inside the XRay head and are lubricated in an oil bath. The assembly also includes divider circuit 6A1 outside the head.

VHV TRANSFORMER OPERATION:

2,5The VHV transformer primary is supplied by the inverter (mod 4). It has two secondary windings, one of which supplies the X–ray tube anode and other the X–ray tube cathode.

The two secondaries are each connected to a voltage doubler comprising 2 diodes (CR1 and CR2 for the first, CR3 and CR4 for the second) and two 2500 pF capacitances. The cathode of CR1 is connected to the X–ray tube anode and the anode of CR4 is connected to the X–ray tube cathode.

The anode of CR2 and the cathode of CR3 are connected by a low value resistor (R4 and R5) used to measure anode/cathode current. As the CR3 cathode is connected to the ground, its potential is approximately 0 V, and it may be assumed that the anode and cathode voltages are opposed.

HEATING:

The filament heating transformer primary is supplied by the heating power PWB 5A1. It has a secondary winding with a middle point. The entire winding supplies the radiography filament (1,8) through 2 diodes, when pulses are positive.

The lower part of the winding supplies the fluoroscopy filament (0,5) through one diode, when pulses are negative. The radiography or fluoroscopy filament is therefore selected by the filament heating transformer power supply as a function of pulse polarity.

The transformer primary is highly isolated from its secondary because its secondary is brought to the negative potential of the X–ray tube cathode.

KILOVOLT MEASUREMENT

Anode and cathode kilovolt measurement (VA and VC) is made by a large–ratio divider bridge approx. 1/1000) whose high value resistor is located in the X–ray head (special 2 x 100 megaohm resistor) and whose low value resistor is located on PWB 6A1. This low value resistor is in fact made up of fixed resistors (R/18 and R17) and adjustable resistors (R12 to R15). Capacitances C19 and C11 filter voltages VA and VC whereas capacitances C28 and C27, parallel coupled to adjustable capacitances C9 and C16, carry out frequency compensation.

Note: Potentiometers and adjustable capacitors of 6A1 PWB are factory adjusted according the X–Ray head.
ANODE / CATHODE CURRENT MEASUREMENT

This measure is performed by measuring the voltage across a resistor. The current in RAD mode is more important than in FLUORO mode, so current measure in RAD mode is performed across a low value R5 resistor and in FLUORO mode across R4 + R5 resistors in order to have the same level of measure. Jumper between Tb24.1 and Tb24.2 permits the connection of a mA, mAs meter for maintenance operation.

The measures VA, VC, mASc et mAGR are used on 3A12 kV/mA PWB.

SAFETY

Spark gaps are provided in the X–Ray head in order to short circuit the VHV if 6A1.PWB (Diviseur) is disconnected or if a default of ground continuity appears. Damages of VHV propagation are so avoided if connexion failure or error of maintenance operation occurs.

The 6Sa1 switch opens its contact when temperature rises up to 70° C.
SEC BELLOW signal is connected to 3A19 PWB (SCRcontrol) and stops the inverter operation.

The 6SaTh2 Thermal switch opens its contact when temperature of the X–Ray head rises up to 50° C.

The signal TH switch ON the temperature displays on the control console through 3A7 AD/kV PWB and switches over the FLUORO 500W to FLUORO 154 W on 3A9 PWB consigne kV/mA (except in E.R. mode).
2–1–2–4 OPERATION OF THE kV/mA PWB 3A12 (DIAGRAM 21–30)

This board has the following main functions:

- HV regulation (very high voltage),
- blow safety,
- differential/common mode conversion of mASc and mAGr measurement values,
- low voltage divider compensation,
- 0–5 min. timer.

VHV REGULATION

When selecting the KV data, A114.8 (C) supplies a voltage reference

\[
\frac{kV^*}{20} = \left(\text{consigne} \frac{kV}{20} - 1\right) \times 1.1
\]

to the input of comparator A122.2.

The composite KV signal is generated by the measurement of \(V_c/V_a\) (cathode/anode) (A315/A180).

The output in common mode of the A312.6 is linked to potentiometer R216, adjusted by the latter (KV regulation), is transmitted to the input of A122.3.

- The signal \(\frac{kV^*}{20}\) and KV composite being different, the signal \(\text{DEM X}\) permits the oscillator to operate.

- When the HV increases to reach \(\frac{kV^*}{20} = \text{KV composite}\), the A122 switches and the signal \(\text{DEM X}\) generated is transmitted to the card 3A19 SCR to request the first oscillator operation cycle stop.

- Comparator A102 compares the KV composite and the actual \(\frac{kV}{20}\)

A \(\Delta KV\) therefore appears at the output of the A102.

This is transmitted to the memory A97 when signal PRI is active and after the time constant 1.1 x R81 x C82 c.a.d. 13 \(\mu\)s after a current thyristor stops.

- The \(\frac{\Delta KV}{20}\) then supplements the \(\frac{kV^*}{20}\), which results in the reference at the input to A122 being increased.

There is disequilibrium and the signal \(\text{DEM X}\) disappears, which authorises the oscillator to function until the new equality KV composite = \(\frac{kV^*}{20} + \frac{\Delta KV}{20}\)

- Each reduction in KV composite due to consumption of the tube appears on the memory C 137 at the input to A102.

- This changes the \(\frac{\Delta KV}{20}\) which will be transmitted to the memory between two thyristor conductions.
OPERATING SAFETY:

Circuit A114.A permanently compares the output of A114.B with the \(kV \) reference. In normal operation, the output of amplifier A114.B must always be less than the \(kV \) reference. If a fault in the regulation circuit causes the opposite to occur comparator A114.A flips and blocks A114.B, i.e. DEMX.

arching SAFETY:

The output of A312 is connected to A46.3 which detects a sudden VHV variation. The output of A46 then triggers monostable G32. The output of G32 sends signal TROUCLQ used by the hysteresis safety of SCR PWB 3A19 and SCR control.

Counter G31 counts to 4 VHV leakages and then sends the TNT4CLQ signal, used to shutdown the inverter by SCR PWB 3A19.

Diode CR4 lites, indicating the cause of inverter shutdown.

DIFFERENTIAL/COMMON MODE CONVERSION OF mASC AND mAGR MEASUREMENTS

This conversion is performed by A192 for the mASc measurement and by A203 for the mAGR measurement. Diodes mounted in head–to–tail configuration at the input of these amplifiers protect them against overvoltage. These two measurement signals are sent to PWB 3A26 CHAUFFAGE FILAMENT (HEATING).

COMPENSATION OF DIVIDERS IN FLUOROSCOPY MODE:

This is achieved out by the coupling carried out by R232 between the mASc measurement and the output of A180 to make up the COMPOSITE kV signal.

GENERATION OF 85% KV AND 120 KV SIGNALS:

85% is generated by comparing COMPOSITE kV with 85% of the value of the kV/20 reference (A160).

Va and Vc values are compared to a 60KV image reference (A313 and A314). If the Va or Vc value is bigger than this reference, 120KV is generated.
2-1-2-5 OPERATION OF SCR CONTROL PWB 3A19 (DIAGRAM 31–35, 36–40)

This PWB performs the following functions:

- preset of inverter capacitance 4C3,
- generation and synchronization of the control pulses of main thyristors 4CR6 and 4CR1,
- selection of auxiliary condensators,
- control the status of the 12 V safety PWB,
- control the stop signals (temperature, VHV leakages, mAs reference reached),
- current detection in main thyristors 4CRI and 4CR6,
- generation of SEXP, PRE, SYX GR and SYX SC commands for regulation PWBs 3A5, 3A12 and 3A26,
- generation of clock (CLOCK) of the inverter,
- generation of signal fmax (not used),
- hysteresis safety of HV transformer.

PRESET OF INVERTER CAPACITOR 4C3:

Logic circuit OX (G116–A) generates command OX using the following signals:

- BPCI, generated by the X–ray PB on the control console,
- FS, generated by the footswitch,
- RAD, generated by GR on PWB 3A7 when radiography mode is selected.

Command OX is sent to memory interface PWB 3A1 (in memory option configuration) if switch S76.A is opened. If this is the case, command OX returns via PWB 3A1 to command bistable (G114.A–G117.B).

The bistable flips and sends a preset command via amplifier (Q235) and isolating transformer (TR248), provided that the following conditions exist:

\[T20 kV = 1, \]
\[INT 4CLQ = 1, \]
\[STOP mAs = 1, \]
\[SECURITY = 1. \]

4CR6 AND 4CR1 SCR CONTROL

Bistable (G119.B–G120.B) enables flip–flop G121 when signal SEXP switches to 1. G121A complementary output Q is applied to amplifier (Q278) followed by isolating transformer (TR291) which controls the trigger of thyristor 4CR1. G121A output Q controls the trigger of second thyristor 4CR6 in the same way. Therefore, 4CR1 and 4CR6 cannot operate simultaneously. If the signals are as follows, oscillator G128 operates:

\[DEMX = 0, \]
\[PRI = 1, \]
\[TROUCLQ = 1, \]
\[SEXP = 1. \]
SELECTION OF AUXILIARY CAPACITORS (4C1 AND 4C4):
When a radiography is requested, signal GR from PWB 3A7 is converted into signal RAD which is then applied to amplifier (Q300) and isolating transformer TR313 of the trigger of inverter thyristor 4CR4.

PWB 12V SAFETY
A +12 V continuity line crosses the PWBs in the mobile system, thus checking the voltage and making sure that the PWBs are properly plugged in. The feedback from this line is input into a safety circuit (Q189,Q178) where it is checked. If the feedback is incorrect, a lock command is sent to the all driver amplifiers of the isolating transformers (TR248–TR313–TR269–TR291).
The lock command of the drivers operates also if:
- SX signal is not present: signal generated by BPCL or FS
- POWER SUPPLY (+12V) voltage is lower than 6,2V (Q185–D180)

CONTROL OF THE STOP SIGNALS
The signals should be as follows:
- **SEC BELOW** = 1 (if the X-ray housing temperature is less than 70º C),
- **STOP mAs** = 1 (switches to 0 when the mAs reference on the control console is reached.
- **INT 4CLQ** = 1 (switches to 0 when four successive VHV leakage have been detected by PWB 3A12),
- **120kV** = 1 (switches to 0 if a high voltage of 120 kV is detected by PWB 3A12).

If any of these signals changes value, bistable G114.A–G117.B flips and inverts the state of signal SEXP, which switches to 0, thereby inhibiting oscillator G128.
When signal SEXP switches to 0 bistable G119B is also locked, which means that flip–flop G121. A cannot be validated. A second safety device is thus provided.

GENERATION OF SEXP, PRE, SYX GR AND SYX SC COMMANDS:
These signals are generated by a selection logic made up of G114–115:
- SEXP is used by PWBs 3A5, 3A12 and 3A19, delayed according to **PRE** and **SYX GR**
- **PRE** switches to 0 when G114.A–G117.B bistable flips.
- **SYX SC** is used by PWB 3A26 to validate the transfer of the Fluoro current regulation differential,
- **SYX GR** (not used).

GENERATION OF CLOCK:
The output signal of G128 constitutes the basic clock used in the synchronization of inverter operation, i.e. thyristors 4CR1, 4CR6 and the voltage regulation carried out by PWB 3A12.
GENERATION OF SIGNAL FMAX: not used
When the kV/mA PWB 3A12 regulates the high voltage, if the displayed reference is not reached, signal DEMX is generated and charges capacitance C209. If DEMX remains active too long (which means that the inverter cannot reach the reference on display), capacitance C209 is sufficiently charged to generate fmax.

HYSTERESIS SAFETY OF HV TRANSFORMER
If a VHV arcing occurs during thyristor 4CR1 is being validated, data TROU CLQ which is generated by kV/mA PWB 3A12, validates the second monostable in circuit G155.B. Thyristor 4CR6 can then restart during a short time. When TROU CLQ disappears, inverter cycle can be restarted with thyristor 4CR1, i.e. with right direction of HV transformer hysteresis. This safety protects HV transformer against overcurrent generated by hysteresis.

RAD AND RAD SIGNALS
RAD and RAD signals are generated from GR signal and set the different circuits in RAD mode.

CURRENT DETECTION IN MAIN THYRISTORS 4CR1 and 4CR6
The thyristor current is detected by core 4TR1, located behind the inverter. The current is rectified by D29 and amplified by A135 then the detection threshold is adjusted by R123. The output signal of low–pass filter A 137(protect against triggering by interference) goes to make up signal PRT which is used by the regulation circuit of kV/mA PWB 3A12 and to validate bistable.
2-1-2-6 OPERATION OF TIMER PWB 3A5 (MINUTERIE) (DIAGRAM 41–50)

TIMER DISPLAY

The reference clock signal PRX CP is supplied by kV/mA PWB 3A12. The 50 Hz frequency is at first divided by 50 (counters G143 and G144), which gives a 1 Hz signal, input to 4-bit counter G158. The output of counter G158 is decoded by G184 to supply the 7–segments display DS15.

This is how seconds are displayed.

After 10 seconds, G158 sends a pulse to G159, counting tenths of seconds. G159 counts to 6 (corresponding to 1 minute) and sends a pulse to G160, which totalizes minutes.

After 10 minutes, G161 receives a pulse from G160, and totalizes tens of minutes. Zero reset is by pressing key Sm19 of the mobile system control console. This generates an active signal to the RESET inputs of the counters.

ABC HYSTERESIS OR AUTO kV/20 REFERENCE

- The purpose of this ABC hysteresis is to make an AUTO kV_{20} reference by using the ABD control signal output from the TV camera in order to use the correct kV to obtain an optimum TV image.

- The ABD control signal output from the TV camera is connected to the + input of A82 comparator. The – input of A82 is connected to potentiometer R65 (video image reference).

- The output of A82, i.e. Δ ABD is connected to A74B through R66 potentiometer (system gain) and after to an integrator circuit A73, C72 and R60 (phase loop).

- A74.B does not permit the Δ ABD to pass unless it greater or lower than a threshold determined by the hysteresis R67. A121.B.C

- When ABD control signal is not present, the system is calculated to provide a kV_{20} reference equal to 2V (= 40 kV reference).
The main purpose of this board is to generate the kV (kilovolt) reference in automatic or manual mode. Key Sm49 (hand symbol) on the control console is used to select operating mode.

MANUAL FLUOROSCOPY MODE
Pressing key Sm31 (+kV) or Sm32 (–kV) increments or decrements counters G48 and G31. These counters, as well as latch circuit G69, are selected in fluoroscopy mode (SC = 0). The 8–bit data sent by G69 is transmitted on the kV bus to the kV/mA reference PWB 3A9. The kV/mA reference PWB 3A9 compares the kV data transmitted on the kV bus with min. and max. stops (40 kV and 110 kV). If one of these stops has been reached, the data FC40 or FC110 is sent to the logic of AD/kV PWB 3A7. This then inhibits incrementation or decrementation of counters to prevent the kV value going below 40 kV or above 110 kV.

The clock supplying the counters is obtained by two NAND gate oscillator circuits. The first, frequency 3 Hz, enables slow reference incrementation as soon as it is commanded. After approximately 2 seconds, a second oscillator, frequency 30 Hz, takes over and thus accelerates incrementation.

AUTOMATIC FLUOROSCOPY MODE
Pressing key Sm49 activates automatic mode and deactivates keys Sm31 and Sm32 (+kV and –kV). The kV reference is now generated by the timer PWB 3A5 using the TV camera reception X–ray signal. This analog reference (called kV/20) is converted to digital form by G90. The 8–bit data thus obtained is compared by two 4–bit binary comparators, G108 and G126, with the data on the kV bus. The resulting comparison signal (A > B or A < B) increments or decrements counters G48 and G31 until the reference and the value on the bus are equal.

OPERATION IN RADIOGRAPHY MODE
Pressing keys Sm31 and Sm32 (+kV and –kV) increments or decrements counters G138 and G125. These counters, as well as latch circuit G97, are selected in radiography mode (SC = 0). As regards the 40 kV and 110 kV stops and the reference incrementation speed (3 Hz and 30 Hz), operation is identical to manual fluoroscopy mode.
OPERATION OF 3A7 PWB AD/kV (DIAGRAM 61–70)

MODE OF OPERATION SELECTION

The basic circuit providing this operation is G150: counter CMOS 4017B. When power is switching ON, the RC network (C119–R117) hold counter outputs in Reset state: output "0" (pin 3) to 1 logic other outputs to 0 (outputs 1 to 9). This counter position corresponds to FLUORO mode selection.

Pin 13 of G150 (CLOCK INHIBIT) is held to 1 logic through R80 and inhibits the counting sequence.

When a PB selection mode is pressed, logic state of G150 output (0V) is applied through the PB on pin 13 of the counter (CLOCK INHIBIT). This 0V logic state permits the counting sequence: clock pulses on pin 14 generates counter evolution until the output corresponding to the pressed BP rises to 1 logic state: clock INHIBITS input rises to 1 and so inhibits count: the counter is locked on this position until an other PB is pressed.

Output counter supplies LED corresponding to the pressed BP through G 139 (A to F) and provides selection informations though G 137 (A to F) to the unit.

The 300 kHz clock needed for G150 to operate is taken from ADC converter G90 on the same board.

The following signals are output from the board:

- ER, SP to the memory interface board if present,
- BP mA(s) UP, BP mA(s) DOWN, to the kV/mA reference PWB 3A9,
- GR to the SCR control PWB 3A19.

1.2 Hz and 12 Hz clock (Clock 1 – Clock 2)

These two clocks are for the operation of the kV/mA reference PWB 3A9. They allow mA and mAs references to be incremented at two different speeds.
2–1–2–9 OPERATION OF THE PWB 3A9 CONSIGNE kV/mA (DIAGRAM 71–80)

HIGH DOSE FLUORO MODE SELECTION (HLC)

PB Sm35 permits the HIGH DEFINITION FLUORO mode selection. The validation and the locking of the mode selection is performed by the OX.HLC signal: 0X.HLC is to 1 logic all the time an exposure is required (BPCI or FS depressed).

When PB Sm35 is depressed, 1 logic is present on pin 6 of G122.A (set).

G122.A pin 1 flips to 1: switching ON of PB Sm35 light and selection of the opening reference of the camera iris.
The TTH signal on G130D.12 pin cancel HIGH DEFINITION FLUORO mode when the thermal switch of the X–Ray head opens.

In ER Mode (ELECTRONIC RADIOGRAPHY) selection the HIGH DEFINITION FLUORO Mode is automatically selected through G130B.6.

The HLC information is also connected to G66 and G65 EPROM in order to select the correct kV/mA ratio curve.

FLUORO MA REFERENCE GENERATION

AUTOMATIC MODE

The kV bus addresses the memory G66(EPROM) which sends on its data bus, an optimal mA value for each kV value.

The data mA value according to kV value depends of mode selection and safety of the unit:

– AUTO FLUORO mode
– HIGH DEFINITION FLUORO mode
– ER mode (Electronic Radiography)
– Thermal safety of the X–Ray head not actuated (TTH)

The AUTO signal (1 logic) is present on Preset input (1) of G90 and G89: G90 and G89 are “transparent” and data of G66 are converted to analog form by G99 (DAC) to make up the FLUORO mA reference.

MANUAL MODE

When mode operation is switched from AUTO mode to MANUAL mode, the last mA value according to kV value is memorised in G90 and G89 counter: preset input from 1 to 0 logic state.

Count up or count down operation is selected by the mA(s) UP signal:

1 logic – count UP
0 logic – count DOWN

The PB mA(s) UP or BPmA(s) DOWN informations, elaborated on PWB 3A7 AD/kV, permits operation of the counters through G128.CD and G128.AB bistables and control logic of speed (CLOCK signal).

The output of G90–G89 is converted in analog signal to make up the FLUORO mA reference.
mAs REFERENCE GENERATION

The mAs UP data from 3A7 PWB AD/kV causes incrementation (or decrementation) of 4 bits counter G135 and G134.
The output of these counters addresses an EPROM (G26) which sends a digital value, varying from 0,16 to 160 in 33 steps.
This digital reference is converted in analog form by G133 to make up the mAs reference varying from 0,16 mAs to 160 mAs used in the 3A26 PWB chauffage Filament (Filament heating).
The output of G135 and G134 is also connected to G120 and G121 EPROM through G119.

G121 provides:
- information for the displays
- logic signal for the selection of high or low value integrator
- 3 signals min or max values
 - FC01 : FLUORO minimum mA value – 0,1 mA
 - FCO : RAD mAs minimum value – 0,16 mAs
 - FCGR : RAD mAs maximum value – 160 mAs

FLUORO RANGE OPERATION AND LIMITATION

The G65 EPROM has 4 data sections access of which depends of selected operation mode and thermal safety (TH*).

- FLUORO – 154W limitation
- HIGH DEFINITION FLUORO (HLC) – 500W limitation
- ELECTRON RADIOGRAPHY (ER) – 500W limitation

TH*=1 = thermal safety: reduced power operation.
The data corresponding to this rate operation are compared by G87, G88 with mA bus (G90–G89 outputs counters).
If the two values are equal, counting UP sequence is inhibited and automatic counting DOWN sequence is automatically operated if mA bus is upper than the limitation.
2–1–2–10 OPERATION OF FILAMENT 4 HEATING PWB 3A26 (DIAGRAM 81–85)

This PWB performs the following functions:

- current regulation in FLUORO mode,
- current regulation in RADIOGRAPHY mode,
- generation of STOP mAs command when the mAs reference is reached,
- safety in radiography mode – 7 an 10 seconds

CURRENT REGULATION IN FLUORO MODE:

The mA Fluoro measurement sent from PWB 3A12 and the mA Fluoro reference sent from PWB 3A9 are compared by A220. The Fluoro rate can be adjusted using R9. The difference between the reference and the measurement passes from the output of A220 through the low-pass filter comprising A222 before transmission to the inverter input of A214 by electronic switch Q287.B when signal kV 85% is present. If command SYX SC sent by SCR PWB 3A19 switches to 0, the electronic switch Q287.B conducts. Adjustable potentiometers R3 and R4 are also connected to inverter output of A214. These potentiometers used to adjust the current during the pre-heat phase, i.e. when no reference is present, in RAD or FLUORO mode.

CURRENT REGULATION IN RADIOGRAPHY MODE

The RAD mA measurement sent by PWB 3A12 is added to the mA Gr reference at the inverter input of A152. The reference is selected by the electronic switch (Q108 to Q110) which has been activated by the kV/mA reference PWB 3A9. PWB 3A19 attributes an mA value to each of the six high voltage ranges used. This value is modified if RP switch 3A3.S133B is switched ON (power reduction). When signals PRE and kV 85% are present, the difference between the reference and the measurement obtained at the output of A152 is transmitted to A214 by switch Q287. The difference in potential supplied by R4 (pre-heat adjustment) is added to the above difference, thereby providing the mA radiography reference at output A214.

GENERATION OF STOP mAs SIGNAL

Integrator A138 calculates mA x s. Because the mAs reference may vary greatly (0.16 to 160), the integrator features two integration speeds. PWB 3A9 splits the mAs reference variation range into two sub-ranges: 0.16 mAs to 5 mAs and 6 mAs to 160 mAs. The integrator selected by 0 (on a25 connector PWB) comprises high-value R6 (100 K) and A138. The integrator selected by 1 comprises low-value R5 (5 K) and A138. A180 compares the integrator output with the mAs reference supplied by PWB 3A9. When the values are equal, the STOP mAs signal switches to 0 and prevents SCR PWB 3A19 from sending pulses to the thyristor triggers, i.e. stops the inverter.

RAD SAFETY: 7 AND 10 SECONDS

Two safeties are provided in order to limit the exposure duration in RAD mode. The correct safety is selected by 3A3.S133.B: RP – power reduction. If power reduction is not selected, RP is 1 logic. The capacitor C203 is charged through D248, R247 and potentiometer R7 (7 sec adjustment). If power reduction is selected, RP is 0 logic. The capacitor C203 is charged through D250, R249 and potentiometer R8 (10 sec. adjustment). The signal PRE through G184.A starts the delay performed by Q193 and Q194. When the delay is elapsed, if the exposure is not completed, the STOP mAs signal switches to 0 and inhibes X-ray emission.
2-1-2-11 OPERATION OF FILAMENT 4 HEATING PWB 3A26 (DIAGRAM 86–90)

FILAMENT HEATING CURRENT REGULATION

The A214 output transmits a reference to A237 for comparison with the RMS current measured in the final stage of heating power PWB 5A1, i.e. in the primary of the heating transformer in the X-ray head.

The X-ray tube is heated by sending variously spaced pulses. A237 inhibits the transmission of these pulses if the RMS current is greater than the reference.

The pulse generator system comprises the following components:

- a 180 Hz oscillator, comprising G155, which sends a square signal,
- a selection logic comprising G182 and G183. One of the two output channels (fluoro or graphy) of the logic circuit is activated depending of the state of signal RAD,
- two pre-amplifiers (Q162 and Q176),
- a push–pull amplifier comprising Q122 and Q129. The Q122 and Q129 output to R133 conveys pulses (negative or positive depending on the selected mode) to two current limiters.
- two current limiters (Q125–Q128 for RAD and Q121–Q123 for Fluoro).

If R25 and R26 detect overvoltage in the final stage of PWB 5A1, the current limiters ground the output of R133.

The system which measures the RMS current in the final stage of PWB 5A1 comprises the following components:

- two circuits measuring the RMS current in the final stage.
 These circuits comprise two reverse feedbacks (resistor R26 for FLUORO and resistor R25 for RAD).
 One of these circuits is selected by electronic switch Q213B, RAD = 0 in Fluoro mode.
 The other circuit is selected by Q213A, RAD = 0 in RAD mode,
- a low pass filter, comprising A282.
- a circuit which increases the value of input n to n, comprising A278,
- an integrator comprising Q265 and A234.

The integrator receives a cyclic reset pulse at a frequency of 180 Hz. Output A234, which represents the RMS current, is injected into the inverter input of A237, which compares the measurement and the reference sent by A214.

OPERATING PRINCIPLE

The operating cycle is as follows:

- capacitance C3 is charged by a 175 V (approx.) dc supply,
- the positive segment of the control pulses cause transistor Q20 to conduct, thereby discharging C3 through the primary of the heating transformer in the X-ray head.
- the negative segment of the control pulses cause Q11 to conduct, thereby discharging C4 through the primary of the heating transformer. The current in the primary of the transformer is inverted.

This assembly is designed to produce +175 V pulses at the terminals of the heating transformer primary (between A and B, A = ground) in FLUORO mode, and −175 V pulses at the same terminals in RADIOGRAPHY mode.

The polarity is switched (thereby selecting the radiography or Fluoro filament in the X-ray head) by varying the polarity and width of the control pulses.
REALISATION

Capacitances C3 and C4 are located in module 5 of the mobile system. The +175 V dc supply is generated by the secondary of 5TR1. Protection is provided by an 8 A fuse. The control pulses are sent by FILAMENT HEATING PWB 3A26 and are transmitted by resistor R27. The positive peaks are detected by CR25 and cause Q21 and Q20 to conduct. The negative peaks are detected by CR24 and cause Q15 and Q11 to conduct. Low-value resistors R7 and R8 (0.15 ohm), in the transmission circuit of the output transistors, are used to retrieve the current data in the final stage. This data is used as reverse feedback by the current limiters on PWB 3A26 and the control circuits of PWB 3A26. The output transistors are protected against overvoltage by diodes CR3 and CR14.

SAFETY

Two safety network are provided in order to prevent abnormal operation of tube heating during +/- 12V power supply variation (switching ON or OFF sequence of the unit or default on +/- 12V power supply)
2–1–2–12 OPERATION OF THE CONSIGNE kV/ma PWB 3A9 (DIAGRAM 91–100)

kV/20 REFERENCE GENERATION

FLUORO OR RAD MODE

The kV data generated by the ADkV PWB 3A7 on the kV bus is converted to analog form by circuit G68. This voltage is called kV/20 and is sent to the kV/ma regulation PWB 3A12.

Two groups, of two 4-bit comparators each, monitor of the kV reference on the bus:

- one group (G18 and G19) has an input B wired for 40 kV. The kV bus value is sent to input A. If A < B, comparator output A < B is activated and used to generate the FC40 signal. This signal then inhibits kV reference decrementation by ADkV PWB 3A7.
- the second group of comparators (G21 and G20) has an input B wired for 110 V. The kV bus value is sent to input A. If A > B, the comparator output A > B is activated and is used to generate the FC110 signal. This signal then inhibits kV reference incrementation by ADkV board 3A7.

GENERATION OF RADIOGRAPHY MA REFERENCE

The kV bus addresses the kV value decoding memory G67 (EPROM). The four data bits of G67, 04 to 07, are decoded by G22 (BCD/decimal decoder) to make up the mA/radiography references for filament heating PWB 3A26.

These references correspond to the 6 mA values allocated to 6 voltage ranges.

DECODING AND DISPLAY kV/ma/mAs

The following circuits (EPROM) carry out decoding:

- G138, G172 for kV display,
- G137, G136 for mA and mAs display.

kV DISPLAY

G67 transforms the kV bus into two BCD buses (for unit and tens display). G22 detects the 1 of the 100th and the kV ranges.

mA/mAs DISPLAY

The G120 output is divided into two BCD buses, which assume mA or mAs reference display according to the mode selection: FLUORO or RAD.

The decimal point (range of displayed value) and upper value of the display are controlled by G121 output through transistors network according to the mode operation selected: FLUORO or RAD.
EXPOSURE PB

The X-ray request is performed by 2 PB: 2A1.Sm7 and 2A3.Sm26.
The PB leds are switched ON by 3A12.G74, 3A7.Q140, R154 and R155.

0–5 MIN. TIMER

The basic clock signal is supplied by the oscillator G69, adjustable by R217 to 50 Hz.
This signal comprising PRX..CP is directed to the timer PWB 3A5 to display the timer value, and to the counter assembly (G37, G36, G38) to increment up to the following values:

- 4’57”, which sends a stop signal to SCR PWB 3A19,
- 4’26”, which validates a 2 Hz flash signal generated by oscillator G35 to supply both the LED of key Sm14 (0–5 min.) and buzzer DS 175.

PRX = 0 also triggers monostable G39, validating buzzer operation after approximately 0.25s.

The 2A1.Sm14 PB resets the timer.

RX LAMP

The lamp 9DS1 is lighting when X-Rays are generated in RAD or FLUORO mode.
2-1-2-14 OPERATION OF THE COLLIMATOR 3A3 PWB (DIAGRAM 111–115)

COLLIMATOR ROTATION
The collimator rotation is ensured by 7M1 motor.

- A – 12V voltage is applied on 7M1 motor by 2A3 Sm11 for CCW rotation.
- A + 12V voltage is applied on 7M1 motor by 2A3Sm12 for CW rotation.

SHUTTERS OPERATION
Two possibilities are available:
- Image intensifier 16 cm: 1 field
- Image intensifier 22 cm: 2 fields

16 CM IMAGE INTENSIFIER: 1 FIELD
When unit is provided with a 16 cm I.I, the 7M5 motor is not present on the collimator ASM.

On the 3A3 PWB, the switches S501.A and B are open: Z information is to 1 logic (112.E G165.A pin 6 to 1 and pin 4 to 0)

UPPER SHUTTERS CONTROL
The upper shutters are opaque and are moved by 7M3 motor.

Closing and opening movements are controled by reversing motor power supply polarity (Q218 = +12V and Q211: – 12V)

The control is ensured by PB 2A3.Sm15 (opening –BPF1) and 2A3.Sm16 (opening – BPO1).

After decoding, these signals switch the push pull stage output to + 12V or – 12V, if the following conditions are present:
- limit switches not reached FCSC1(FLUORO) and FCGR1 (RAD)
- Controls compatible with operating mode selection (FLUORO or RAD).

The 2 limit switches permit to identify the maximum opening positions in FLUORO mode (FCSC1) and RAD mode (FCGR1).

LOWER SHUTTERS CONTROL
The lower shutters are semi–transparent shutters.
The opening and closing movements are controlled by 7M2 motor.
The control is ensured by PB 2A3.Sm13 (opening–BP02) and 2A3.Sm14 (closing – BPF2).

After according, these signals switch the push–pull stage output to + 12V or – 12V if limit switch are not reached (FCSC2 in FLUORO and FCGR2 in RAD).

These 2 limit switches permit to identify the maximum opening positions in FLUORO mode and RAD mode.
AUTOMATIC PREPOSITIONNING

When unit is switched from RAD mode to FLUORO Mode, the shutters of the collimator are automatically positioned in FLUORO mode in order to limit the X–Ray emission at the FLUORO size (FCSC1 and FCSC2 actuated).

On the other hand, when unit is switched from FLUORO mode to RAD mode, the shutters opening must be manually controlled.

The LEDS of the 2 PB 2A3Sm14 and Sm16 are flashing and RAD opening is completed when LEDS flashing is stopped. (FCGR1 and FCGR2 limit switches reached).

22 CM IMAGE INTENSIFIER: 2 FIELDS

When unit is provided with a 22 cm I.I, an additional function is available on the control console: ZOOM function PB 2A3.Sm7.

This function is selected with the 3A3.S501A and B on PWB 3A3.

Opening and closing shutters sequence are identical with the II 16 cm operation.

When ZOOM function is not selected, Z signal is 0.

Z = 0 changes the limit switches selection in the logic control of the shutters.

The maximum opening depends of FCGR1 and FCGR2 instead of FCSC1 and FCSC2 (actuated from FLUORO position to RAD position).

When ZOOM function is selected, Z signal is 1 Logic and the shutters close automatically until limit switches FCSC1 and FCSC2 are reached (ZOOM size).

AUTOMATIC PREPOSITIONNING

BP LEDS flashing and prepositionning sequence are identical with 16 cm I.I sequence.

X–Ray BEAM LIMITATION

Two limitations are provided:

– 16 cm controled by 7M4
– 22 cm controled by 7M5

When unit is mounted with a 16 cm II, only the 16 cm limitation is present on the collimator.

RAD MODE

16 cm or 22 cm imager

RAD = 1 and RAD = 0 informations, after decoding, control the motion out the field of the X–Ray beam limitation device: motors are always supplied in order to maintain the limitation in place.
FLUORO MODE

16 cm imager

RAD = 0 and RAD = 1 informations control the 7M4 motor: 16 cm field limitation is positionned and limits the X–Ray beam to the imager size.
Motor is always supplied in order to maintain the limitation device in place.

22 cm imager

RAD = 0 and RAD = 1 informations control the 7M4 motor: 22 cm limitation is positionned and limits the X–ray beam to the imager size.
Motor is always supplied in order to maintain the limitation device in place.

ZOOM selection: ZOOM selection controls the positionning of the 16 cm limitation with 7M5
2-1-2-15 OPERATION OF THE COLLIMATOR PWB 3A3 (DIAGRAM 116–120)

AUTOMATIC GAIN CONTROL (CAG ON/OFF)

The CAG function operates in AUTOMATIC FLUORO mode.

GO TO BLACK VIDEO OPERATION

ZOOM FUNCTION (22 cm IMAGER)

When the ZOOM Function is selected (PB 2A3.Sm17–111E) a Z1 signal is generated and select in the camera the ZOOM mode (mode 1) through 3A3Q148.

SWITCHING OFF SEQUENCE

When the PB 2A3.Sm21 or 2A1.Sm4 is depressed, 1 logic signal is applied on Q152 base.
Q152 energizes 9A1.K3 (2C)
9A1K3 contact applies 110V on 9Sm1 auxiliary coil: the unit switches OFF.

REDUCED POWER SELECTION

When unit is used on a mains voltage of 100, 108 or 120V (USA) it is necessary to reduce the power: this operation is controlled by A3.S133.B

OX.HLC

When unit operates in FLUORO and HIGHT DEFINITION (HLC) mode the OX signal (from 3A19.a16) is validated by SYX Sc and RAD and generates the OX.HLC signal.
The SYX Sc signal holds the HLC selection during the X–Ray pulses in PULSED FLUORO mode.
During RAD mode operation, OX HLC is hold to 0 logic.
2-1-2-16 C–ARM UP/DOWN MOTION (DIAGRAM 121–130)

COLUMN MOTORISATION

The column motorisation is performed by a DC motor 1M1.
The UP motion is controlled by the BP 2A3.Sm23 or 2A1.Sm5 which energises the relay 1A1.K34.
The DOWN Motion is controlled by the BP 2A3.Sm22 or 2A1.Sm9 which energises the relay 1A1.K44.
A motion request energises the relay K6 through D3 or D4 diode and supplies the motor.

24 VDC POWER SUPPLY

A 24 VDC power supply is provided to supply the imager (VHV and TV camera).
2–1–2–17 OPERATION OF 3A5 TIMER PWB (MINUTERIE).(DIAGRAM 131–140)

This board performs the following functions:

- monitor coil rotation (with DR4 and MD10 memories)
- memory image rotation (with MDA memories)

ROTATION OF MONITOR 1 COILS

This function is controlled by keys Sm8 and Sm7 on the control console.
Pressing these keys generates a logic signal which is amplified by transistors Q151 and Q156.
These transistors control relays K36 and K35 located on the
PWB 9A1 transpanel.
Closing one of these relays causes monitor coils to rotate in the desired direction.

ROTATION OF MONITOR 2 COILS (optional)

This function is identical to rotation of monitor 1 coils and is controlled by keys
Sm6 and Sm5.
PWB 3A5 is fitted with the corresponding circuits.
Blank page
Dual MONOSTABLE

4538

\[T = R_X \cdot C_X \]

Dual D Flip Flop

4013

Pin
1 : Ground
2 : Trigger
3 : Output
4 : Reset
8 : Vdc

Pin Table:

<table>
<thead>
<tr>
<th>CL</th>
<th>D</th>
<th>R</th>
<th>S</th>
<th>Q</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

no change

1 : High level
0 : Low level
X : Don’t care

Borne 4

\[T = T_1 + T_2 = 0.693 \left(R_A + R_B \right) \cdot C \]

\[T_1 = 0.693 \left(R_A + R_B \right) \cdot C \]

\[T_2 = 0.693 \left(R_B \right) \cdot C \]
GENERAL

Integrated circuit CMOS 4538

The 4538 circuit includes 2 independent monostables whose time constants are determined by an external RC circuit.

Each monostable can be triggered on the rising or falling edge of a pulse, according to the input chosen.
- outputs 4 and 12 – rising edge
- inputs 5 and 11 – falling edge

Each monostable has 2 outputs:
- outputs 6 and 10 generate a positive pulse
- outputs 7 and 9 generate a negative pulse

Inputs 3 and 13 reset the monostables. RAZ = logic 0

Integrated circuit CMOS 4013

The 4013 circuit includes 2 identical "D FLIP–FLOP"s each having independent inputs of set, reset, clock, data and 2 outputs Q and Q.

The logic level present at the input D (5 or 9) is transferred to the output 0 (1 or 13) during the positive transition of the signal clock (inputs 3 or 11).

Resetting is carried out by a signal at 1 logic on the reset (4 or 10).

Integrated circuit 555 (Timer)

As long as the input 4 (Reset) is at 0, the output 3 is at 0.
When input 4 passes to 1, output 3 passes to 1 for the whole of the time generated by the RC circuit (T1 – constant of charge) then falls back to 0 during the time T2 (constant of discharge).
Since the inputs 2 (Trigger) and 6 (threshold) are connected, the circuit works as multivibrator until input 4 (reset) is at 0.

SELECTION OF THE MODE OF WORKING

The information of selection of RAD, SP and ER mode configure the control logic RX and the memory management.

The information NORMAL FLUORO is obtained as a default if no other mode of working has been selected.

MEMORY SIGNALS

Signals MG+ and MF+

The signals MG+ and MF+ manage the technique of working of the memory (FLUORO, PULSED FLUORO, E.R.).
Signal MEMO +

This signal indicates the end of digitalization or the authorization of treatment (filtering).

The signal is maintained at 0 logic during the time of establishment and stabilization of the video signal.

This time is generated on the circuit 3A1 by G117.8 (T1).

In PULSED FLUORO, the signal is also managed by the times T2 and T5.

Signal VISU +

This signal indicates to the memory the presence of RX or of a sequence during which RX pulses are emitted.

The signal is at 1 logic for the whole time of an RX request in NORMAL FLUORO or PULSED FLUORO, but will return to 0 logic in E.R. mode at the end of the single RX pulse.

Signal X PERM

The signal at 1 logic indicates that the memory is available. By its return to 0 logic it generates an end of exposure via the logic of the 3A1 PWB (STOP DSM).

This end of exposure generated by the memory reduces the time of RX emission to the minimum necessary to obtain a correct picture.

Signal A/B

This signal indicates that the memory is in mode 2 pictures and makes the rotation of the monitors return to the initial position.

GENERATION OF OX OUT ORDER

The OX order OUT depends on:
– the mode of working selected
– the signal X.PERM from the memory.

MONOSTABLES

5 monostables are present on the PWB 3A1

TT (206A–G117B)

This time allows the picture to stabilize in AUTO mode. It can be adjusted by R151. It can be shortened by the signal HYST (not active in this version).

T1 is deleted if the RX control is released.

T2 (207A–G117.A)

This time is fixed and is used as safety timer of the duration of RX necessary for processing the picture (16x40 ms = 640 msec).

It is shortened by the signal X PERM from the memory.

T2 is used in ER Mode and during the first impulse in PULSED FLUORO mode.

T2 is deleted if the RX control is released.
This time is fixed and is used to prolong the RX emission in NORMAL FLUORO so as to allow the memory to finish the acquisition of a correct picture. It is generated each time the order OX is deleted by an origin other than that of the signal X PERM of the memory.

This time is adjustable and is used from the second impulse of PULSED FLUORO onwards. It can be shortened by the signal HYST (not active in this version) and remains active after the release of the signal 0X to permit the acquisition of a correct picture given by the last impulse of R.

This time is fixed and is used as safety timer for the duration of RX necessary for the processing of the picture from the second impulse of the PULSED FLUORO sequence onwards. It can be shortened by the signal X PERM. It is not influenced by the release of the order OX, so as to permit the memory to acquire a correct picture.

The time T6 is generated by a multivibrator type 555. This time determines the cadences of the RX pulses in PULSED FLUORO mode. The multivibrator is triggered at the end of the time T1 and synchronized by each pulse T4 – this makes it possible to have a constant time between each pulse.

The integrated circuits G119.A and G82.8 (203A) prevent the emission of an additional impulse when the BP RX is released.

The treatment of the signal OX and OX* is provided by the "D Flip-Flop" G103.B (204C).

The purpose of this circuit is to:

1. Wait for the state of permission X PERM
2. Prevent the release of OX* during the sequence of PULSED FLUORO and ensure that the end of each impulse of RX is generated by the signal X PERM.
3. Take account of the signal T

T: this signal is generated at the level of the PWB 3A3 DIAPHRAGM if a change of field occurs in the 22 cm ampli (normal field to magnify or vice versa). This signal is used to drop the order OX and recommence the sequence with a new phase of automatic search for the kV/mA instructions.

The signal HOLD kV frees the automatic mechanism during the time T1.

The purpose of the "D FLIP–FLOP" G 103.A (202C) is to maintain the RX emission if the signal T occurs during the pulse.

As soon as BP RX is pressed, OX OUT passes to 1 logic.

When the BP RX is released, OX OUT is released when the time T3 has expired.
ELECTRON RAD MODE

The working depends on the position of S502.1 (205B).

S 502.A in position OPEN

The RX emission is generated as soon as the BP OX is pressed and maintained during the time T1 and T2.

The end of exposure is given by the memory: the signal STOP DSM makes T2 return.

If the BP OX is released before the end of the sequence, the signal OX OUT returns and interrupts the RX emission.

S 502.A in position CLOSED

The RX emission is generated as soon as BP OX is pressed.

If the BP OX is released during the RX emission, the emission is not interrupted, and the end of exposure will be given by the signal STOP DSM coming from the memory.

PULSED FLUORO MODE

As soon as the BP OX is pressed, the PULSED FLUORO sequence starts off with a first pulse identical to that generated in ER mode (T1 + T2).

At the end of the time T1, the cadencer T6 is triggered and synchronized by each pulse of T4 so as to maintain an equal time between the RX pulses. The second and following pulses are generated by the monostables T4 and T5.

HOLD KV

The purpose of this signal is to free the search kV/mA circuit during the time T1 in PULSED FLUORO mode.

In the other modes of working, automatic radioscopy is active all the time.
2–2 IMAGER 16 or 22
2–2–1 PRESENTATION

The Heads of the Imageur 16 CCD* for Stenoscop and the Imageur 22 CCD* for Stenoscop 6000/9000 are compact, integrated units of attractive design (Ill. 2–1, 2–2, and 2–3), comprising the following components:

- Cover panels,
- Mechanical mount (Ill. 2–2 and 2–3: Item 1),
- X–ray II tube (Ill. 2–2 and 2–3, Item 2):
 - Imageur 22 Stenoscop CCD = TH9438HX–H560
 - Imageur 16 Stenoscop CCD = TH9449HP–H506 or TH 9466 HP–H506
- High voltage power supply (Ill. 2–2 and 2–3, Item 3):
 - Thomson TH7191
- Optical assembly with integrated motor–driven Iris (Ill. 2–2 and 2–3, Item 4),
- CCD sensor module (Ill. 2–2 and 2–3, Item 5),
- Video processing module (Ill. 2–2 and 2–3, Item 6, and Ill. 2–4), including:
 - Compact rack (Item 1),
 - Backpanel board (Item 2),
 - CCD Power Supply Board (Item 3),
 - CCD Video Board (Item 4),
 - CCD Interface Board (Item 5).
- Lead counterweight (Ill. 2–2 and 2–3, Item 7),
- Dose rate preamplifier (Ill. 2–2 and 2–3, Item 8).

* charged–coupled device.
ILLUSTRATION 2-2
IMAGEUR 22 CCD FOR STENOSCOP
ILLUSTRATION 2–3
IMAGEUR 16 CCD FOR STENOSCOP
ILLUSTRATION 2–4
VIDEO PROCESSING MODULE
2–2–2 II Tube

Type

Thomson

- TH 9438 HX H560 (3–Field version, 22 cm)
- TH 9449 HP H506 (1–Field version, 16 cm)
 or TH 9446 HP H506 (1–Field version, 16 cm)

Note: Field 3 is not used on the Imageur 22.

Operating Principle

The II tube changes the x–ray image into a high intensity image with excellent contrast.

The relief information revealed by the radiation which travelled through the patient, first passes through the tube input window, which is made up of aluminum foil with very low absorption and very low diffusion properties. The relief information is then absorbed by the detector screen behind the input window.

The detector screen changes the x–ray photons into luminous photons. A photocathode attached to the detector screen is energized by these luminous photons and produces electrons.

These electrons are then accelerated and focused by electrical fields. The electrons strike a fluorescent screen (P20 type), forming a high intensity inverted image which is smaller than the image entering the tube (ratio of 1:9).

The gain in brilliance is obtained from the energy of the accelerated electrons and from the reduction of the image produced.
TABLE 2–1

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>TH9438HX (22 cm)</th>
<th>TH9449HP (16 cm)</th>
<th>TH9466HP (16 cm)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantal detection efficiency</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>%</td>
</tr>
<tr>
<td>Typical conversion factor</td>
<td>200 (150)</td>
<td>180 (140)</td>
<td>250 (180)</td>
<td>cd.m⁻²</td>
</tr>
<tr>
<td>(min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical contrast ratio</td>
<td>30 (24)</td>
<td>20 (16)</td>
<td>23 (18)</td>
<td></td>
</tr>
<tr>
<td>(min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter of image produced</td>
<td>25.2 ±0.2</td>
<td>14.5 ±0.5</td>
<td>14.5 ±0.5</td>
<td>mm</td>
</tr>
<tr>
<td>Entry field at 1000 mm from focal point:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Mode</td>
<td>215 min.</td>
<td>145 min.</td>
<td>145 min.</td>
<td>mm</td>
</tr>
<tr>
<td>Mag 1 Mode</td>
<td>160 ±5</td>
<td>–</td>
<td>–</td>
<td>mm</td>
</tr>
<tr>
<td>Typical resolution limit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Mode</td>
<td>≥46</td>
<td>42</td>
<td>48</td>
<td>lp/cm</td>
</tr>
<tr>
<td>At center</td>
<td>≥44</td>
<td>42</td>
<td>44</td>
<td>lp/cm</td>
</tr>
<tr>
<td>At 70% of diameter</td>
<td>≥42</td>
<td>40</td>
<td>44</td>
<td>lp/cm</td>
</tr>
<tr>
<td>At 93% of diameter</td>
<td>≥52</td>
<td>–</td>
<td>–</td>
<td>lp/cm</td>
</tr>
<tr>
<td>Mag 1 Mode</td>
<td>≥50</td>
<td>–</td>
<td>–</td>
<td>lp/cm</td>
</tr>
<tr>
<td>At center</td>
<td>≥52</td>
<td>–</td>
<td>–</td>
<td>lp/cm</td>
</tr>
<tr>
<td>At 70% of diameter</td>
<td>≥48</td>
<td>–</td>
<td>–</td>
<td>lp/cm</td>
</tr>
<tr>
<td>At 93% of diameter</td>
<td>≥48</td>
<td>–</td>
<td>–</td>
<td>lp/cm</td>
</tr>
<tr>
<td>Typical MTF at the center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Mode</td>
<td>2 lp/cm</td>
<td>97</td>
<td>87</td>
<td>%</td>
</tr>
<tr>
<td>5 lp/cm</td>
<td>88</td>
<td>76</td>
<td>80</td>
<td>%</td>
</tr>
<tr>
<td>10 lp/cm</td>
<td>69</td>
<td>54</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td>20 lp/cm</td>
<td>33</td>
<td>19</td>
<td>25</td>
<td>%</td>
</tr>
<tr>
<td>Mag 1 Mode</td>
<td>2 lp/cm</td>
<td>97</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>5 lp/cm</td>
<td>90</td>
<td>–</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>10 lp/cm</td>
<td>73</td>
<td>–</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>20 lp/cm</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>%</td>
</tr>
</tbody>
</table>

Protection against x–rays and the magnetic field in the Imageur is provided by a lead casing combined with metal foil having high magnetic permeability.

Note: II tubes have an automatic getter pumping device; this avoids the formation of an ion spot which could cause loss of resolution and contrast. When the tube has not been in service for a long time, it is necessary to allow it to regenerate. If the vacuum in the II tube is not correct (getter current above 1 μA), a red LED indicator light on the side of the CCD Interface Board lights up. This light also goes on briefly when power to the Imageur is switched on.
2–2–3 EHV Power Supply

- The II tube HV power supply unit is designed for use with TH 9438 HX H560 (22 cm) or TH 9466 HP H506 (16 cm) or TH 9449 HP H506 (16 cm) tubes.
- The unit is 0–10 V programmable. The potentiometers for adjusting this voltage are located on the edge of the CCD Interface Board (R1 thru R9).
- The high voltage values VG1 (HV), VG2 (HV) and VG3 (HV) are obtained using the low control voltages vg1 (LV), vg2 (LV) and vg3 (LV) on the basis of the following relationships:

<table>
<thead>
<tr>
<th>22 cm</th>
<th>16 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{vg}_1) (LV) (\text{volts}) = (1 + \frac{\text{VG}_1 \text{(HV)} - 40}{34.5})</td>
<td>(\text{vg}_1) (LV) (\text{volts}) = (1 + \frac{\text{VG}_1 \text{(HV)} - 40}{34.5})</td>
</tr>
<tr>
<td>(\text{vg}_2) (LV) (\text{volts}) = (1 + \frac{\text{VG}_2 \text{(HV)} - 145}{139})</td>
<td>(\text{vg}_2) (LV) (\text{volts}) = (1 + \frac{\text{VG}_2 \text{(HV)} - 1300}{1300})</td>
</tr>
<tr>
<td>(\text{vg}_3) (LV) (\text{volts}) = (1 + \frac{\text{VG}_3 \text{(HV)} - 1300}{1300})</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: On 16 cm Imageur units, the G2 electrode of the II tube is connected to the G3 output of the EHV power supply.

Note: The 9466 or 9449HP H506 II tube does not have the G3 electrode.
G1 controls the uniformity of focusing.
G2 controls focusing at the center.
G3 controls the diameter of the entry field (for 22 cm only).

<table>
<thead>
<tr>
<th>LOW VOLTAGE</th>
<th>FIELD</th>
<th>TEST POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NORMAL</td>
<td>MAG1</td>
</tr>
<tr>
<td>22 cm</td>
<td>vg1</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>vg2</td>
<td>R4</td>
</tr>
<tr>
<td></td>
<td>vg3</td>
<td>R7</td>
</tr>
<tr>
<td>16 cm</td>
<td>vg1</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>vg2</td>
<td>R7</td>
</tr>
</tbody>
</table>

Note: On 22 cm Imageur Housing units, Potentiometers R3, R6 and R9 are inoperative.
On 16 cm Imageur Housing units, Potentiometers R2, R3, R4, R5, R6, R8 and R9 are inoperative.

Note: The test points are on the CCD Interface Board. Make the measurement between the test points shown on the table and the ground located at TP1 on the CCD Interface Board.
Specifications

- Size: 160 x 115 x 52.5 mm.
- Power supply: 24 V +10/–15%.
- Consumption: 350 mA (max.).
- Stability over 8 hours: ≤ ±0.5%.
- Temperature stability: ±0.05% between +5° and +55°C.
- Detection of insufficient vacuum for getter current > 1 μA.
- Ripple: < 0.3% peak to peak.
- Thomson reference: TH 7191

WARNING

THIS POWER SUPPLY UNIT PRODUCES VERY HIGH VOLTAGES AND SHOULD NOT NORMALLY BE ENERGIZED WHEN ITS OUTPUTS ARE DISCONNECTED. IF A TEST IS NECESSARY, STANDARD PRECAUTIONS FOR THE MEASUREMENT OF HIGH VOLTAGES MUST BE OBSERVED TO AVOID THE POSSIBILITY OF ELECTROCUTION OR DAMAGE TO THE POWER SUPPLY UNIT.

IN PARTICULAR, ENSURE THAT GROUNDING CONNECTIONS ARE NOT OVERLOOKED AND CHECK THAT THE HIGH VOLTAGE CONNECTIONS ARE INSULATED CORRECTLY.

ENSURE THAT THE HIGH VOLTAGE CABLE CONNECTIONS FOR THE X–RAY IMAGE INTENSIFIER TUBE PROVIDE A VERY GOOD CONTACT WITH THE EHV CONNECTORS TO AVOID ANY DISRUPTIVE DISCHARGE. REMOVE ANY TRACES OF DIRT OR ROUGHNESS ON THE CONNECTOR CONTACTS.

2–2–4 Optical System

The new optical design from Rodenstock uses a single short focal lens working in demagnification mode. The lens is common to all the image intensifiers; only the demagnification factor is different, allowing several different mechanical adaptations. This optical coupling mode provides an excellent MTF. The lens includes a motorized iris with position repeater by potentiometer.

The lens mounting allows:

- Focusing,
- Centering,
- Image alignment.

CAUTION

The type of optic depends on II size (16 or 22 cm), and video standard (50 Hz/625 lines or 60 Hz/525 lines).
An Imageur CCD Stenoscop cannot be modified on site from 50 Hz/625 lines to 60 Hz/525 lines.

Special paper is used to clean the optics (Kodak 1546027).

2–2–5 CCD Module

The CCD module includes:

- A Sony Board carrying the CCD sensor and its electronic control system.
- An Interface Board to which the CCD module is fitted. This Board includes connectors and interfacing circuits.
 These two Boards are paired (adjusted together).

The signals provided by the CCD module are:

- Video signal (coaxial cable): CCD preamp output (Normal Mode) or composite video (Test Mode), jumper selectable.
- Synchronization signals:
 - Pixel clock (not used with Stenoscop),
 - Horizontal drive,
 - Vertical drive,
 - Synchro composite,
 - Field parity (not used with Stenoscop).

The signals are transmitted by a ribbon cable fitted with HE10 16–contact connectors hooked up to the backpanel board.

In the event of CCD sensor malfunction, the optical system/CCD Module tandem must be replaced. Note, however, that the CCD sensor has an excellent MTBF (≥50 000 hours)

Sony CCD Module Specifications

There are two versions of this Board (they are not interchangeable).

A1 CCB M27 BCE (50 Hz/625 L).
 - Number of pixels: 752 x 582 (H x V).
 - Dimension sensing area: 6.47 x 4.83 mm (H x V).
 - Pixel size: 8.6 μm x 8.3 μm (H x V).
A2 CCB M27 B (60 Hz/525 L).
 - Number of pixels: 768 x 494 (H x V).
 - Dimension sensing area: 6.45 x 4.84 mm (H x V).
 - Pixel size: 8.4 μm x 9.8 μm.
Sony CCD Module Settings

The Sony CCD module settings are made in the factory and need not be changed.

If a replacement is made, the gain setting only should be checked (R1 on the CCD module). See Job Card RG 352.

2–2–6 CCD Power Supply Board

- The Power Supply Board uses the 24–V voltage supplying the II assembly to provide the three different voltages required to operate the rack boards:
 - +5 V
 - +15 V
 - –15 V

- This function is mainly performed by the PS1 DC/DC converter, which has the following specifications:
 Input voltage: 18 V to 36 V (dc)
 Output voltage: +5 V (max. 5 A) ±1 %
 ±15 V (max. 1 A) ±1%
 –15 V (max. 1 A) ±1 %
 Max. power: 55 W

- Protection on the 24–V supply side is provided by Fuse F1 (2AT).

- Switch S1 is used to switch off the entire II assembly (including the EHV power supply and the dose measurement preamplifier).

- LED DS1 indicates presence of the 24 V voltage,
 LED DS2 indicates presence of the +5 V voltage,
 LED DS3 indicates presence of the +15 V voltage,
 LED DS4 indicates presence of the –15 V voltage.

- The Board also includes a thermal safety device designed to warn the user when the temperature inside the casing becomes too high. This device consists of a buzzer (LS1) linked to a temperature sensor (V3) which is placed in contact with the housing of the DC/DC converter (PS1). This is a strictly passive device which does not inhibit operation of the Imageur. Sensor V3 supplies a voltage of 10 mV/°C. The reference voltage for the V2 comparator is defined by the R5/R6 bridge and is selected so that the buzzer is activated when the temperature reaches 80°C.

2–2–7 CCD Video Board

This Board performs two main functions:

A1 Processing of the video signal supplied by the CCD module.

A2 Generation of the ABD (Average Brightness Detection) signal which is used by the generator to control the luminance output.

The block diagram for the Board is given in Ill. 2–6.

The detailed block diagrams of the sub–functions are given in Ills 2–7 thru 2–12.
2–2–7–1 Video signal processing

2–2–7–1–1 Video gain

See Illustrations 2–6 and 2–7.

There are two methods of adjusting the video gain.

A1 Manual Gain: The gain is set at a specific value using Potentiometer R1.

A2 Automatic Gain: The level of the video signal is held constant by means of a control loop. The regulation circuit uses the ABD signal. Generation of this signal is described in Para 1–2–7–5.

Before the variable gain stage, during the vertical return, pulses (VTEST) are added to the video signal with amplitude proportional to the ABD signal. The gain control circuit responds only to the amplitude of the VTEST pulse. These pulses are sampled by U5 in each frame using the STEST command. The direct current voltage supplied at the output of U5 is used to control FET Q3 which is set up as a variable resistor via Amplifier AR6.

The ABD signal remains constant and the video gain is fixed for as long as the generator can provide regulation. As soon as the generator reaches its limit, the amplitude of the ABD signal decreases and at this point, the variable gain control comes in to keep the amplitude of the VTEST pulses obtained from the ABD signal constant.

The gain control range is deliberately restricted to:

Max. gain = x 5
Max attenuation = ÷ 2

In Manual Gain Mode, the VTEST pulses have a constant amplitude of 1 V.

The AGCVALID signal is used to switch from Manual Gain to Automatic Gain (see Ill 2–7).

Automatic Gain Mode is possible only if the following conditions are satisfied:

- Fluoroscopy Mode ON.
- CLTV Mode ON.
- A specific time has elapsed since the appearance of the x–rays (typically 750 ms). This time delay can be adjusted by R12/CCD Video Board.

2–2–7–1–2 Gamma correction

See Illustration 2–8.

In order to preserve data which are present in areas of glare, video processing includes a three–slope gamma correction function with HLDE (High Level Detail Enhancement) to obtain a gamma value of around 0.45.

Gamma circuit improvement (Dynamic Gamma) can be selected by Jumper X2. The principle of this circuit is as follows:

- Given Vo as the video level on uniform image at the Do nominal dose. If the video signal includes levels where V ≥ 10 Vo, the gamma factor is equal to 0.45.
A peak detector made up of AR3, D3, C27, R62 and R63 measures the peak value of the video signal and adjusts the gamma setting control. When the video level decreases, gamma correction is reduced and this causes an improvement in contrast, especially on low dynamic images. The signal provided by the peak detector is sampled at field frequency by U3 and the "SAMPLE" command.

Note: Dynamic Gamma is active in Fluoroscopy Mode only.

2–2–7–1–3 Video output stage

See Illustration 2–9.

The video output stage includes two operating modes, which can be selected using Jumper X4:

- **A1** In Position 1, the signal output on J3 is a composite video signal for Stenoscop applications (1 V peak–to–peak, including 300 mV for synchronization pulse).
- **A2** In Position 2, the signal output on J3 complies with the specifications of the CCD AV Board A/D converter (2 V peak–to–peak with no synchronization pulse), which is used only in R/F applications.
 - Offset is adjustable by R4.
 - Level of black is adjustable by R3.

2–2–7–2 ABD signal generation

See Illustration 2–11.

The Average Brightness Detection (ABD) signal obtained from the CCD module video signal output is used by the generator to regulate luminance in Fluoroscopy Mode.

The video signal sampled prior to automatic gain control is first amplified by AR7 (5 to 6 gain), and then clipped by Q26, Q27 to a level twice the nominal dose.

- Clipping is active in Automatic Gain Mode only,
- Clipping can be made inactive using Jumper X5.

The resulting signal is sampled by the measurement window (AGCWIN signal). This window is generated by the CCD Interface Board.

A threshold circuit made up of AR10 is used to exclude all portions of the video signals with a level below the threshold defined by the R11 setting from the measurement window. The circuit is used to eliminate the harmful effect of the collimation shutters, barite, etc., on regulation.

The sampled video signal goes to the AR8 integrator, which is reset for each field by the reset signal.

The logic signal defining the measurement window (corrected for dark areas) goes to a second AR8 integrator, identical to the first one, which provides data proportional to the area of the measurement surface.

The ABD signal is the result of the division by U10 of the integrated video signal by the integrated measurement window to the size of an average value video signal. This signal is sampled at field frequency by the Sample signal.
It is used:

A1 To make the VTEST signal used in the AGC loop. This signal is made up of test lines with an amplitude proportional to the ABD signal and these are added to the video signal during field return (see Section 2–2–7–1–1).

A2 For the generator regulation loop, there are two possibilities (selection by Jumper X6):
 a. In Steno version, the nominal level supplied is +2.1 V.
 b. In R/F version, the nominal level supplied is –1 V.

ABD output gain is adjustable by R6.
ABD output offset is adjustable by R13.

A3 To make the REC logic signal.

Comparator AR10 switches over when the ABD signal falls below half the nominal value. This occurs when the generator reaches its limit. Since AGC is in operation, the image is noisier. The REC signal may be used by the DSM memory to switch over to a stronger recursive table, in order to reduce the noise.

2–2–7–3 Control signal generation

See Illustration 2–12.

The logic signals generated by the CCD Video Board are:

- Synchronization signals used in the Video Board for video processing purposes (see Timing, Ill. 2–13 and 2–14).

- Test signal generator CAL GAIN signal which is used to perform calibration without x-ray generation.

 The test signal is made up of a uniform white square and a black porch. The test signal level can be adjusted using R10.
ILLUSTRATION 2-8
CCD VIDEO – DYNAMIC GAMMA—BLOCK DIAGRAM
ILLUSTRATION 2–9
CCD VIDEO – VIDEO OUT AMPLIFIER—BLOCK DIAGRAM

ILLUSTRATION 2–10
CCD VIDEO – SIGNAL GENERATION
ILLUSTRATION 2–11
CCD VIDEO – AVERAGE BRIGHTNESS DETECTION—BLOCK DIAGRAM
RESET
HDCAM
MONO1
VD CAM
VD1
VD2
RAZ =VD1 \(\downarrow\) VD2
SAMPLE=VD1 \(\uparrow\) VD2
VD2 \(\downarrow\) MONO
BLK = (VD2 \(\downarrow\) MONO1) \(\neg\) VDCAM
MONO2 X1 on B (Calibration)
MONO2 X1 on A (Normal)
LTEST X1 on A and on B
STEST X1 on A and on B
CAL GAIN X1 on B = MONO2.BLK
2–2–8 CCD Interface Board

This Board combines four distinct functions:

A1 Interface,

A2 Remote control of the EHV power supply,

A3 Iris servo–control,

A4 Generation of circular masks (for Stenoscop application only).

2–2–8–1 Interface

The interface manages and adapts the remote–control commands coming from the Stenoscop:

- HINV, VINV (not used with Stenoscop),
- Rad Prep/Go To Black (not used with Stenoscop),
- X–ray ON,
- Advantx Iris Command (not used with Stenoscop),
- CLTV ON,
- Dose 1/Dose 2 (Iris switchover in Fluoroscopy Mode),
- Mag 1 and Mag 2 remote control (for 22 cm).

These signals are transmitted via Optocouplers V18 thru V21.

They are used to generate the following signals:

- BCLTV (CLTV ON, BCLTV = 1, CLTV OFF, BCLTV = 0)
- BPG1 (Rad Prep ON, BPG1 = 1) (not used with Stenoscop)
- BXRAY ON (XRAY ON, BXRAY ON = 1)
- BINV H and BINV V (not used with Stenoscop).

The default position of the sweep reversals when power is turned on can be altered by Jumpers X3 and X4, on Imageur RF only.

- CSYNC
- BPG2 (not used with Stenoscop)

This signal indicates presence of x–rays in Radiography Mode with Imageur 22 RF CCD.

- DOSE This signal determines the position of the Iris in Fluoroscopy Mode.

- IRIS On the Imageur RF, this signal determines the position of the Iris depending on whether in Fluoroscopy or Radiography Mode:

 State 0 = Fluoroscopy,
 State 1 = Radiography.

After a request for Rad Prep is made, the Iris Radiography state is maintained until the next fluoroscopy.

On the Imageur for Stenoscop, the Iris remains in the fluoroscopy position during a Radiography exposure (Jumper X1 in M position).
2–2–8–2 Remote control of EHV power supply

The EHV power supply control voltages are adjusted by Potentiometers R1 and R9 located on the edge of the Board.

In Radiography Mode, the Imageur housing returns to Normal Mode, irrespective of the status of the Mag commands.

The DS1 LED lights up if the vacuum is insufficient (getter current > 1 μA).

2–2–8–3 Iris servo–control

The CCD Interface Board contains the servo–control circuits for the motor–driven Iris. Three Iris value settings are available, and these are determined by the status of the A0 and A1 inputs of Analog Switch U6:

<table>
<thead>
<tr>
<th>A1</th>
<th>A0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>DOSE 1</td>
<td>DOSE 2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Radiography</td>
<td>Radiography</td>
</tr>
</tbody>
</table>

On condition that DOSE 1 < DOSE 2

The position of the Iris and the corresponding adjustment potentiometers (R10 thru R12) is indicated by LEDs DS2 thru DS4.

Switch X2 is used to set up the Imageur for different uses:

- X2 on T – Iris Fluoroscopy in Dose 2 position when power is switched on (RF use).
- X2 on U – Iris Fluoroscopy in Dose 1 position when power is switched on (Stenoscop use)
 When Switch X1 is in the M position, it is used to inhibit changing over the Iris into radiography position when a Rad Prep request is made.

This mode is used with the Stenoscop.

With the Imageur 22 RF CCD, Switch X1 must be set in the L position.

When Switch X5 is set in the P position, it is used to open the Iris in the position corresponding to Dose 1 when the RECT signal goes to 0. This is used to increase the dynamics of the video signal when the generator can no longer provide regulation.

This function can only be active in Automatic Gain Mode (AGC VALID signal on 0). When the Iris has switched over, it retains its position until the next fluoroscopy (Circuit U12).
Analog circular masks

These masks are used in the Stenoscop application only.

The line integrator is made up of Operational Amplifier U12 and the R/C components associated with it. It is reset by the HDCAM signal and a part of the U7 analog switch. Its output supplies a parabola signal at line frequencies aligned on a direct current voltage equal to +3 V.

The field integrator is made up of Operational Amplifier U10 and the R/C components associated with it. It is reset by the VDCAM signal and the other part of the U7 analog switch. Its output supplies a parabola signal at field frequencies aligned on a direct current voltage equal to +3 V.

The two parabolas are added together using Potentiometer R15 to adjust the H/V ratio. The diameter of the video mask is adjusted using R16, and the diameter of the ABD sampling window is adjusted using R17.

For Stenoscop applications, Jumper X7 is in E position and Jumper X8 is in G position.

For R/F applications, Jumper X7 is in F position and Jumper X8 is in H position. In this case, the circular masks are provided by the digital CCDMT Board.
2–3 MEMORIES
2–3–1 DR4 IMAGE MEMORY

2–3–1–1 DR4 Block diagram (Rev. 2).
2–3–1–2 Input block

- The input block includes the following items:
 - Shielded metal BNC connector for EMI/RFI compatibility.
 - Ability to bridge the input terminal to the output terminal through an electromechanical relay. In the quiescent state (i.e. when power is off), the analogue bypass feature is obtained.
 - Video DC level restoration by blank level clamping.
 - 50 % slicing synchronisation detector
 - Fixed gain video amplifier with trimmer adjustable offset level.

The factory pre–set black level is 15 mV above the blanking level, and the white level is set at 715 mV. The black level can be adjusted in the range to 50 mV. Gain is fixed in such a way that a 700 mV span from black to white corresponds to full scale response at the A/D converter. The black digitisation threshold is coupled to a black level insertion device at the output.

- 8 bit digitisation at 14.75 MSPS.

- Input anti–aliasing filter to remove spectral components from the signal above half the sampling frequency. Cut–off frequency is approximately 7 MHz.

![Input Video Filter DR4](image)

2–3–1–3 Noise reducer

This device operates in real time on the digitised signal from the A/D converter. The transfer function is a temporal low–pass recursive filter. As an approximation, the operation is as follows: at every image (every 40 ms in CCIR or 33 ms in EIA), each memory pixel is replaced by the sum of the $\frac{1}{n}$ fraction from the input pixel and the $1 - \frac{1}{n}$ fraction from the previously stored pixel. The n coefficient can be chosen among the following values: 1, 2, 4, 16. It corresponds to an artificial lag in the image quantified by a time constant of n images (n times 40 or 33 ms) in the image sequence. When n is 1, the image is transferred “as is” without filtering. The recursive filter is off in this case. The noise reducer includes a so called “movement detector”, aimed at accelerating the filtered image update when large level variations are encountered. This feature realises for each pixel the optimal trade–off between the wanted noise reduction and the undesirable image lag observed on a moving scene.
2–3–1–4 FIFO

This device is able to accumulate several digital pixels (up to 128) and to deliver them back as double-pixel (16 bits) bursts at 14.75 MHz.
This results locally in time into a twofold multiplication of the transfer speed.
This is required by the main memory, also called frame buffer, which should be able to store image (write bursts) while outputting a previously stored image (read bursts).

2–3–1–5 Frame Buffer

The main memory is implemented with three standard 4 Megabit DRAM components, totalling 1.5 Megapixels.
Thanks to the FIFO that accelerates the input data flow, it is possible to use conventional DRAM in "Page Mode" access instead of more expensive VideoRAM.
The frame buffer can perform write while read access at video speed. This means, for instance, that a visualised live image is a readout image stored during the previous frame.
The memory is able to store 576 x 576 (CCIR) or 576 x 488 (EIA) areas coming from the centre of the input video signal. There is room for storing four images (1,572,864 > 4 x 576 x 576).
During an edge-enhance operation, the video transfer through the memory is interrupted, and a special way to handle the frame buffer takes place.

2–3–1–6 Edge Enhancer

This device scans the memory in order to extract eight pixels within a 3 x 4 neighbourhood, then writes back a resulting pixel into the memory. This operation is not performed in real time: it lasts approximately 0.4 s. However, the image appearance is not altered, because visualised images are held in the display buffers during computation.
The neighbourhood of the implemented convolution is as follows:

<table>
<thead>
<tr>
<th>"Low" Enhancer</th>
<th>"Medium" Enhancer</th>
<th>"High" Enhancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -0.25 0</td>
<td>0 -0.5 0</td>
<td>0 -1 0</td>
</tr>
<tr>
<td>-0.25 1.25 -0.25</td>
<td>-0.5 2 -0.5</td>
<td>-1 3.5 -1</td>
</tr>
<tr>
<td>-0.25 1.25 -0.25</td>
<td>-0.5 2 -0.5</td>
<td>-1 3.5 -1</td>
</tr>
<tr>
<td>0 -0.25 0</td>
<td>0 -0.5 0</td>
<td>0 -1 0</td>
</tr>
</tbody>
</table>

2 . 75
There are three enhancing "strengths": low, medium and high. The choice is performed by dip-switches. The low enhancer is selected by default (factory pre-set).

The high enhancer is too energetic for practical use.

Each pixel getting out of the edge enhance is the weighted sum of 8 incoming pixels.

The multiplying coefficient, or weights, are above pictured in relation with the geometrical location of the pixels.

If the image is uniform, pixels are not altered. On the other hand, short term spatial variations are emphasised.

Overflow phenomenon can arise in case of image with highly contrasted contents. This is absorbed by an adequate black or white saturation circuit.

2–3–1–7 Images Transfer

Image are transferred from the frame buffer towards a given display buffer in real time (40 ms or 33 ms).

This transfer is optionally performed with a vertical or horizontal image inversion.

2–3–1–8 Display Buffers

There are two display buffers, rather independent each other, each implemented in a 4 Megabit VideoRAM (256 k x 16).

Each of them is able to store a full image.

The buffers are called A and B, and are the sources of the video outputs A and B respectively.

When the write process into a buffer is made permanent, a direct live image is displayed through the buffers.

The main function of the display buffer is the Flicker–Free image display.

The pixel data rate at the buffer’s output is 29.5 MHz in Flicker–Free mode and 14.75 MHz otherwise.

The Flicker–Free operation is selected simultaneously for the two buffers.

There is no dedicated display buffer for the hard–copy output, as hard–copy is used for very short periods of time.

However, the hard–copy output is always 50 Hz (CCIR) or 60 Hz (EIA) without flicker–free display.

This means that even when A and B outputs are selected as flicker–free, it is still possible to share the A buffer to generate a non flicker–free image sent to the hard–copy device.

The system performs a two second snapshot.

The X–ray image can be visualised in a live manner only on the A screen.

2–3–1–9 Indicator Insertion

The indicator inserter is responsible for the generation of status and image indicators as described in the document relating to the operator interface.

2–3–1–10 Output Block

This block’s front–end is a digital mixer fed with digital images from the A and B buffers.

It drives a triple D/A converter delivering three outputs: screen A, screen B and hard–copy.

The hard–copy port permanently exhibits a non flicker–free synchronisation signal (50/60 Hz).

Each output is available on shielded metal BNC connector for EMI/RFI compatibility.

The functionality of the three outputs is detailed below.
2–3–1–10–1 Hard–Copy Interaction

In principle, the A screen displays the A buffer, and the B screen displays the B buffer. The hard–copy output temporarily displays the A buffer. During hard–copy cycle (2 seconds), A and B screens are erased, and the hard–copy output delivers the A buffer contents in 50/60 Hz. If the flicker–free mode is installed, the A and B outputs lack the flicker–free synchronisation signal for this while.

CAUTION: Reprography to be controlled only by remote control.

2–3–1–10–2 Black Level Management

For each video output, an artificial black pedestal is inserted, corresponding to the black level digitised at the input level. Both are adjusted together by means of a single trimmer between 0 and 50 mV. The video output amplifier gain is fixed in such a way that full scale data correspond to a 700 mV peak–to–peak amplitude, which ensures input to output level matching. By choosing a non–zero black level (for example the factory pre–set value of 15 mV), the A/D digitiser is constrained to ignore any component of the signal between the blank level and 15 mV. The imager’s video camera may exhibit some base noise outside the image intensifier area. This noise is cancelled at the memory input. In doing so, the input and output signal are identical from the blank level to 715 mV, except for the initial 15 mV. Above 715 mV, clipping occurs.

2–3–1–11 Power supply

The memory is powered with a low voltage supply. This solution makes easier the conformity of the product to UL standard, as no part of the device is connected to the mains voltage. A nominal 24 Volt supply (AC or DC) is adequate. A simple transformer secondary winding (isolated) is sufficient to power the memory. Nevertheless, the power supply line is carefully filtered through an analogue LC filter to eliminate parasitic effects. The 24 Volt voltage is rectified and lowered to the required voltages (without isolation) by means of high frequency DC/DC converters (50 to 100 kHz). The conversion efficiency is about 80 %, in order to limit internal heat dissipation. The total power consumption is approximately 15 Watts.

2–3–1–12 Control Block

The heart of the control block is an 8 bit micro–controller (PIC from Microchip). Its program is stored internally, and makes use of a data table residing in a 16 kByte external EPROM. The micro–controller takes commands from two sources: the “RX Control” connector linked to the Stenoscop’s X–ray interface, and the “IR Remote” (female DB9) connector linked to the remote control receiver. The RX connector is actually double: a male DB15 is compatible with the DSM interface, and a female DB15 is compatible with the DR interface. The micro–controller drives all the control bits scattered in the system’s logic circuitry, and implements the operator interface and the X–ray generator interaction. An acoustic buzzer is provided to signal errors.
Timing Functions

There are two timing classes within the memory unit:

- Input timing,
- Output timing.

The video data flow is successively time-referenced to each of them.

2–3–1–13–1 Input timing

The input part, the noise reducer, the FIFO and the memory are referenced to the input timing. It consists of a pixel clock at 14.75 MHz and an interlaced format. The clock is phase-locked to the camera input video timing.

2–3–1–13–2 Output Timing

Display buffer read-out, character insertion and output video reconstruction are referenced to the output timing. If Flicker-Free operation is not selected, the output timing is simply derived from the input timing (pixels at 14.75 MHz). If Flicker-Free operation is selected, the output timing is locked by means of a second PLL to the camera input video timing. This second loop operates at 29.5 MHz.

2–3–1–13–3 Video Loss

When no camera video signal is applied, the input timing is generated by the PLL VCO free-running at a constant control voltage. An internal reference is derived with some 5% accuracy. The output secondary PLL is locked on this reference.
2–3–2

MD10 IMAGE MEMORY

2–3–2–1 MD10 Block diagram (Rev. 2).
2–3–2–2 Input block

The input block includes the following items:

- Metallic z connector for EMI/RFI protection.
- DC component restitution–clamping.
- Synchronisation detection at 50% of the synchronisation.
- Amplifier with fixed gain and offset adjustable by trimmer.
- Factory adjustment: 15 mV above the blanking for the black level and 715 mV for the white level.
- The black level is adjustable from 0 to 50 mV.
- The gain is adjusted such as the video level from black to white covers the complete converter scale.
- A 8 bits at 14.5Mega samples/second converter.
- An antialiasing input filter to suppress the spectral components from the video signal above the sampling frequency mid range. (Cut–off frequency –7 MHz)

2–3–2–3 Noise reduction

This device operates in real time on the digitalized signal coming out of the converter. It makes a temporal low–pass recursive filter.

For each image (every 40 ms in CCIR or 33 ms in EIA), each memory pixel is replaced by the sum of the ratio 1/n of the input pixel and the ratio 1–1/n of the pixel previously stored. This algorithm requires a image buffer (524.288 x 12bits words).

The n coefficient can be chosen among 1,2,4,6,8,15 and infinite value.

For n=1 means that the transmission is done without filtering (OFF).

For n= infinite means that the picture is frozen in the buffer, and therefore it is used as the 7th stored image.

This mode is selected by the micro controller which drives the user interface.

The noise reduction has a « movement detection » which accelerates the update of the filtered image when large level variations are encountered.

The system is conceived to realise, pixel by pixel, a best compromise between the requested noise reduction and the picture remanence on a mobile object.
2–3–2–4 INTERLACE TO PROGRESSIVE CONVERTER

The goals of this circuit is first to allow the functionment in real time of the edge enhancement. This last one works by convolution of 3 close pixels on 4 continuous lines. But in an interlaced system, 2 lines physically close are in fact on 2 different frames. That makes impossible a correct convolution in real time. Such a converter needs an image buffer. It is implemented in a 512 kBytes FRAME MEMORY which includes a digital sequential input and output on 8 bits. The input/output processes are asynchronous each other, this allows to create a video format less constraining that the CCIR/EIA format sampled at 14.75 MHz.

At the converter output, the pixels are present by pair: 16 bits. The pair includes a pixel from a frame and another one from the previous frame, so 2 superposed pixels. The frequency used to superpose the pixels is only 6.25 MHz, which makes easy the main image memory implementation (Frame Buffer).

2–3–2–5 Frame Buffer

The main memory is made by 4 DRAM (4MBytes each), so 2 Mega pixels. As the sample frequency is 6.25 MHz, classical DRAMs used in PAGE MODE are sufficient for this application. The memory works either in READ or in WRITE mode, the 16 bits bus is single. Sizes of stored images are: 576 x 576 (CCIR) and 576 x 488 (EIA). The frame buffer has a capacity of six images.(2,097,152=> 6x576x576)

2–3–2–6 Edge Enhancer

The progressive data bus is applied at the edge enhancement circuit. This one uses a delay line of two video lines, as well as shift registers, in order to have for each pixels going out a neighbourhood of 3x4 input pixels. The convolution neighbourhood is done following the table hereafter:

<table>
<thead>
<tr>
<th>"Low" Enhancer</th>
<th>"Medium" Enhancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -0.25 0</td>
<td>0 -0.5 0</td>
</tr>
<tr>
<td>-0.25 1.25 -0.25</td>
<td>-0.5 2 -0.5</td>
</tr>
<tr>
<td>-0.25 1.25 -0.25</td>
<td>-0.5 2 -0.5</td>
</tr>
<tr>
<td>0 -0.25 0</td>
<td>0 -0.5 0</td>
</tr>
</tbody>
</table>

Each pixel going out of the enhancer is the sum of the product of the 8 incoming pixels. The multiplying coefficients are in relation with the geometrical location of the pixels as described in the table. If the image is uniform, the pixels are not modified. But the local variations in the contrast are accentuated. The overflow which could be met in case of strong variations (very sharp edge) are absorbed by a saturation circuit for such black or white level. The edge enhancement, situated on the main memory data bus, is applied on an image coming either from the N.R. circuit or from the memory. The images are not stored with the edge enhancement. The edge enhancement is activated by a key on the remote control. The edge enhancement in real time is possible (25 or 30 images/sec.).
2–3–2–7 PROGRESSIVE TO INTERLACE CIRCUIT

The image under a progressive format sampled at 6.25 MHz, must be transferred to the visualisation buffers.
This operation is submitted to strong constrain mainly due at the Flicker Free display.
To avoid uncompleted frame refresh with 100Hz live images, the period of time during which a frame can be transferred is short and accurately included in the video sequence.
The horizontal and vertical flybacks are done during this transfer.
The progressive/interlace circuit is able to sent alternatively the odd or even frame to the display buffers in less then 10mS (8.3 mS in EIA), with a sample frequency of 25 Mhz.

2–3–2–8 PATTERN AND CIRCLE

Before being written in the visualisation buffer, the image is sent to a circuit in which the black or transparent circle is added. In this same circuit the image can be replaced by a grey scale pattern.
The visualisation of the black circle is set by a dip switch.
It is inserted inside a square of: 576x576 pixels (CCIR)
576x488 pixels (EIA)
It is possible to distinguish the live picture behind the black circle with the edge of this one still visible.
This possibility called «Transparent mask» allows the centering of the image.

2–3–2–9 DISPLAY BUFFERS

There are 2 display buffers which are quiet independent each other, each made with a Video RAM (4 Mbits VRAM).
They are able to store a complete image and they are called buffer A and B.
These buffers display the image A and B on the screens.
When one buffer is in the permanent Write mode, the live image is displayed through the buffers.
The different functions of the Display buffers are:
– Flicker Free display
– Zoom
– Centring before A/B display.(2 images on the same screen)

A widen blanking mode is selectable by dipswitch.
This one is used for the A/B display in Flicker Free mode with the GE Distar monitors.
In this case the display is made on 768 pixels, two images of 384 pixels in horizontal.
When the Distar mode is selected, the sample frequency is increased at 31.5 MHz in place of 29.5 MHz.
In these conditions, the horizontal blanking is 7.62 uS in place of 5.97 uS.
There is no buffer for the hard copy output.
When a print has to be done, the video is furnished by the A buffer in 50 Hz during 2 seconds.
The ZOOM and its positions (9: central, up–central, down–central, left–central, right central, up–left, up–right, down–left, down right) are programmable independantly for each buffer, also in the A/B mode.
The display in ZOOM is made on 768 pixels.
2–3–2–10 CHARACTER GENERATOR

Like there are 2 display buffers, there are also 2 character generators. They must be able to display the characters on a flicker free image or a no flicker free image. That means that if a image is displayed with the characters in F.F. on monitor A and it is possible to print the same image on a hard copier. During 2 seconds, exposure time, the screen A is blanked and the buffer swaps to a CCIR timing to furnish at the hard copy output a 50Hz video and then comes back to a F.F. display. During these operations, the B buffer stays unchanged.

2–3–2–11 OUTPUT BLOCK

The output block includes a digital mixer of the buffer outputs A and B. It supplies a triple digital to analog converter which has 3 screen outputs: screen A, screen B and Hard copy output (no flicker free).

– A/B mode: when selected, the outputs A and B display the same image coming from the A buffer for the left part and from the B buffer for the right part. The hard copy output displays temporally the same composite image. The hard–copy port permanently exhibits a non flicker–free synchronisation signal (50/60 Hz). During the reprography, monitors A and B are blanked.

CAUTION: Reprography to be controlled only by remote control.

– Black level: there is an artificial black level for each video outputs equivalent at the digital black level at the input. Both signals are simultaneously adjustable between 0 to 50mV by a trimmer. The video outputs gain is fixed in order to get a digital scale of 700mV peak to peak. With a no null value for the black level (i.e.: 15 mV – standard value), the digitalizer is constrained to ignore the signal between the suppression level and 15mV. Like this, the input and the output signals are perfectly superposable between the suppression level and 715mV, excepted the 15mV close to the black. The signal over 715mV is clipped.

2–3–2–12 POWER SUPPLY

A nominal value of 24V is necessary to supply the memory. A LC filter is present in the memory input. The power consumption is 18 watts.

2–3–2–13 CONTROL BLOCK

The heart of this block is a microcontroller 8 bits. Its program is included in an 64kBytes EPROM. It receives its commands from the «RX Control» (DB15) connected at the Stenoscop RX interface and the «I.R. Remote» (DB9) connector connected at the Infra Red receiver. It furnishes all the control bits for the memory logic and implements the operator interface and the interactions with the generator.
2–3–2–14 TIMING FUNCTIONS

Four main timing classes are present in the memory.

– Input timing
– Progressive processing timing
– Interlace processing timing
– Output timing

2–3–2–14–1 Input timing.

The input and the noise reduction are driven by the input timing, a 14.75 MHz clock and an interlaced format.

This clock is locked by a phase loop on the camera synchronisation.

The memory (frame buffer) in the Read or Write mode is driven by the progressive processing timing.
The pixels transit two by two at 6.25 MHz with a non interlaced format.
The main frequency is 50 MHz, the edge enhancement frequency.
This clock is locked by a second phase loop on the camera synchronisation.

2–3–2–14–3 Interlaced processing timing.

The circle and pattern insertions are driven by the interlaced processing timing.
The pixels are present at 25 MHz and the format is interlaced.
This timing uses the same 50 MHz clock as here upper described.

2–3–2–14–4 Outputs timing.

The reading of the display buffer, the indicators insertion and the video reconstruction are driven by the output timing.
If the display is not flicker free, the output timing is derived from the input timing (14.75 MHz).
If the display is flicker free, the timing is derived from a third phase loop locked on the camera synchronisation.
The flicker free phase loop oscillates at 29.5 MHz or 31.5 MHz depending of the blanking selection (Distar compatibility).
Each display buffer can select independently its output timing as a flicker free (29.5/31/5, interlaced)
or a no flicker free(14.75 MHz, interlaced).

2–3–2–14–5 No video input.

If there is no video signal at the memory input, the 50 MHz clock is generated by a quartz.
A divider furnishes a stable 64uS reference which takes place of the video signal.
The phase loop is locked on this reference, as well as the flicker free phase loop.
MDn MEMORY

Block Diagram
2–3–3–2 Interfaces

2–3–3–2–1 Input and acquisition

"CAMERA" is the video input BNC terminal receiving a composite (luminance–only) signal from the X–ray CCD camera. The camera input port conforms to CCIR (625 lines, 50 Hz) or EIA (525 lines, 60 Hz) analogue video standards. The sampling rate is 14.75 MHz for both CCIR and EIA standards. Digitizing is performed with 8 bit–resolution (256 gray levels) for 576 pixels per line. 576 lines are acquired in CCIR mode and 480 lines are acquired in EIA mode. Pixel are square (1H / 1V) in CCIR and affect a 1H / 1.18V aspect ratio in EIA.

An anti–aliasing analogue filter is provided for correct digitization (not shown in the diagram).

The synchronization is extracted from the input and a clamping circuit is applied to restore the blanking level to a known DC value. The video gain is fixed and the offset level is adjusted by means of an internal trimmer potentiometer. The adjustment range is 0 to 50 mV. The factory setting is such that the digital value 0 is obtained for a black level setup of 15 mV, and the digital value 255 is obtained for a white level of 715 mV above the blanking level. The adjustable black digitization level is coupled to a black setup insertion circuit at the output. This offset compensation scheme is identical to the one used in DR4 and DR7/MD10.

A video signal coming from a VCR through a dedicated S–video connector ("VCR IN") can be substituted to the camera signal. Only the central square part of the VCR signal is digitized.

2–3–3–2–2 Overlay and outputs

Four analogue video output ports are provided:

- "MONITOR A” is a BNC terminal providing a 100/120 Hz or 50/60 Hz signal for the screen A image visualization.
- "MONITOR B” is a BNC terminal providing a 100/120 Hz or 50/60 Hz signal for the screen B image visualization.
- "HARD COPY” is a BNC terminal providing a 50/60 Hz signal for the paper or film hard copy device.
- "VCR OUT” is an S–video terminal providing a 50/60 Hz signal to a video recorder.

Two video channels are generated, named A and B. Each of them is defined on 8 bits and supplemented by a 4–bit graphic overlay information. This allows up to 15 overlay gray levels to be superimposed. The video and graphics mixing operation is made by means of an output LUT.

"HARD COPY” and "VCR” provide the same video signal on two distinct BNC connectors. In most cases, this signal will exactly reflect the A image (including graphics). If needed, the source for "HARD COPY” and "VCR” can be switched to the B image.

The A and B images (including graphics) are frequency doubled to build two 100/120 Hz images delivered through the "MONITOR A” and "MONITOR B” output port for visualization purpose. 50 / 60 Hz format can be generated at these outputs as well.
DC supply

A DC power supply should be allowed to have its negative terminal connected to the system ground, all three GND pins being used. The positive voltage terminal should be connected to AC1, all pins used.

2–3–3–3 Description

2–3–3–3–1 Digital format

Images are internally coded as arrays of 576 x 576 x 8 bits. In case of EIA, only 488 lines are used. Internal 8–bit wide data paths transport digital video at 10 Megapixels/s in a non–interlaced (progressive) fashion. This progressive format applies to busses noted GT (Geometric Transform), NR (Noise Reduce) and EE (Edge Enhanced). These busses are isolated from the micro–controller’s data bus by means of FIFOs. The data bus groups four pixels for a 32–bit width. The instantaneous peak data rate on the data bus is 80 Megapixels/s.

Images are stored in the flash memories as blocks of 262 144 bytes (2^{18}). However, a full size CCIR image is 331 776 bytes (576 x 576). It has been chosen not to store the part outside the radiology circle.

The theoretical lowest byte count for a circle limited image is $\pi x 288^2$, i.e. 260 576.

A 1 KB parameter area is available with each image.

2–3–3–3–2 Temporary storage

MDn include a dynamic random access memory (DRAM) storage area of 2 Megabytes. This makes possible to locally hold up to six 576 x 576 images. However, this DRAM also contains data and program information for the local micro controller. This reduces the number of areas available for image storage to four ($4 x 576 x 576 = 1 327 104$).

One of these areas is used as an intermediate storage buffer delivering data to the SFS (see § 4.4, Geometrical Transform). Three of them are available as a queue of three buffers delivering data to / from the flash memory array.

In addition, an area of 2 x 165 888 bytes is reserved for overlay storage (576 x 576 4 bit nibbles).

437 KB are available for the micro–controller’s program and data.

2–3–3–3–3 Permanent storage

The technology used to achieve permanent storage is called "Flash Memory". A flash memory is the modern evolution of the EPROM (Erasable Programmable Read Only Memory), except that erasing and programming are performed electrically without removing the component out of a socket.

Reading from a flash memory is fast: less than 100 ns per byte.

Writing into a flash memory is slow: 6 μs per byte.
Before writing new data at a given flash memory location, it has to be erased firstly. However, it is not possible to erase a single byte individually. This is done on a block basis, a block being 64 KB long. Erasing a block is done in 1 second. Writing a full block can be done in 65,536 × 6 μs = 0.4 second, but this is theoretical limit.

A circle limited MDn image is stored in 4 blocks (64 KB × 4 = 262,144 bytes). The component chosen to implement storage has a capacity of 1 MB (Intel 28F008S5), containing 16 blocks each. A single component is able to hold 4 images.

MD6 storing time

The Basic Unit uses two of those components, allowing a theoretical capacity of 8 images. However, the components are also used for firmware storage, leaving space for 6 stored images.

It is possible to erase and write both components simultaneously. The time to store one image is:

- Erasing 4 blocks, 2 simultaneously: 2 seconds
- Writing 4 blocks, 2 simultaneously: 0.8 second
- Theoretical lowest total time: 2.8 seconds

As the flash is shared with other usage, one can expect a large overhead time above this limit. The MD6 storage time after X-ray acquisition is specified at 5 seconds.

MD16 storing time

The Module16 incorporates 4 flash memory components, as well as a special device to control simultaneous operation of 4 way banks of components with minimal overhead (the Flash Port). Thanks to this, the following limit performance is:

- Erasing 4 blocks, 4 simultaneously: 1 seconds
- Writing 4 blocks, 2 simultaneously: 0.4 second
- Theoretical lowest total time: 1.4 seconds

Conservatively, the MD16 storage time after X-ray acquisition is specified at 2 seconds. This explains why it is not possible to reuse the 6 images stored in the resident flash for MD6 for MD16 and above.

MD112 and MD208 storing time

Basically, the performance is the same when one or two Module96 is inserted. However, it will be possible to arrange the memory organization in such a way that successive images are not stored in the same set of 4 components. A Module96 is effectively made of 24 components, or 6 sets of 4 components. Because of this it will be possible to overlap erase/write operation for two successive images in different components.

However, it is impossible to predict the way the storage area will be organized after a number of store, retrieve, lock, and delete operations. Thus, for MD112 and MD208, the storage time of 2 second should be considered as a limit. In most cases, storage time of 1 second or less will be obtained.
Endurance

A given flash memory location is guaranteed for 100,000 erase/write cycles. This limit is not sharp, but rather statistic in nature. Intel does not provide a clear explanation of how this limit should be understood, and what is likely to happen after the "wear-out" time of the component.

A device able to store n images will be able to perform n x 100,000 image storing operation during its live. The number n should be carefully evaluated. If some image positions are "locked" for a while (instructed not to change over successive X-ray acquisitions), the effective number of images participating in the rotation of the stored set of images is reduced from the total capacity.

Nevertheless, let us evaluate the endurance of MDn for n = 6, 16, 112, 208. According to GE, a typical operational year is as follows:

- 20 image storing operations per examination,
- 8 examinations per working day,
- 300 working days per year.

This gives 48,000 storing operations per year, and sets the following lifetime for the different versions:

- MD6 12 years
- MD16 33 years
- MD112 233 years
- MD208 433 years

The problem of the locked positions is only an issue for the MD6.

Geometrical Transformation

A continuous progressive video data flow is obtained at the bilinear interpolator output from the combination of a square of four adjacent pixels in the source image space. The source image is held in the SFS or static frame store, which is a SRAM (Static Random Access Memory) based memory array able to store a full 576 x 576 image.

The sub-pixel resolution of the interpolator is 1/8 of a pixel. The interpolation process preserves the 8-bit resolution of the images.

The destination-to-source address transformation law is linear, which allows any rotation, scaling and offset transformation without geometrical alteration. The rotation resolution (minimal amount of rotation) is selected by firmware. The hardware does not impose a limitation in this respect. The coordinate addresses of the source image are expressed in 20 bits.

The geometric transformer is equally used for rotation and for smooth zooming and scrolling. The computation is the same as the one used in MDA.
2–3–3–5 Noise reduction

The noise reducer implements the GE proprietary recursive filtering algorithm using a hardware table to compute the increment brought to the local frame store. This is illustrated by the following drawing:

The table is firmware downloaded, enabling any time constant and any motion detection factor. Refer to the document 337/93 of Mr. J. Bossaert from GE.

The device uses a local frame store, working as a video delay line. This buffer is built with dynamic RAM. The noise reducer operates on a progressive digital video data flow.

2–3–3–6 Edge Enhancement

The edge enhancer uses a 3 x 4 convolution kernel with fixed coefficients. The figure below illustrates the location of the programmable coefficients in the matrix.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-0.25</td>
<td>1.25</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>-0.25</td>
<td>1.25</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-0.25</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The operator works in real time. The 8–bit accuracy is preserved throughout the process. A companion static RAM is used as a delay line generator. The edge enhancer operates on a progressive digital video data flow.

The computation is the same as the one performed in DR4 and DR7/MD10 devices.

2–3–3–7 Progressive to Interlace conversion

The progressive data flow is converted to a 50/60 Hz interlaced format by means of a PTI (Progressive To Interlace) circuit based on field memory devices (FRAM). A PTI is able to hold a full video frame (576 x 576), and there are two of them. The PTI are the place where the A and B images are individually stored between X–ray acquisition or flash memory storage recall.

A PTI is 12 bit wide, making possible to store both the 8 bit image and its accompanying 4 bit overlay.
2–3–3–3–8 Overlay insertion
Overlay and image data are effectively mixed in a programmable fashion thanks to a 12 bit to 8 bit LUT.

2–3–3–3–9 Frequency doubling
Rising up the field frequency from 50/60 Hz to 100/120 Hz is performed through frequency doubling circuits based on field memory devices (FRAM). Two of them are provided, one for each output channel.

2–3–3–4 Operation
This device used for image rotation and/or zoom works in two steps: filling a dedicated high speed static RAM buffer (called SFS, Static Frame Store) from the DRAM, and reading the buffer while generating from the bilinear interpolator a regular progressive video data flow at 10 MHz representing the transformed image.

The two steps are mutually exclusive in time. The filling step is called ”SFS” and lasts 7 ms maximum.

The extracting step is called ”PCC” (Progressive Compute Condition) and lasts 33 ms (576 x 576 x 100 ns). The real time arithmetical operators work at this speed, namely the noise reducer and the edge enhancer.

When acquisition is in progress, both steps are alternately performed. The total time being less than 40 ms (duration of a video image), real time operation is possible.

The above figures have to be adapted for EIA/525 operation.
When performing X-ray acquisition for processing, storage and display, the multiplexers shown in § 2, Block Diagram, are set in the "Acq" position. The hardware architecture is then configured to realize the following data flow:
When reviewing previously stored images for processing and display, the multiplexers shown in § 2, Block Diagram, are set in the "Rvw" position. The hardware architecture is then configured to realize the following data flow:
2–3–4 MDA MEMORY

2–3–4–1 Introduction

This document describes the image acquisition and real time processing part of the SODA (Surgical Open Digital Architecture) system.

Physically, it consists in two PWB (Printed Wiring Board) to be inserted into a PC. The MIDAS board conforms to the PCI (Peripheral Component Interconnect) standard. The AVIAS board is an ISA (Industry Standard Architecture) compatible item.

AVIAS implements the video acquisition part, consisting mainly in analogue components. AVIAS stands for: ”Acquisition Vidéo pour l’Architecture Soda” (Video acquisition for the Soda architecture).

MIDAS implements the digital image processing part, including the PCI interface to the PC. MIDAS stands for: ”Manipulation d’Images Digitales pour l’Architecture Soda” (Manipulation of digital images for the Soda Architecture).

AVIAS includes the following functionality:

- Analogue video input and output processing
- Analogue to digital and digital to analogue conversion
- Video timing generation
- Input and output look–up tables
- Scan conversion
- Digital input and output

This board does not require direct PCI communication. Thus an ISA–compliant solution is chosen in order to spare a PCI slot in the PC. In fact, only power supply voltages are drawn from the connector.

System connections to the outside world are made through AVIAS by means of a 37 pin DB connector.

AVIAS and MIDAS are coupled each other by a short ribbon cable. This cable transfers digital video input and output signals as well as control information.

MIDAS is PCI compliant, and is able to act as a bus master to transfer video data in real time to and from the PC memory.
Functionality supported by the MIDAS board include:

- Clock generation
- General control
- Image and overlay memory
- Real-time interpolated image rotation and zoom
- Real-time edge enhancement
- Real-time recursive filtering and peak opacification
- Real-time image subtraction.

2–3–4–2 AVIAS: analogue section

2–3–4–2–1 AVIAS block diagram

In the above drawing, Y designates a luminance signal and C designates a chrominance signal.

2–3–4–2–2 Inputs and acquisition

Three analogue video input ports are provided:

- "CAMERA" is a terminal receiving a luminance-only signal from the X–Ray CCD camera.
“FROM VCR” is an S–Video terminal receiving a luminance–only signal from a video recorder.

“_AUX” is an S–Video terminal receiving a luminance and chrominance signal from an auxiliary source.

One of those three analogue sources is selected for acquisition. A fourth source is selectable for internal test and calibration purposes.

An antialiasing analogue filter is provided for correct digitisation (not shown in the diagram).

Sampling rate is 14.75 MHz for both CCIR and EIA standards. Digitising is performed with 10 bits resolution (1024 grey levels), and immediately transformed to 8 bits (256 grey levels) by means of the input LUT. The 10 bit digitiser guarantees a 1/4 LSB non–linearity at 8 bits, instead of an 1 LSB error if a 8 bit digitiser was used.

The input LUT is used to implement high resolution gain and offset correction in the digital domain, as well as optional gamma correction.

2–3–4–2–3 Graphics insertion and outputs

Four analogue video output ports are provided:

“MONITOR A” is a terminal providing a 100/120 Hz signal for the screen A image visualisation.

“MONITOR B” is a terminal providing a 100/120 Hz signal for the screen B image visualisation.

“HARD COPY” is a terminal providing a 50/60 Hz signal for the paper or film hard copy device.

“TO VCR” is an S–Video terminal providing a 50/60 Hz signal to a video recorder.

Two video channels are generated, named A and B. Each of them is defined on 8 bits and supplemented by a 4 bit graphic overlay information. This allows up to 15 overlay grey levels, including super–white levels. The video and graphics mixing operation is made by means of two output LUTs, delivering 10 bit signals.

The output LUTs are used to implement high resolution gain and offset output calibration in the digital domain, as well as windowing control.

The “TO VCR” and “HARD COPY” output ports are independently fed from the A image (luminance only) or from the AUX input port (colour possible for TO VCR).

In most cases, “HARD COPY” will exactly reflect the A image (including graphics). If desired, the luminance “AUX” input can be output for hard copy.

The A and B images (including graphics) are frequency doubled to build two 100/120 Hz images delivered through the “MONITOR A” and “MONITOR B” output port for visualisation purpose.
2–3–4–2–4 Image format

- **CAMERA input format**
 The camera input port conforms to CCIR (625 lines, 50 Hz) or EIA (525 lines, 60 Hz) analogue video standards. 576 pixels per line are digitised at 14.75 MHz. 576 lines are acquired in CCIR mode and 488 lines are acquired in EIA mode. Pixel are square (1H/1V) in CCIR and affect a 1H/1.18V aspect ratio in EIA.

- **Hard Copy output format**
 This is a 50 Hz / 60 Hz standard video signal.

- **VCR input and output formats**
 Only the luminance signal from the recorder is useful. The chrominance component is discarded. The system's output to the VCR can have a colour component when the "AUX" input is directed to it.

 The VCR video format conforms to the S–Video standard, i.e. same as usual CCIR or EIA with a additional separate analogue channel for encoded chrominance.

- **AUX input format**
 The "AUX" input conforms to S–Video format. A colour image can be directed towards the "TO VCR" output for direct recording. There is no possible colour processing within the system.

2–3–4–2–5 Digital Input and Output

Avias supports a number of connection to other item of the X–ray chain, namely:

- **Digital Inputs to Avias**
 All these inputs are EMI/ESD protected. They are adapted to a 0 to +12 V voltage swing. The logic threshold is approximately 5 V with hysteresis at 4.2 V / 6.3 V. The input resistance is 10 kΩ.

 There are 11 digital inputs: CW_A, CCW_A, CW_B, CCW_B, RX_ON, MEMO, VISU, MG, MF, EXT1, EXT2.

- **Digital Outputs from Avias**
 There are 4 digital outputs: AUX, XPERM, PRINT1, PRINT2.

 All these outputs are EMI/ESD protected. In the active state, AUX and XPERM provide a to +12V control voltage under approximately 500 Ω. In the inactive state, they are at high impedance. They are intended for connection to 4.7 kΩ resistor to ground.

 PRINT1 and PRINT2 are low impedance output (approximately 50 Ω) with a programmable level of 0, +5, –5 or +12 V.
All ground terminals are effectively connected together. Video signal are intended for twisted pair connection to an intermediate connection panel. Ribbon cable with twisted pair is recommended. Cable length should be absolutely limited to 50 cm.

2–3–4–2–7 Power

Avias draws its power supply out of the ISA bus.

- +5 V, 750 mA
- +12 V, 300 mA
- –12 V, 85 mA
2–3–4–3 MIDAS: digital section

2–3–4–3–1 Digital block diagram

Images are internally coded as arrays of 576 x 576 x 8 bits. In case of EIA, only 488 lines are used. Internal 8–bit wide data paths transport digital video at 10 Megapixels/s in a non–interlaced (progressive) fashion. The data bus groups four pixels for a 32 bit width. The instantaneous peak data rate on the data bus is 80 Megapixels/s.

Image are transferred through the PCI interface as four 8–bit pixels per 32–bit word.
Front–end processing

The digitised video signal is submitted to a front–end set of processing functions:

– Image rotation,
– Recursive noise filtering with motion detection,
– Peak opacification.

After application of these operators, the image is ready for one or several of the following:

– Local memory storage,
– Back–end set of processing functions.

Memory storage

• General purpose memory

Soda Boards include a dynamic RAM storage area of 2 Megabytes. This makes possible to locally hold up to six images. However, this RAM also contains data and program information for the local micro controller. This reduces the number of storable images to four or five.

Usage of the general purpose memory is as follows:

– Image buffering for PCI transfers,
– Temporary buffer for acquired image,
– Mask image buffer for subtraction and road mapping,
– Program and data area for the local micro controller.

The memory is organised as 512 k x 32–bit words, each word holding four 8–bit pixels (in case of image usage).

The general purpose storage resource is unified. This means that the management software can freely assign memory areas for specific purposes within a single memory space.

• Image A

There is no special memory buffer for the video A output. This image is originated from the general purpose memory area. The standard size for A images is 576 x 576 x 8 (CCIR) or 576 x 488 x 8 (EIA).

• Image B

Half of the video RAM area (256 K x 16) generates the video B output. The local micro controller sees 16 bit words as two 8 bits pixels. The standard size for the B image is 768 x 576 x 8 (CCIR) or 768 x 576 x 8 (EIA), which fits inside the 512 KB area.
• Overlay A and B
The second half of the video area (256 K x 16) generates the overlay data for A and B images. The local micro controller sees 16 bit words as four 4 bits graphic pixels. The standard size for the overlay images is 768 x 576 (CCIR) or 768 x 576 (EIA). Overlay A and B are independent each other.

• Flash memory
This is a on–board reprogrammable memory to hold the operating software of the local micro controller.

2–3–4–3–5 Back–end processing
Following front–end process or PC disk review, images can be further processed in real time in the following way:

– Weighted subtraction with a mask image,
– Edge enhancement,
– Interpolated zoom,
– Output LUT processing,
– Graphics insertion.

The zoom feature is forbidden for live images. Only locally stored images (from a previous acquisition session or from the PC disk) can be zoomed.

2–3–4–3–6 Processing flow
Several modes of operation are possible, as defined by individual subsystem programming. Three examples are provided:

– the acquisition mode,
– the review mode,
– the compute mode.

Some resources shown in the MIDAS block diagram are shared, and cannot be utilised together in a given mode. This chapter clarifies the system’s operation in each mode.
Acquisition mode

This mode is used to acquire, process and display on screen A the X Ray image.

The static RAM frame store and the bilinear interpolator combination is used as an image rotator. Two image zones are used in front of the frame buffer in a ping–pong way to guarantee an artefact–free rotated image, while de–interlacing the image.
- **Review mode**

 This mode is used to extract images from the PC’s memory and apply to them the back–end processing chain.

 The static RAM frame store and the bilinear interpolator combination is used as an image zoomer. Two image zones are used in front of the frame buffer in a ping–pong way to guarantee an artefact–free zoomed image.

 The above–mentioned combination is shared with the acquisition mode image rotator, which prevents the zoom operation during acquisition.
• Compute mode

This mode shows how to use the architecture to implement an image transformation from memory to memory. This is a way to use MIDAS as a software controlled image manipulation accelerator.

The upper part of the flow diagram allows geometric transformation from memory to memory. The lower part can be used for edge enhancing an image. The architecture can be programmed for concurrent existence of both data paths, but not necessarily for concurrent operation.

2–3–4–3–7 Functional details

• Sequencing consideration

This device used for image rotation and/or zoom works in two steps: filling a dedicated high speed static RAM buffer (called SFS, Static Frame Store, 512 KB) from the memory, and reading the buffer while generating from the bilinear interpolator a regular data flow at 10 MHz representing the transformed image.

The two steps are mutually exclusive in time. The filling step is called "SFS" and lasts 7 ms maximum. The extracting step is called "PCC" (Progressive Compute Condition) and lasts 33 ms (576 x 576 x 100 ns). All real time arithmetical operators work at this speed, namely the noise reducer / peak opacifier, the programmable subtractor and the edge enhancer.

When acquisition is in progress, both steps are alternately performed. The total time being less than 40 ms (duration of a video image), real time operation is possible.

The above figures have to be adapted for EIA/525 operation.
• Geometrical transformer

A continuous progressive video data flow is obtained at the bilinear interpolator output from
the combination of a square of four adjacent pixels in the source image space. The source
image is held in the static frame store.

The sub-pixel resolution of the interpolator is 1/8 of a pixel. The interpolation process
preserves the 8 bit resolution of the images.

The destination-to-source address transformation law is linear, which allows any rotation,
scaling and offset transformation without geometrical alteration. The rotation resolution
(minimal amount of rotation) is selected by software. The hardware does not impose a
limitation in this respect. The co-ordinate addresses of the source image are expressed in 20
bits.

• Noise reducer and peak opacifier

This device has two modes of operation: noise reduction only, and noise reduction followed
by peak opacification.

The noise reducer implements the recursive filtering algorithm using a hardware table to
compute the increment brought to the local frame store. This is illustrated by the following
drawing.

The device uses a local frame store, working as a video delay line. This buffer is built with
dynamic RAM. The 16 bit depth is not required by the arithmetics, but is merely a matter of
hardware opportunity, especially considering the peak opacification function.

The peak opacification function is simply a maximum/minimum function of the incoming
pixels compared to a previously generated peak buffer. The idea is to use the 16 bit local frame
store as two 8 bit frame stores: one for noise reduction, one for peak holding. In this mode, the
possible noise reduction factors are limited because of arithmetic rounding errors, but this is
not a practical limitation. The following drawing illustrates this combined operator.
Programmable subtractor

The programmable subtractor uses programmable look-up tables to perform grey-level transformations. The heart of the device is a 11 bit high speed adder preceded by two logarithmic transformers (mask and image) and followed by an exponential transformer. Variable weighting coefficients (e.g. for landmarking) are achieved by including a multiplying factor before logarithmic transformation in the input look-up tables. In particular, direct transmission of the image (no mask) is possible. The 8 bit accuracy is maintained thanks to the additional three bits in the transformed data. A model of the logarithmic subtractor is presented below.

Edge enhancer

The edge enhancer uses a symmetrical 5 x 5 convolution kernel with four independent coefficients. The figure below illustrates the location of the programmable coefficients in the matrix.
The operator works in real time. The 8 bit accuracy is preserved throughout the process. The coefficient are defined (with sign) with an 8 bit accuracy.

This kernel structure allows to implement the Mr J. Bossaert’s coefficients with T = M (spatial frequency response at zero frequency and at maximum frequency are set equal). The maximum response (Rm) is software programmable. We choose to use a single coefficient F to define the strength of the filter. With F = 0, the filter is out of function (simple transfer). With F = 1, the Rm coefficient is 2, which is the usual value for GE radiology image processors.

Coefficient are given by the following formulas:

- $C1 = 1 + 7 / 16 F$
- $C2 = 1 / 8 F$
- $C3 = -3 / 32 F$
- $C4 = -1 / 16 F$

Interpolated zoom

A smooth zooming device is included, using the same hardware circuit as the image rotator. Zoom factors can be selected in the range 1 to 8 (linear enlargement). Non integer zoom factors are supported.

Refer to the geometrical transformer description for details about interpolation.

Graphics insertion

Two dedicated 4 bit graphic planes are included in the system. It covers a full 768 x 576 (CCIR) or 768 x 488 (EIA) area, making it possible to draw graphics outside the central square.

The graphic planes are filled by the on–board micro–controller according to commands sent through the PCI bus.

Mixing the graphic information with the video image is made through a programmable look–up table, which gives a total freedom to the software to define a comfortable number of grey level in creating characters and geometrical items. Note that super–white levels can be assigned to some overlay codes.
- **LUT processing**
 The above mentioned graphic insertion table can also be used for LUT processing, such as windowing.
 The 8 bit accuracy is maintained at the table input and output.

- **PCI interface**
 The PCI interface acts as a slave or a master device to the PCI bus. It includes two 32 byte FIFO, one for reading and one for writing. As such, the PCI interface is able to reach the PCI bus top speed when bursting data to or from the agent controlling the PC’s memory.
 With a well behaved PC, reaching the real time speed to memory is achievable. The minimal average speed required is no more than 2 Megawords per second (four pixels are grouped inside a 32 bit word). The absolute maximum speed of the PCI bus is 33 Megawords per second. The video transfer represents a 6 % bandwidth consumption over the PCI bus.
 PCI operation requires a non volatile memory to conserve configuration information. This memory is implemented in a reprogrammable serial memory.
 Plug-and-play capability as required by the PCI specification is implemented.

- **Local micro-controller**
 A local RISC based micro-controller (AMD Am29240 at 20 MHz) is included to perform the following main tasks:
 - General management of the overall MIDAS and AVIAS Boards operation, in particular a number of timing dependant critical interactions,
 - Generation of DMA memory addresses for data transfer over the local 32 bit data bus,
 - Management of PCI cycles,
 - Access to the screen B and overlay plane.
 The Am29240 is able to manage four DMA channels at memory’s full speed. This capability is extensively used to transfer data to and from arithmetical operators, as well as to and from the PCI interface.
 Arithmetical operation occurs at an regular data rate of 10 MHz (PCC, or Progressive Compute Condition). The DMA channels are able to sustain this speed for several simultaneous transfers. FIFO are incorporated to decouple the burst based accesses through the data bus from the internal regular data flow of the PCC.

Power

Midas draws its power supply out of the PCI bus.

- +5 V, 2.2 A
- +12 V, 100 mA
2–4 MONITOR DISTAR

Note: For DISTAR M, refer to the specific separate document.
GE Medical Systems

STENOSCOP 2 – STENOSCOP Plus

REV 3
asm 826 921 P635

BLOCK DIAGRAM
2-4-1 OPERATION THEORY

The MAGNETEK 146020100FD monitor uses a monochromatic 20” CRT with phosphorus P104 and an antireflecting OCLI panel. The monitor can be powered with a network voltage ranging from 90V and 264V with a frequency of 60 Hz or 50Hz. The monitor works with two types of synchronism:

a) Composite video
 – Amplitude 1 V
 – Horizontal synchronism 31,25 Khz
 – Vertical synchronism 100 Hz

b) Composite video
 – Amplitude 1 V
 – Horizontal synchronism 31 Khz
 – Vertical synchronism 120 Hz

The two different standards can be selected through a switch placed in the rear part of the monitor.

The electronic part is composed of (see cards location next page):
 – Low voltage power supply board
 – High voltage power supply board
 – Deflection board
 – Video board
 – Selection board
 – Light sensor board.
1: L.V. Power supply
2: Deflection board
3: H.V. Power supply
4: Video board
5: Selection board
6: Light sensor board

LOW VOLTAGE POWER SUPPLY BLOCK DIAGRAM

- **INPUT FILTER**
 - W2
 - W1
 - GP1

- **POWER STAGE**
 - W2
 - W5
 - W6
 - W7
 - W8
 - W9
 - 95V
 - GND
 - 25V
 - 12V
 - 6.3V
 - NC
 - 62V

- **PWM**
- **STEND-UP**
 - H. AMP

To VIDEO Board
DEFLECTION Board
2–4–2 LOW VOLTAGE POWER SUPPLY BOARD

(DIAGRAM 541–550)

The low voltage power supply provides the voltages needed for scanning and for the video amplifier. It is composed of a flyback switching power supply and a stand-up DC–DC converter. The first stage of this power supply provides the following voltages:

- 95 V for the video amplifier
- 12 V for some analog and CMOS integrated circuits
- 25 V for vertical scanning and anode voltage
- 6.3 V for the heater of the CRT.

The board also provides an auxiliary voltage of about 28 V which, by means of the DC–DC converter, is raised and adjusted to 62 V to obtain horizontal scanning.
Position and cards description

1: L.V. Power supply
2: Deflection board
3: H.V. Power supply
4: Video board
5: Selection board
6: Light sensor board
2–4–3 HIGH VOLTAGE POWER SUPPLY BOARD

The board of this power supply is enclosed into a metal box and partly filled with resin. The power supply is powered with a voltage of about 27 Vdc and provides an anode voltage of 19 KV with maximum current of 800 \(\mu \)A and an auxiliary polarization voltage for the CRT of about 800 V.

This power supply is controlled by an H.P.V. signal coming from the deflection board. The H.P.V. control turns off the high voltage power supply when one horizontal or vertical scanning is missing.

The high voltage power supply is also provided with an over voltage protection which goes into operation when anode voltage reaches 20 KV.

This protection is necessary against X–ray emission.

The network protection is composed of V2, Q1 and Q4.
2–4–4 DEFLECTION BOARD

The deflection board produces horizontal and vertical scanning, the blanking signal, static and dynamic focus and the polarization of G1 for the CRT.

The composite video signal is divided into vertical synchronism and horizontal synchronism by the integrated circuit U9.

Both synchronisms are processed by the integrated circuit U2 which provides a horizontal driver to produce flyback voltage and horizontal scanning by means of the transistor Q5, the diode D5 and the mosfet Q4.

All these components are fitted on the large cooling fin.
The integrated circuit U2 also produces a low–power vertical ramp which is amplified by the integrated circuit U1 (fitted on the large fin).
This integrated circuit drives the vertical coils for scanning.
Nearly all adjustments concerning linearity, amplitude and frequency of synchronism are performed through the integrated circuit U2.

A set of analog switches (integrated circuit U3) is used, by means of a voltage control on connector J7/1, to select the adjustments for scanning at 100 Hz or at 120 Hz.
The voltage control on connector J7/1 must be 12 V if the selected frequency is 120 Hz and 0 V if the selected frequency is 100 Hz.
The static focus is obtained with rectified flyback voltage and can range from about 0 V to 700 V.

The parabolas of dynamic focus are amplified by transistors Q9 and Q10, while the integration of the vertical frequency ramp is performed by transistor Q7.
The couple of transistors Q6 and Q8 are used as push–pull stage for the vertical centering.
The integrated circuit U11 is used to drive the vertical and horizontal blanking, while Q11 is the transistor which amplifies the blanking bringing it to about 27 V on grid G1 of the CRT.
The integrated circuit U8 performs an AND function of the vertical and horizontal scanning and produces the H.P.V. protection signal for the high voltage power supply.
Through Q8 this same signal is used to open Q14 when the monitor is turned off.

On the deflection board the integrated circuit U5 produces a voltage of 5 V to supply TTL integrated circuits.
Regulator U12 is used for vertical linearity at 100Hz and 120 Hz.
VIDEO BOARD BLOCK DIAGRAM

FINAL AMPLIFIER

FROM LVPS
J3/1
GND
J3/2

TO HVPS
G2

CRST SOCKET

F1

FROM LVPS

G1

FOCUS

TO D.B.

VIDEO Preamplifier

FROM BNC
J2/1-2
EXT CONTR
J1/1-2-3

12V
J3/4

FROM LVPS
W3
F.C. BRT

F.C. CONT
FROM S.B.

R29

CONT

R19

CLAMP

R54

PH. BLANKING

W10
3V

W5
HS YN

TO D.B.

CLAMP and PH. BLANKING

TP 104

TP 106
W6

TP 105
W8

TP 102
K

TP 104
G2

TB 2

2.118
2-4-5 VIDEO BOARD

The video amplifier includes a pre-amplifier U1 and a final stage in the cascode configuration with transistors Q1 and Q2.
The integrated circuit U2 produces the clamp pulse which allows to stabilize the voltage level at 50 mV.
The voltage of G2 is stabilized at about 670 V by means of a series of zeners and capacitors.
The amplifier can provide a dynamics of about 60 V before reaching saturation.
Saturation is controlled by the integrated circuit U3.

The group D1, C24 and R55 is used as a limiter of beam current.
Current is limited to about 700 μA for a blank page brightness of about 500 Cd/sqm.
SELECTION and FOTORESISTOR CONTROL

BLOCK DIAGRAM
2–4–6 SELECTION BOARD

This board allows the control of the light sensor by means of the integrated circuit U2. This control is possible through a comparator stage to turn on the green LED and two amplifier stages to control contrast and brightness.
SW1 allows selection between 100 Hz and 120 Hz.
SW1 must be on 12 V for a frequency of 120 Hz and on 0 V for a frequency of 100 Hz.

2–4–7 LIGHT SENSOR BOARD

This board includes a resistor which is sensitive to light, connected to the amplifier placed on the selection board.
CHAPTER 3 – ADJUSTMENT – TROUBLESHOOTING – DIAGNOSIS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–1</td>
<td>GENERAL</td>
<td>3.1</td>
</tr>
<tr>
<td>3–2</td>
<td>JOB CARDS SYNOPTIC TABLE</td>
<td>3.1</td>
</tr>
<tr>
<td>3–2</td>
<td>IMAGEUR ADJUSTMENTS SHEETS</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 250</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Purpose: INTERFACE CONTROLS ALIGNMENT CHECK. (IMAGER)</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 251</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Purpose: DOSE ADJUSTMENT</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 252</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>Purpose: “X-RAY ON“ DELAY ADJUSTMENT</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 253</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>Purpose: BLACK LEVEL THRESHOLD ADJUSTMENT</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 254</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>Purpose: II ASSEMBLY ALIGNMENT WITH LONGITUDINAL AXIS</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 255</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>Purpose: VIDEO SIGNAL LEVEL CHECK</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 256</td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>Purpose: PERIODIC DOSE CHECK</td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 350</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>Purpose: EHV ADJUSTMENT</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 351</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>Purpose: COMPACT OPTICS</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>Job Card RG 352</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td>Purpose: CCD INTERFACE BOARD ADJUSTMENT</td>
<td>3.43</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT.)

| Job Card RG 353 | 3.49 |
| Purpose: CCD VIDEO BOARD ADJUSTMENT | |

| Job Card RG 354 | 3.59 |
| Purpose: X–RAY IMAGE INTENSIFIER TUBE ADJUSTMENT | |

| 3–4 IMAGEUR TROUBLESHOOTING SHEETS | 3.61 |

| Job Card LA 450 | 3.63 |
| Purpose: IMAGEUR TROUBLESHOOTING | |

| Job Card LA 451 | 3.65 |
| Purpose: NO IMAGE APPEARS ON THE SCREEN | |

| Job Card LA 452 | 3.69 |
| Purpose: VIDEO MASK ONLY VISIBLE ON SCREEN | |

| Job Card LA 453 | 3.71 |
| Purpose: X–RAY IMAGE OUT OF FOCUS | |

| Job Card LA 454 | 3.75 |
| Purpose: IMAGE IS PRESENT BUT UNSTABLE | |

| Job Card LA 455 | 3.77 |
| Purpose: IMAGE TOO BRIGHT OR TOO DARK | |

| Job Card LA 456 | 3.81 |
| Purpose: GENERATOR GOES TO MAXIMUM STOP IN AUTOMATIC MODE. | |

| 3–5 MDA MEMORY DIAGNOSIS SHEETS | 3.85 |

| Job Card DI 570 | 3.87 |
| Purpose: MDA MEMORY CUSTOMER CONFIGURATION RESTORE | |

| Job Card DI 571 | 3.89 |
| Purpose: MDA MEMORY CUSTOMER CONFIGURATION UPGRADE | |
TABLE OF CONTENTS (CONT.)

<table>
<thead>
<tr>
<th>Job Card DI</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>572</td>
<td>LAPTOP CONNECTION ON MDA MEMORY</td>
<td>3.91</td>
</tr>
<tr>
<td>573</td>
<td>MDA MEMORY DIAGNOSIS</td>
<td>3.95</td>
</tr>
<tr>
<td>574</td>
<td>MDA CHECK UP</td>
<td>3.105</td>
</tr>
<tr>
<td>575</td>
<td>IMAGE QUALITY PATTERNS</td>
<td>3.107</td>
</tr>
<tr>
<td>576</td>
<td>IMAGE QUALITY FTM MEASUREMENT</td>
<td>3.111</td>
</tr>
<tr>
<td>577</td>
<td>MEASUREMENT OF DENSITY AND RESOLUTION UNIFORMITY</td>
<td>3.115</td>
</tr>
<tr>
<td>578</td>
<td>ERROR MESSAGES AND BEEP CODES OF THE PC</td>
<td>3.119</td>
</tr>
<tr>
<td>579</td>
<td>TOUCH SCREEN CALIBRATION</td>
<td>3.123</td>
</tr>
</tbody>
</table>
3 – ADJUSTMENT – TROUBLESHOOTING – DIAGNOSIS

3–1 GENERAL

Before making any adjustments, read the following instructions carefully.

CAUTION:

1) It is forbidden to remove or to replace a PWB when the unit is ON.

2) When a PWB is placed on an extender board, check the continuity of the earth connection with the extension wire supplied. The omission of this earth connection causes malfunction of the unit.

NOTE: With the exception of the adjustments which are part of the replacement of the X-ray head, of the filament heating PWB 3A26, or of the timer PWB 3A5, all potentiometers have been calibrated in the factory and do not have to be readjusted. A recalibration might be necessary in the case of the replacement of a component on site. Before adjusting a potentiometer, check that the corresponding procedure is at hand.

In this case, follow the procedure described below for the respective adjustment.

THIS SIGN INDICATES THAT TO PERFORM ADJUSTMENTS, X–RAY ARE TO BE PRODUCED AND THEREFORE CARES AGAINST RADIATION HAZARDS ARE TO BE TAKEN.

3–2 JOB CARDS SYNOPTIC TABLE.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D/R sheets</td>
<td>RGm sheets</td>
</tr>
</tbody>
</table>

* () : reserved numbers
Blank page
3–2 IMAGEUR ADJUSTMENTS SHEETS
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card RG 250

Purpose: INTERFACE CONTROLS ALIGNMENT CHECK. (IMAGER)

Date: April 1995

Time: Manpower:

SECTION 1
NECESSARY REPLACEMENT

None.

SECTION 2
EQUIPMENT REQUIRED

- Standard tool kit.

SECTION 3
SAFETY PRECAUTIONS

1. Remove power from the Stenoscop.
2. Read the safety precautions concerning x-ray systems.

WARNING

THIS UNIT IS IN EMC COMPLIANCE WITH THE IEC 601–1–2 STANDARD. DURING ANY DISASSEMBLY/REASSEMBLY, ENSURE THAT ALL THE SHIELDS ARE CORRECTLY INSTALLED.

TAKE ALL USUAL SAFETY PRECAUTIONS FOR ELECTRONIC BOARD MANIPULATION (I.E., MATS AND BRACELETS TO PROTECT AGAINST ELECTRONIC DISCHARGES).

SECTION 4
PRELIMINARY OPERATIONS

1. Remove the II assembly rear cover.
2. Remove the rack cover.
3. Put the CCD Interface Board on an extension board.
SECTION 5
PROCEDURE

Check that the interface signals coming from the Stenoscop reach the II assembly.

5.1 X–Ray ON
1. Connect the multimeter between TP7 (B X–RAY ON) and TP1 (ground).
2. Restore power to the Stenoscop.
3. Check the TP7 voltage: 0 V ±50 mV.
4. Run a fluoroscopy sequence. The voltage in TP7 should shift to +5 V ±50 mV, and the image should be visible on the monitor.

5.2 CLTV ON
1. Connect the multimeter between TP8 (B CLTV) and TP1 (ground).
2. Check voltages:
 - In Manual Mode: 0 V ±50 mV
 - In Automatic Mode: +5 V ±50 mV

5.3 PG
1. Connect the multimeter between TP9 (B PG1) and TP1 (ground).
2. Check voltages:
 - When idle, or during a fluoroscopy sequence: 0 V ±50 mV
 - Rad button pressed: +5 V ±50 mV

5.4
1. Remove power from the II assembly (S1/CCD power supply in OFF position)
2. Replace the CCD Interface Board in the rack.
3. Reset the S1/CCD power supply to the ON position.

SECTION 6
IMAGEUR ALIGNMENT

1. The optical centering adjustments are preset at the factory. Any readjustment should be done only in case of abnormal functioning. If necessary see Job Card RG 351.
2. Alignment of the Imageur with the longitudinal axis is preset at the factory. In case of a problem, see Job Card RG 254 of this document.
SECTION 7
OPERATIONAL CHECK

7.1 Check of the Imageur Functional Features

1. Check the Dose 1/Dose 2 commutation on the CCD Interface Board by pressing the HLC pushbotton on the Stenoscop Control Console.
 - Dose 1 = DS2 ON,
 - Dose 2 = DS3 ON.

2. Check the field controls.
 a. Normal.
 b. Magnifier 1 (22 cm only).

3. Check the ABD window adjustment: 50% of the usable diameter of the image.
SECTION 1
NECESSARY REPLACEMENT

None.

SECTION 2
EQUIPMENT REQUIRED

- Electronics tool kit + miniature screwdriver (in Emergency Kit).
- Digital multimeter.
- RADCAL Dosimeter 2025AC.
- Ionization chamber 20 x 5 – 60.
- Two copper plates, 175 mm x 175 mm, 1 mm thickness.

SECTION 3
SAFETY PRECAUTIONS

Read the safety precautions concerning x–ray systems.

WARNING

THIS UNIT IS IN EMC COMPLIANCE WITH THE IEC 601–1–2 STANDARD. DURING ANY DISASSEMBLY/REASSEMBLY, ENSURE THAT ALL THE SHIELDS ARE CORRECTLY INSTALLED.

TAKE ALL USUAL SAFETY PRECAUTIONS FOR ELECTRONIC BOARD MANIPULATION (I.E., MATS AND BRACELETS TO PROTECT AGAINST ELECTRONIC DISCHARGES).

SECTION 4
PRELIMINARY OPERATIONS

Set Jumper X5 on CCD Interface Board to the Q position.
SECTION 5
PROCEDURE

5.1 ABD Signal Offset Adjustment

1. Switch the Stenoscop to Normal Mode.
2. Connect the multimeter between TP1 and TP7, on the CCD Video Board.
3. Check the displayed voltage, without x-rays: 0 V ±20/–20 mV.
4. If necessary, adjust to required value using R13/CCD Video Board.

5.2 Dose Adjustment

5.2.1 Preliminary Observations

- The Imageur 16/22 Stenoscop CCD can operate at two different dose rates (Dose 1 and Dose 2), corresponding to the two positions of the Iris (Iris 1 and Iris 2, respectively).
- The Imageur CCD is preset in the factory for the following dose rates:

<table>
<thead>
<tr>
<th>Dose</th>
<th>mR/mn</th>
<th>22 cm</th>
<th>16 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose 1 (low)</td>
<td>1.8</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Dose 2 (high)</td>
<td>3.5</td>
<td>6.7</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2 Dose 2 Adjustment (high dose)

This adjustment is made by adjusting the aperture of Iris 2.

1. Select Dose 2 (high dose) on the Stenoscop.
2. Place a 2 mm copper attenuation filter on the diaphragm.
3. Place the dosimeter ionization chamber on the Imageur entry window.
4. In Automatic Fluoroscopy, check the voltage between TP1 and TP7 on the CCD Video Board. This voltage must be equal to 2.1 V. If necessary, readjust it. See SM Job Card RG 211.
5. In Manual Fluoroscopy, adjust the fluoroscopy constants so as to obtain the specified Dose 2 dose rate at the Imageur entry. The kV value must be as close to 75 kV as possible.
6. Check the voltage between TP1 and TP7 on the CCD Video Board. When the desired Dose 2 value has been reached, this voltage should be equal to 2.1 V ±50 mV. If not, Iris 2 (corresponding to Dose 2) must be readjusted.
7. Run a fluoroscopy sequence under conditions to obtain the specified Dose 2 dose rate.

8. Adjust the R11/CCD Interface Board so that the voltage between TP1 and TP7, on the CCD Video Board, is equal to 2.1 V ±50 mV.

5.2.3 Dose 1 Adjustment (low dose)

Select Dose 1 (low dose) on the Stenoscop.

1. In manual fluoroscopy, adjust the fluoroscopy constants so as to obtain the specified Dose 1 dose rate at the Imageur entry. The kV value must be as close to 75 kV as possible.

2. Check the voltage between TP1 and TP7 on the CCD Video Board. When the desired Dose 1 value has been reached, this voltage should be 2.1 V ±50 mV. If not, Iris 1 (corresponding to Dose 1) must be readjusted.

3. Run a fluoroscopy sequence under conditions to obtain the specified Dose 1 dose rate.

4. Adjust the R10/CCD Interface Board so that the voltage between TP1 and TP7, on the CCD Video Board, is 2.1 V ±50 mV.

Note: Regardless of the values of the doses adjusted, the following must always be true: Dose 1 < Dose 2 (low dose < high dose).

5.2.4 Check

1. Select Dose 2 (high dose) on the Stenoscop.

2. Check the adjustment of Paragraph 5.2.2. (The Iris must make at least one round trip for the iris to be precisely adjusted.)

Note: On the Imageur 16/22 CCD the third position of the Iris, for Graphic Mode, is never used.
Purpose:
“X–RAY ON “ DELAY ADJUSTMENT.

<table>
<thead>
<tr>
<th>Time:</th>
<th>Manpower:</th>
</tr>
</thead>
</table>

SECTION 1
REPLACEMENT

None.

SECTION 2
EQUIPMENT REQUIRED

- Electronics tool kit + miniature screwdriver (in Emergency Kit).
- Oscilloscope.

SECTION 3
SAFETY PRECAUTIONS

Read the safety precautions concerning x–ray systems.

WARNING

THIS UNIT IS IN EMC COMPLIANCE WITH THE IEC 601–1–2 STANDARD. DURING ANY DISASSEMBLY/REASSEMBLY, ENSURE THAT ALL THE SHIELDS ARE CORRECTLY INSTALLED.

TAKE ALL USUAL SAFETY PRECAUTIONS FOR ELECTRONIC BOARD MANIPULATION (I.E., MATS AND BRACELETS TO PROTECT AGAINST ELECTRONIC DISCHARGES).

SECTION 4
PRELIMINARY OPERATIONS

None.
SECTION 5
PROCEDURE

Note: In order to avoid oscillations when starting the fluoroscopy sequence, the automatic mode begins only after an adjustable time delay has elapsed. This delay is preset in the factory at 750 ms.

X-RAY ON

X-RAY ON DELAY (Adjusted by R12 / CCD Video Board).

AGC VALID

TP7/CCD Interface Board

TP10/CCD Video Interface Board
SECTION 1
REPLACEMENT

None.

SECTION 2
EQUIPMENT REQUIRED

- Electronics tool kit + miniature screwdriver (in Emergency Kit).
- Two copper plates, 175 mm x 175 mm, 1 mm thickness.

SECTION 3
SAFETY PRECAUTIONS

Read the safety precautions concerning x–ray systems.

WARNING

THIS UNIT IS IN EMC COMPLIANCE WITH THE IEC 601–1–2 STANDARD. DURING ANY DISASSEMBLY/REASSEMBLY, ENSURE THAT ALL THE SHIELDS ARE CORRECTLY INSTALLED.

TAKE ALL USUAL SAFETY PRECAUTIONS FOR ELECTRONIC BOARD MANIPULATION (I.E., MATS AND BRACELETS TO PROTECT AGAINST ELECTRONIC DISCHARGES).

SECTION 4
PRELIMINARY OPERATIONS

Turn off FNR (frame averaging)

None.

Monitor brightness may need to be turned up to view circle mask and collimator blades properly for this adjustment.

SECTION 5
PROCEDURE

1. Switch the Stenoscop to Automatic Mode.
2. Place a 2–mm copper attenuation filter on the diaphragm.
3. Switch on the ABD window display by setting X8 to S on the CCD Video Board.
4. Run a fluoroscopy sequence in Automatic Mode (with a kV value as close to 75 kV as possible).
5. Close the collimator opaque blades to obtain the image in Illustration 1.
6. Adjust R11, on the CCD Video Board, to blank the shutters on the image.
 The image should become:

CAUTION

This adjustment must be made with great care: R11 must be set so that the shutters are on the limit of disappearing.

This adjustment must be made with the opaque blades.

7. Set X8 back to R on the CCD Video Board.

Note:

Shutter correction is only active in Automatic Mode.

If the shutters do not disappear, check that the CLTV ON signal is correctly transmitted to the Imageur (Job Card RG 250 Section 5).
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card RG 254

Purpose: II ASSEMBLY ALIGNMENT WITH LONGITUDINAL AXIS.

Date: April 1995

Time: Manpower:

<table>
<thead>
<tr>
<th>SECTION 1</th>
<th>REPLACEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>None.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 2</th>
<th>EQUIPMENT REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics tool kit.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 3</th>
<th>SAFETY PRECAUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the safety precautions concerning x–ray systems.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 4</th>
<th>PRELIMINARY OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>None.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 5</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: This operation is normally done at the factory and should be redone only if an abnormality is detected.</td>
<td></td>
</tr>
<tr>
<td>1. Remove the cover from the optical unit.</td>
<td></td>
</tr>
<tr>
<td>2. Loosen the three attachment screws securing the lens support to the II tube.</td>
<td></td>
</tr>
<tr>
<td>3. Adjust the direction of the image by turning the lens support. At the same time, check that the image is correctly centered in the circular blanking window by producing sweep reversals.</td>
<td></td>
</tr>
<tr>
<td>4. Retighten the three attachment screws of the lens support.</td>
<td></td>
</tr>
<tr>
<td>5. Put the cover back in place on the optical unit.</td>
<td></td>
</tr>
</tbody>
</table>
Purpose: VIDEO SIGNAL LEVEL CHECK.
Date: April 1995
Time: Manpower:

SECTION 1
REPLACEMENT
None.

SECTION 2
EQUIPMENT REQUIRED
- Electronics tool kit + miniature screwdriver (in Emergency Kit).
- Two copper plates, 175 mm x 175 mm, 1 mm thickness.
- Oscilloscope, 20 MHz minimum bandwidth.

SECTION 3
SAFETY PRECAUTIONS
Read the safety precautions concerning x-ray systems.

WARNING
THIS UNIT IS IN EMC COMPLIANCE WITH THE IEC 601–1–2 STANDARD. DURING ANY DISASSEMBLY/REASSEMBLY, ENSURE THAT ALL THE SHIELDS ARE CORRECTLY INSTALLED.
TAKE ALL USUAL SAFETY PRECAUTIONS FOR ELECTRONIC BOARD MANIPULATION (I.E., MATS AND BRACELETS TO PROTECT AGAINST ELECTRONIC DISCHARGES).

SECTION 4
PRELIMINARY OPERATIONS
None.

SECTION 5
PROCEDURE
1. Connect an oscilloscope probe to TP3, on the CCD Video Board (video output).
2. Place a 2-mm copper attenuation filter on the diaphragm.
3. Run a fluoroscopy sequence in Automatic Mode under nominal conditions. Check the appearance of the video signal at TP3/CCD Video Board, in Automatic Mode and Manual Mode (see Ill. 1).
Under nominal conditions, the average video levels at various points in the Imageur are (see Ill. 2):

- TP2/CCD Video Board CCD module output D = 100 mV ±5 mV
- TP7/CCD Video Board ABD output = +2.1 V ±50 mV

5.1 The Imageur Steno CCD is equipped with a video test signal generator, which, if necessary, provides a standard signal that can be used to make all video adjustments.
To use the test signal generator:

1. Disconnect the plug at J2/CCD Video Board (video input).
2. On the CCD Video Board, set X1 in the B position.
 - The test signal is injected at the CCD Video Board input. Test signal intensity can be adjusted with R10/CCD Video Board (100 mV nominal).
 - Remember to reset X1 to A on CCD Video Board once the checks are completed and to reconnect the plug at J2/CCD Video Board.

5.2 Do not readjust the video settings (gain, offset, black level, gamma, etc.), except if there is a fault. These adjustments are made at the factory with specialized tooling.

5.3 The operating conditions which enable the gamma correction adjustments are:

 Video in at TP2/CCD Video Board: 1 V ±20 mV (D according to Ill. 2)

 Video out at TP3/CCD Video Board: 640 mV ±10 mV (C according to Ill. 1)
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card RG 256

Purpose: PERIODIC DOSE CHECK.

Time: Manpower:

SECTION 1
REPLACEMENT

None.

SECTION 2
EQUIPMENT REQUIRED

- Standard Field Engineers toolcase.
- Two copper plates 175 x 175 mm, 1 mm thick.
- Dosimeter, Radcal 2025 AC.
- Ionization chamber 20 x 5 – 60.
- Digital multimeter.

SECTION 3
SAFETY PRECAUTIONS

Observe the safety precautions concerning x-ray systems.

WARNING

THIS UNIT IS IN EMC COMPLIANCE WITH THE IEC 601–1–2 STANDARD. DURING ANY DISASSEMBLY/REASSEMBLY, ENSURE THAT ALL THE SHIELDS ARE CORRECTLY INSTALLED.

TAKE ALL USUAL SAFETY PRECAUTIONS FOR ELECTRONIC BOARD MANIPULATION (I.E., MATS AND BRACELETS TO PROTECT AGAINST ELECTRONIC DISCHARGES).

SECTION 4
PRELIMINARY OPERATIONS

None.
SECTION 5
PROCEDURE

5.1 Dose Check

Measure the dose in Automatic Mode under nominal conditions (75 kV, 2 mm copper).

If the dose measured is within the allowable tolerance (nominal dose ±20%−0%), the procedure is complete.

If the dose has increased to above 20%, the II tube conversion factor has decreased significantly since the previous check. Modify the iris aperture as described below.

5.2 Procedure

Preliminary: Check the offset and the ABD gain, with the test signal:

1. On the CCD Video board, disconnect the plug at J2.
2. Check the offset between TPI and TP7 on the CCD Video board: 0 ±20 mv. If not repeat the offset adjustment (refer to job Card RG 250, para 5.1)
3. On the CCD Video board, set X1 in the B position check the level of the input test signal:
 Connect a probe of oscilloscope between TP1 and TP2/CCD VIDEO. The level A must be:
 A = 100 ±5 mv
 If necessary, use R10/CCD VIDEO to adjust.
4. Check the ABD level between TPI and TP7 on the CCD Video board: 2.1 V ±20 mv. If not repeat the gain adjustment using R6/CCD Video board, so as to obtain the required value.
5. Set X1/CCD Video in the A position and reconnect the plug at J2/CCD Video.
6. Connect a multimeter between TP1 and TP7 on the CCD Video Board.
7. Select Manual Mode on the generator.
8. Open Iris 2 to maximum by rotating R11 on the CCD Interface Board fully cw.
9. Without making an exposure, check that the voltage between TP1 and TP7 on the CCD Video Board is 0 V ±20 mv. If not repeat the offset adjustment (refer to Job Card RG 250, Para 5.1).
10. Under nominal conditions (75 kV, 2-mm copper), adjust the mA value to obtain nominal Dose 2.
11. Read the voltage between TP1 and TP7 on the CCD Video Board under these conditions. Three situations may arise:

 a. **Voltage exceeds 4.2 V**

 The value read shows by how much the conversion factor is above the minimum value (2.1 V) to provide nominal illumination for the CCD sensor when the iris is open.

 The value represents the iris aperture margin. For example, a voltage of 6.3 V indicates that the conversion factor could still decrease by a factor of 3 before the iris must be opened.

 Adjust Iris 2 followed by Iris 1 (refer to Job Card RG 250).

 b. **Voltage between 2.1 V and 4.2 V**

 The Imageur can operate with Dose 2 (strong dose), but not with Dose 1 (weak dose).

 Adjust R11 on the CCD Interface Board to obtain 2.1 V between TP1 and TP7 on the Power Supply Chassis at nominal dose (refer to Job Card RG 250).

 Rotate R12 on the CCD Interface Board fully cw. Iris 1 corresponding to the weak dose will be fully open. Replacement of II tube may be postponed, but must be scheduled.

 c. **Voltage less than 2.1 V**

 With the same iris open, the conversion factor of the II tube is no longer sufficient to provide nominal illumination of the CCD sensor.

 The II tube must be replaced.
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card RG 350

<table>
<thead>
<tr>
<th>Purpose: EHV ADJUSTMENT</th>
<th>Version No.: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Date:</td>
</tr>
<tr>
<td>Time: 15 min</td>
<td>Manpower: 1</td>
</tr>
</tbody>
</table>

SECTION 1
SUPPLIES
None.

SECTION 2
TOOLS
- Digital voltmeter.
- II Tube Technical Specifications.
- Funk 23 Test Pattern.
- Oscilloscope, 20 MHz minimum bandwidth.

SECTION 3
SAFETY PRECAUTIONS

This procedure is only for checking to see if your HV is in range for VG1, VG2, VG3. Use your IET sizing gauge and adjust voltages according to the notes on the next page.

The EHV power supply generates voltages of up to 30 kV (U5).

All the necessary operator and equipment safety precautions must be taken, including most importantly:

1. Check the ground connections.
2. Check the high voltage insulation.
3. Check the condition of the power supply/tube connection contacts.
4. Take all usual safety precautions for electronic board manipulation (i.e., mats and bracelets to protect against electrostatic discharge).
5. Read the safety precautions concerning x–radiation.
SECTION 4
PREREQUISITES

To unblank CCD circle move jumper A3X8 to "H" position. This ensures the circle you see on the monitor is the II output phosphor.

The adjustments described in this Job Card should be performed when replacing:

- II tube.
- EHV power supply.
- CCD Interface Board.

1. Remove power from the Stenoscop or from the board cage.
2. Remove the board cage cover.
3. On the CCD Interface Board, turn the R1 thru R9 potentiometers fully counterclockwise (min. control voltage). **Don't do this step**

SECTION 5
PROCEDURE

Use I.E.T. sizing gauge instead of this procedure (9" II normal =210mm 6" (mag) = 152 mm) (6" only = 144mm).

- High voltage measurement with an EHV measurement box is not necessary for EHV power supply adjustment.

- The following equations are used to calculate VG1 (HV), VG2 (HV) and VG3 (HV) high voltages from vg1 (HV), vg2 (HV) and vg3 (HV) low voltages:

| TABLE 1 |
|---|---|---|---|
| **Calculate dc test values that correlate to II HV** | **22 cm** | **16 cm** |
| edge focus | vg1 (LV)_volts | 1 + \(\frac{VG1(HV) - 40}{34.5} \) | 1 + \(\frac{VG1(HV) - 40}{34.5} \) |
| center focus | vg2 (LV)_volts | 1 + \(\frac{VG2(HV) - 145}{139} \) | 1 + \(\frac{VG2(HV) - 1300}{1300} \) |
| size | vg3 (LV)_volts | 1 + \(\frac{VG3(HV) - 1300}{1300} \) | – |

- Low voltages are adjusted on the CCD Interface Board using the R1 thru R8 potentiometers.
- Voltages VG1 (HV), VG2 (HV) and VG3 (HV) are those indicated in the Inspection Acceptance Report for the II tube.
- Restore power to the Imageur Chassis.
- Adjust the low voltages according to the following table:

To calculate 9" VG3 = (3.03-1)(1300) + 1300 = 4.01kv (this equates to 3.03 volts at tp2)
TABLE 2

See Illustration 5.

<table>
<thead>
<tr>
<th>Low Voltage</th>
<th>FIELD</th>
<th>TEST POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NORMAL</td>
<td>MAG1</td>
</tr>
<tr>
<td>22 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9” normal</td>
<td>vg1</td>
<td>R1, Item 9</td>
</tr>
<tr>
<td>6” mag</td>
<td>vg2</td>
<td>R4, Item 12</td>
</tr>
<tr>
<td></td>
<td>vg3</td>
<td>R7, Item 17</td>
</tr>
<tr>
<td>16 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6”</td>
<td>vg1</td>
<td>R1, Item 9</td>
</tr>
<tr>
<td></td>
<td>vg2</td>
<td>R7, Item 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The test points are on the CCD Interface Board. Make measurements between the test points in the table and ground, located at TP1 on the CCD Interface Board.

Note:
- VG1 controls focusing uniformity.
- VG2 controls center focusing.
- VG3 controls the entry field diameter (on Imageur 22 cm only).
- On the 16-cm versions, low voltages for Magnifiers 1 and 2 must be set at minimum.
- Adjustments can be optimized. Begin by adjusting VG3 (entry field diameter R7 and R8, Imageur 22 cm only) because this adjustment affects the other voltages.
- The center focusing adjustment (VG2) can be optimized on the oscilloscope with the following procedure:
 2. Place a Funk 23 Test Pattern on the input window of the Imageur (bursts in the vertical direction on the screen), and run a fluoroscopy sequence at 50 kV with open field.

ILLUSTRATION 4

- Set wedge at a 45 degree angle from vertical to avoid aliasing.
- Grid set at 30 degree angle.
- 9" fov = 1.5 lp minimum
- 6" mag = 2.0 lp minimum
3. Observe the modulation on one video signal line.

4. Optimize the VG2 adjustment (R4 and R5 on 22-cm units, R7 on 16-cm units) to obtain maximum amplitude (A).

II tube supply high voltages and currents used in the Imageur are as follows:

TABLE 3

<table>
<thead>
<tr>
<th>TH 9438 HX H560 (22-cm) Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>VG1</td>
</tr>
<tr>
<td>VG2</td>
</tr>
<tr>
<td>VG3</td>
</tr>
<tr>
<td>VG4</td>
</tr>
<tr>
<td>VG5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnifier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG1</td>
</tr>
<tr>
<td>VG2</td>
</tr>
<tr>
<td>VG3</td>
</tr>
<tr>
<td>VG4</td>
</tr>
<tr>
<td>VG5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnifier 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG1</td>
</tr>
<tr>
<td>VG2</td>
</tr>
<tr>
<td>VG3</td>
</tr>
<tr>
<td>VG4</td>
</tr>
<tr>
<td>VG5</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>TH 9466 or 9449 HP H506 (16-cm) Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>VG1</td>
</tr>
<tr>
<td>VG2</td>
</tr>
<tr>
<td>VG3</td>
</tr>
<tr>
<td>VG4</td>
</tr>
<tr>
<td>VG5</td>
</tr>
</tbody>
</table>
ILLUSTRATION 5
ccd interface board
Purpose: COMPACT OPTICS

Date:

Time: 20 min

Manpower: 1

SECTION 1

SUPPLIES

- Image mechanical centering, lens focus, circular blanking, ABD window, CCD gain.

None.

SECTION 2

TOOLS

- Oscilloscope, 20 MHz minimum bandwidth.
- Two copper plates, 175 mm x 175 mm, thickness 1 mm.
- Radcal 2025 AC dosimeter.
- Ionization chamber 20 x 5 – 60 .

SECTION 3

SAFETY PRECAUTIONS

- Take all usual safety precautions for electronic board manipulation (i.e., mats and bracelets to protect against electrostatic discharge).
- Read the safety precautions concerning x-ray equipment.

SECTION 4

PREREQUISITES

These adjustments are performed when replacing the compact optics/CCD Module (consisting of the CCD Sensor Board and Interface Module Board) assembly.

Note: The two boards comprising the CCD Module are coupled. They must be replaced together.
SECTION 5
PROCEDURE

5.1 Configuration

Display centering pattern from MDA.
Check that Jumper X1 (Ill. 9, Item 1) is in the V1 position on the CCD Module.

5.2 Adjustments

5.2.1 Centering and Orientation of II image on CCD sensor

The optical system is comprised of two main parts:

- The mounting ring on the II tube (Ill. 9, 10, 11, and 12, Item 1).
- The upper part supporting the CCD Module (Ill. 9, 10, 11, and 12, Item 2).

1. Check that the three ring mounting screws are tight (Ill. 9, 10, 11, and 12, Item 3). Do not tighten the three screws (Ill. 9, 10, 11, and 12, Item 4) securing the upper part of the optical system to the mounting ring.
2. On the CCD Interface Board, turn R16 completely clockwise to open the circular blanking window to its maximum, and turn Potentiometer R10 and R11 completely clockwise to open the Iris wide. (Optional: opening Iris decreases depth of field. A high depth of field (small iris opening) will make focus look good when it is not optimized)
3. Place a non–metallic rule on the II tube input window, perpendicular to the C–arm. To ensure the CCD is not rotated.
4. Run a fluoroscopy sequence using minimum parameters. Center the image in the memory display window by using the mounting assembly of the optical system upper part. At the same time, ensure that the image in the patient axis is correctly aligned by running a sweep reversal: The image of the rule must remain vertical on the screen.
5. Once the centering and orientation correctly adjusted for all sweep reversal positions, tighten the three screws (Ill. 9, 10, 11, and 12, Item 4).

5.2.2 Focusing

1. This adjustment must be performed with open Iris for good accuracy (on the CCD Interface Board, turn Potentiometers R10 and R11 fully clockwise).
2. Connect an oscilloscope probe to TP3/CCD Video Board (video output).
3. Loosen the locking screw (Ill. 10 and 12, Item 5) on the adjustment ring (Ill. 9, 10, 11, and 12, Item 6).
4. Place a Funk 23 test pattern on the input window of the II tube, with the bursts perpendicular to the C–arm. Rotate 45 degrees to prevent aliasing
5. Run a wide open fluoroscopy with minimum parameters.
6. Observe the modulation on one video signal line.
7. Optimize the focusing adjustment to obtain maximum amplitude (A) by turning the adjustment ring (Ill. 10 and 12, Item 6).
8. Tighten the blocking screw.
9. Remove the Funk 23 Test Pattern.

CAUTION

The adjustment ring locking screw (Ill. 10 and 12, Item 5) and must be correctly tightened to avoid any play in the optical system.

5.2.3 Circular Blanking

- **CCD interface board**

1. Circular Blanking:
 - Adjust the circular blanking window so that it is flush with the useful image of the output window of the II tube. To do so, use the following potentiometers (see Illustration 13):
 - R13 = Horizontal centering (Item 31),
 - R14 = Vertical Centering (Item 30),
 - R15 = Horizontal/Vertical Ratio (Item 29), Roundness
 - R16 = Diameter (Item 28), Size

2. ABD window:
 - switch X8 on top of A2 video bd
 - Check the diameter adjustment (40% of the useful image) by positioning Switch X8/CCD (Ill. 13, item 25) Video Board to the S position. Adjust via Pot. R17 (Ill. 13, item 27), if required.

Delay time synchronization base = TP12/CCD Interface Board (HD) 10 micro s/div.
Delay time synchronization base = TP11/CCD Interface Board (VD) 20 ms/div.
5.2.4 CCD Module Gain Adjustment Check

1. Prerequisite
 CCD module gain should have been set to minimum by turning R1 to extreme clockwise.
 Do not put any fantom on the positioner.
 Open the X-ray collimator to irradiate the full 22 cm field.
 Select 40 KV – mA minimum.

2. Connect an oscilloscope probe to TP2/CCD Video board and synchronize it to display an horizontal
 line corresponding to the center of the image. **Tp1 on interface board = GND**

3. Run a fluoroscopy while gradually increasing X-ray parameter, until the video signal reaches the
 “clipping threshold”, as shown on illustration 8 the **video signal begins to saturate.**
 The video level obtained in these conditions is called A.
4. Run a second fluoroscopy sequence while gradually decreasing the parameters to obtain a value of $B = 0.8 \times A$.
\[
\text{0.8(600)} = 480 \text{mV}
\]

5. Adjust R1/CCD module (Ill. 14, Item 7) to obtain a video signal equal to 1.2 V ± 50 mV in these conditions. **Adjust so 480 mV increases to 1.2 volts**

Note: The maximum useful level generated by the CCD module is considered to be equal to 80% of the clipping threshold, as the CCD sensor is no longer linear when reaching this saturation level.

Do RG 353 (video board adj), RG253 (black level threshold) first. Then do dose adjust.

5.2.5 Dose Adjustment

See Job Card RG 251 of this chapter.
ILLUSTRATION 9
compact optics – imageur 22 steno CCD

Loosen all three screws for image centering.
Note do not rotate sensor or image will be rotated on the monitor

ILLUSTRATION 10
compact optics – imageur 22 STENO CCD

Item 5 lens locking screw
Item 6 aluminum focus (lens) ring
ILLUSTRATION 11
compact optics – imageur 16 steno CCD

ILLUSTRATION 12
compact optics – imageur 16 steno CCD
ILLUSTRATION 13
ccd interface board
ILLUSTRATION 14
chip module ccd

TABLE 1

<table>
<thead>
<tr>
<th>ITEM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuses</td>
<td>None</td>
</tr>
<tr>
<td>Switches</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>X1 V1 = preamp video output (NORMAL)</td>
</tr>
<tr>
<td></td>
<td>V2 = video output (test)</td>
</tr>
<tr>
<td>Leds</td>
<td>None</td>
</tr>
<tr>
<td>Potentiometers</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>R1 Video gain</td>
</tr>
<tr>
<td>Test points</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TP1 Composite video output</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>TP2 0 V</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TP3 Video preamp output</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TP4 -9 V</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TP5 +15 V</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>TP6 +7 V</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>TP7 +5 V</td>
</tr>
</tbody>
</table>
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card RG 352

Purpose: CCD INTERFACE BOARD ADJUSTMENT

Date:

Time: 30 min Manpower: 1

SECTION 1
SUPPLIES

None.

SECTION 2
TOOLS

- Digital multimeter.
- Two copper plates, 175 x 175 mm, 1 mm thickness.
- Radcal 2025AC dosimeter.
- Ionization chamber 20 x 5 – 60.
- II Tube Technical Specifications.

SECTION 3
SAFETY PRECAUTIONS

- Take all usual safety precautions for manipulation of electronic boards (i.e., mats and bracelets to protect against electrostatic discharge).
- Read the precautions necessary when working near x–rays.

SECTION 4
PREREQUISITES

The adjustments described in this Job Card should be performed when replacing:

- II tube.
- EHV power supply.
- CCD Interface Board.

1. Remove power from the Imageur.
2. Remove the board cage cover.
3. On the CCD Interface Board, turn the R1 thru R9 potentiometers (Ill. 15, Items 9 thru 17) fully counterclockwise (min. control voltage).
SECTION 5
PROCEDURE

5.1 Configuration

Check the position of the switches on the new Board.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Position</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>M</td>
<td>IRIS command in Stenoscop Mode</td>
</tr>
<tr>
<td>X2</td>
<td>U</td>
<td>Dose command in Stenoscop Mode</td>
</tr>
<tr>
<td>X3</td>
<td>A</td>
<td>Preset Horizontal Inversion*</td>
</tr>
<tr>
<td>X4</td>
<td>C</td>
<td>Preset Vertical Inversion *</td>
</tr>
<tr>
<td>X5</td>
<td>Q</td>
<td>IRIS/REC Coupling in OFF Mode</td>
</tr>
<tr>
<td>X6</td>
<td>R</td>
<td>A REC output in ON Mode</td>
</tr>
<tr>
<td>X7</td>
<td>E</td>
<td>ABD Window in Stenoscop Mode</td>
</tr>
<tr>
<td>X8</td>
<td>G</td>
<td>Circular Blanking in Stenoscop Mode</td>
</tr>
<tr>
<td>X9</td>
<td>J</td>
<td>Selection of PG Input in SAS Mode</td>
</tr>
<tr>
<td>X10</td>
<td>W</td>
<td>IRIS selection in Compact Mode</td>
</tr>
</tbody>
</table>

* Inactive

5.2 Adjustments

EHV Adjustment:
- The command voltages of the EHV power supply must be adjusted on the new CCD Interface Board. Perform the adjustments as shown on Job Card RG 350.
- Perform the checks on the interface functions with the Stenoscop (see Job Card RG 250 para. 5 & 7).

Dose Adjustment:
- This is carried out via the CCD Interface Board, and must also be readjusted (see Job Card RG 251).

Circular Blanking Adjustment:
- Perform the adjustments described in Job Card RG 351, Para. 5.2.3.

Note: R40 inactive with Stenoscop units.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>ITEM</th>
<th>L</th>
<th>M</th>
<th>R/F</th>
<th>Steno</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 X1</td>
<td>IRIS COMMAND</td>
<td>L</td>
<td>M</td>
<td>R/F</td>
<td>Steno</td>
</tr>
<tr>
<td>22 X2</td>
<td>COMMAND DOSE SELECTION</td>
<td>T</td>
<td>U</td>
<td>R/F</td>
<td>Steno</td>
</tr>
<tr>
<td>21 X3</td>
<td>H SWEEP REVERSAL PRESET</td>
<td>A</td>
<td>B</td>
<td>Norm</td>
<td>INV</td>
</tr>
<tr>
<td>19 X4</td>
<td>V SWEEP REVERSAL PRESET</td>
<td>C</td>
<td>D</td>
<td>Norm</td>
<td>INV</td>
</tr>
</tbody>
</table>

Switches-Jumpers

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ITEM</th>
<th>L</th>
<th>M</th>
<th>R/F</th>
<th>Steno</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 X5</td>
<td>IRIS/REC</td>
<td>P</td>
<td>Q</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>23 X6</td>
<td>AREC OUT</td>
<td>R</td>
<td>S</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>26 X7</td>
<td>ABD WINDOW MODE</td>
<td>E</td>
<td>F</td>
<td>Steno</td>
<td>R/F</td>
</tr>
<tr>
<td>25 X8</td>
<td>CIRCULAR BLANKING MODE</td>
<td>G</td>
<td>H</td>
<td>Steno</td>
<td>R/F</td>
</tr>
<tr>
<td>20 X9</td>
<td>PG INPUT SELECTION</td>
<td>J</td>
<td>K</td>
<td>SAS</td>
<td>ADVX</td>
</tr>
<tr>
<td>7 X10</td>
<td>IRIS SELECTION</td>
<td>V</td>
<td>W</td>
<td>Anamorphote lens</td>
<td>Compact lens</td>
</tr>
</tbody>
</table>

Leds

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ITEM</th>
<th>L</th>
<th>M</th>
<th>R/F</th>
<th>Steno</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 R1</td>
<td>DS1</td>
<td>(red)</td>
<td>II tube vacuum default</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 R2</td>
<td>DS2</td>
<td>(green)</td>
<td>DOSE 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 R3</td>
<td>DS3</td>
<td>(green)</td>
<td>DOSE 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 R4</td>
<td>DS4</td>
<td>(green)</td>
<td>DOSE RAD.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potentiometers

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ITEM</th>
<th>L</th>
<th>M</th>
<th>R/F</th>
<th>Steno</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 R10</td>
<td>R10</td>
<td>IRIS 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 R11</td>
<td>R11</td>
<td>IRIS 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 R12</td>
<td>R12</td>
<td>IRIS RAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 R13</td>
<td>R13</td>
<td>H CENTERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 R14</td>
<td>R14</td>
<td>V CENTERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 R15</td>
<td>R15</td>
<td>H/V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 R16</td>
<td>R16</td>
<td>CIRCULAR BLANKING DIAMETER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 R17</td>
<td>R17</td>
<td>AGC WINDOW DIAMETER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 R40</td>
<td>R40</td>
<td>BPG2 DELAY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALOG WINDOWS

(not used in RF versions)
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Test points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TP1</td>
<td>0 V</td>
</tr>
<tr>
<td>3</td>
<td>TP2</td>
<td>VG3</td>
</tr>
<tr>
<td>4</td>
<td>TP3</td>
<td>VG2</td>
</tr>
<tr>
<td>5</td>
<td>TP4</td>
<td>VG1</td>
</tr>
<tr>
<td></td>
<td>TP5</td>
<td>Iris command</td>
</tr>
<tr>
<td></td>
<td>TP6</td>
<td>REC 2</td>
</tr>
<tr>
<td></td>
<td>TP7</td>
<td>B X-RAY ON</td>
</tr>
<tr>
<td></td>
<td>TP8</td>
<td>B CLTV</td>
</tr>
<tr>
<td></td>
<td>TP9</td>
<td>BPG1</td>
</tr>
<tr>
<td></td>
<td>TP10</td>
<td>BPG2</td>
</tr>
<tr>
<td>6</td>
<td>TP11</td>
<td>VD</td>
</tr>
<tr>
<td>8</td>
<td>TP12</td>
<td>HD</td>
</tr>
</tbody>
</table>
Blank page
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card RG 353

SECTION 1
SUPPLIES

None.

SECTION 2
TOOLS

- Oscilloscope, 20 MHz minimum bandwidth.
- Two copper plates, 175 x 175 mm, 1 mm thickness.
- Digital voltmeter.

SECTION 3
SAFETY PRECAUTIONS

- Take all usual safety precautions for manipulation of electronic boards (i.e., mats and bracelets to protect against electrostatic discharge).
- Read the precautions to take when working near x-rays.

SECTION 4
PREREQUISITES

These adjustments are made when replacing the CCD Video Board.

SECTION 5
PROCEDURE

5.1 Configuration

Check the position of the switches on the new Board.
TABLE 1

<table>
<thead>
<tr>
<th>Switch</th>
<th>Position</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>A</td>
<td>Video Input in Normal Mode</td>
</tr>
<tr>
<td>X2</td>
<td>C</td>
<td>Gamma in Dynamic Mode</td>
</tr>
<tr>
<td>X3</td>
<td>E</td>
<td>Gamma in ON Mode</td>
</tr>
<tr>
<td>X4</td>
<td>H</td>
<td>Video Output in Stenoscop Mode</td>
</tr>
<tr>
<td>X5</td>
<td>I</td>
<td>ABD Clipping in ON Mode</td>
</tr>
<tr>
<td>X6</td>
<td>L</td>
<td>ABD Output in Stenoscop Mode</td>
</tr>
<tr>
<td>X7</td>
<td>P</td>
<td>Go to Black in ON Mode</td>
</tr>
<tr>
<td>X8</td>
<td>R</td>
<td>ABD Window visualized in OFF Mode</td>
</tr>
<tr>
<td>X9</td>
<td>T</td>
<td>AGC activated</td>
</tr>
</tbody>
</table>

1. Connect an oscilloscope probe at TP11/CCD Interface Board (VD –20 ms/div): synchro principal time base. **Skip steps one and two**

5.2 Checks and Adjustments

Put the CCD Video Board on an extension board and perform the following checks:

5.2.1 Clamp Pulse

Test Point: TP21/CCD Video Board

Duration: \(A = 2.0 \pm 0.1 \) \(\mu s \)

ILLUSTRATION 16
clamp pulse

Adjustment: If necessary, use R16/CCD Video Board (Ill. 25, Item 22).
5.2.2 Test Signal

Test Point: TP35/CCD Video Board
Duration: $B = 40 \pm 1 \mu s$

TP35 = Solder dot on video board
see illustration 25 further on in this job card

ILLUSTRATION 17
Test signal
can be hard to sync on

Adjustment: If necessary, use R15/CCD Video Board (Ill. 25, Item 25).

Check the display test pattern.

1. Put X1/CCD Video Board in B position (Ill. 25, Item 26).
2. Disconnect the plug from J2/CCD Video Board.
The image should be as in Ill. 18.

ILLUSTRATION 18
You must fluoro. clap will be on left side of image. If not correct check above adjustments

Circular blanking
White
ABD Window
Black

The white/black transition must be located between the ABD window and the circular blanking.

3. Reconnect the plug to J2/CCD Video Board.
4. Put X1/CCD Video Board in the A position.

5.2.3 Horizontal Blanking

1. Open the video mask to its maximum (R16/CCD Interface Board completely clockwise).
2. Run a wide open fluoroscopy, with open shutters.

Test Point: TP3/CVD Video Board
Duration: \[C = 12 \pm 0.3 \mu s \text{ (625 lines/50 Hz)} \]
\[C = 11.1 \pm 0.2 \mu s \text{ (525 lines/60 Hz)} \]
3. Adjust the circular blanking and the ABD window. Refer to RG 351, paragraph 5.2.3.

5.2.4 Video Levels

These are adjusted in the factory. They can be controlled easily from the test signal generator on the Board.

1. Test Signal Level
 a. Unplug the J2/CCD Video Board coaxial cable.
 b. Put the X1/CCD Video Board switch in the B position.
 c. Check the Test Signal level
 Test Point: TP2/CCD Video Board
 Level: \(A \approx 100 \pm 5 \text{mV} \) Simulates preamp video

ILLUSTRATION 20
test signal level

Adjustment: If necessary, use R10/CCD Video Board (Ill. 25, Item 23)
2. Preset Gain and Black Level (in Manual Mode)
 a. Test the following using the Signal Test (see Ill. 21):
 Test Point: TP3/CCD Video Board
 Level:
 \[B = 250 \pm 5 \text{ mV} \]
 \[C = 50 +5 \text{ mV} \]

 ![ILLUSTRATION 21 preset gain and black level](image)

 Adjustment: If necessary, use R1/CCD Video Board (Ill. 25, Item 10) to adjust Preset Gain B and R3/CCD Video Board (Ill. 25, Item 13) to adjust Black Level C.

 b. Check the D Synchronization level (non–adjustable).
 \[D = 300 \pm 20 \text{ mV} \] (Ill. 21).

3. AGC Gain
 J2 is still off from step 1
 a. Run a fluoro sequence in Automatic Mode (with Imageur, the x–rays must be ON for the AGC ON function to be activated).
 b. Check the video level and the test signal.
 Test Point: TP3/CCD Video Board
 Level:
 \[B = 250 \pm 5 \text{ mV} = \text{R5} \]

 ![ILLUSTRATION 22 AGC gain](image)

 Adjustment: If necessary, use R5/CCD Video Board (Ill. 25, Item 6).
4. ABD Offset
 a. Connect a voltmeter between TP1 and TP7/CCD Video Board.
 b. Do not reconnect the coaxial cable to J2/CCD Video Board.
 c. Place the X1/CCD Video Board switch in the A position.
 d. No video signal is fed to the CCD Video Board input. Under these conditions, check the offset of
 the ABD signal, without running an x-ray:
 Test Point: TP1–TP7/CCD Video Board
 Level: 0 ±20 mV
 Adjustment: If necessary, use R13/CCD Video Board (Ill. 25, Item 3).

5. ABD Gain Abd gain sets preamp video (100mv) and monitor video (250mv) equal to2.1 vdc
 a. Put the X1/CCD Video Board switch in the B position.
 b. The video signal now re–enters the CCD Video Board. Under these conditions, check the ABD
 signal.
 Test Point: TP1–TP7/CCD Video Board
 Level: 2.1 V ±50 mV
 Adjustment: If necessary, use R6/CCD Video Board (Ill. 25, Item 5).

6. Gamma similar to Advantx EDR image blooming control
 To check the setting of the gamma corrector, the test signal level must be modified as follows:
 Test Point: TP2/CCD Video Board
 Level: A = 1000 ±20 mV simulated preamp video at 10 times the normal level

 Adjustment: If necessary, use R10/CCD Video Board. cal generator output level

ILLUSTRATION 23
gamma (input test signal)
Under these conditions, check the video output level.

Test Point: TP3/CCD Video Board
Level: $B = 640 \pm 10 \text{ mV}$

Note: without gamma the video would be 2.5 volts to the monitor!

Adjustment: If necessary, use R9/CCD Video Board (Ill. 25, Item 20).

- Readjust the level of the test signal with the nominal value.

Test Point: TP2/CCD Video Board
Level: $A = 100 \pm 5 \text{ mV}$

Adjustment: Use R10/CCD Video Board (Ill. 25, Item 23).

7. Checking the ABD Offset 2nd time
 a. Reconnect the J2/CCD Video Board coaxial cable.
 b. Put the switch X1 in the A position. normal
 c. Under these conditions, check the ABD Offset (in Manual Mode).

Test Point: TP1–TP7/CCD Video Board
Level: $0 \pm 20 \text{ mV}$

Adjustment: If necessary, use R13/CCD Video Board (Ill. 25, Item 3).

8. Black Level Threshold
 Refer to Job Card RG 253. This adjustment is mandatory.

5.2.5 X–Ray ON Time Delay
 Refer to Job Card RG 252.
ILLUSTRATION 25
ccd video board

TP35 solder dot

R179
TABLE 2

CCD INTERFACE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>X1 VIDEO INPUT MODE A = NORMAL, B = CALIBRATION</td>
</tr>
<tr>
<td>18</td>
<td>X2 GAMMA MODE C = DYNAMIC, D = NORMAL</td>
</tr>
<tr>
<td>19</td>
<td>X3 GAMMA E = ON, F = OFF</td>
</tr>
<tr>
<td>16</td>
<td>X4 VIDEO OUTPUT MODE G = R/F, H = STENO</td>
</tr>
<tr>
<td>27</td>
<td>X5 ABD CLIPPING MODE I = ON (NORMAL), J = OFF (CALIBRATION)</td>
</tr>
<tr>
<td>28</td>
<td>X6 ABD OUTPUT MODE L = STENO, M = R/F</td>
</tr>
<tr>
<td>21</td>
<td>X7 X7 GO TO BLACK MODE P = ON, Q = OFF</td>
</tr>
<tr>
<td>19</td>
<td>X8 ABD WINDOW DISPLAY R = OFF, S = ON</td>
</tr>
<tr>
<td>17</td>
<td>X9 X9 AGC T = ENABLED, U = DISABLED</td>
</tr>
</tbody>
</table>

Switches

- none

Leds

- R1 Gain Preset (Fluoro)
- R2 Gain Preset (Rad)
- R3 Video Setup
- R4 Video Offset
- R5 AGC Gain
- R6 ABD Gain
- R9 Gamma
- R10 Test signal level
- R11 Black level threshold
- R12 AGC Delay
- R13 ABD Offset
- R14 H Blanking
- R15 Test Signal
- R16 Clamp Pulse Width
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Test Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>TP1</td>
</tr>
<tr>
<td>08</td>
<td>TP2 Video IN (low bandwidth)</td>
</tr>
<tr>
<td>15</td>
<td>TP3 Video OUT (low bandwidth)</td>
</tr>
<tr>
<td></td>
<td>TP4 ABD video integrator OUT</td>
</tr>
<tr>
<td></td>
<td>TP5 ABD window integrator OUT</td>
</tr>
<tr>
<td></td>
<td>TP6 ABD divisor OUT</td>
</tr>
<tr>
<td>07</td>
<td>TP7 ABD OUT</td>
</tr>
<tr>
<td></td>
<td>TP8 Post AGC video OUT</td>
</tr>
<tr>
<td>04</td>
<td>TP10 AGC VALID</td>
</tr>
<tr>
<td></td>
<td>TP11 Video preamp OUT</td>
</tr>
<tr>
<td></td>
<td>TP12 Post AGC Video OUT</td>
</tr>
<tr>
<td></td>
<td>TP13 Gamma peak detection OUT</td>
</tr>
<tr>
<td></td>
<td>TP14 Gamma threshold OUT</td>
</tr>
<tr>
<td></td>
<td>TP15 Gamma out</td>
</tr>
<tr>
<td></td>
<td>TP16 AGC command OUT</td>
</tr>
<tr>
<td></td>
<td>TP17 T/H OUT</td>
</tr>
<tr>
<td></td>
<td>TP18 REC OUT</td>
</tr>
<tr>
<td></td>
<td>TP19 ABD Video IN</td>
</tr>
<tr>
<td></td>
<td>TP20 Video OUT (high bandwidth)</td>
</tr>
<tr>
<td></td>
<td>TP21 Clamp pulse OUT</td>
</tr>
</tbody>
</table>
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card RG 354

Purpose: X–RAY IMAGE INTENSIFIER TUBE ADJUSTMENT	Version No.: 0
Time: 30 min	Date:
Manpower: 1	

SECTION 1
SUPPLIES

None.

SECTION 2
TOOLS

- Oscilloscope, 20 MHz minimum bandwidth.
- Two copper plates, 175 x 175 mm, 1 mm thickness.
- Radcal 2025AC dosimeter.
- Ionization chamber 20 x 5 – 60.
- II Tube Specifications.

SECTION 3
SAFETY PRECAUTIONS

Take all usual safety precautions for electronic board manipulation (i.e., mats and bracelets to protect against electrostatic discharge).

SECTION 4
PREREQUISITES

These adjustments must be performed when replacing the II tube.

SECTION 5
PROCEDURE

5.1 **EHV Adjustments**

1. Perform the adjustments described in RG 350 of this chapter, Section 5.
2. Set the vg1 (LV), vg2 (LV) and vg3 (LV) control voltages to obtain the high voltage values corresponding to those indicated in the Inspection Acceptance Report for the II tube.
3. Try to optimize focusing on the oscilloscope; EHV settings will be optimized following the optical focusing adjustment.
5.2 Centering, Orientation and Optical Focusing

Perform the adjustments described in Job Card RG 351, par. 5.2.1 and 5.2.2. Make sure the Iris is open before starting.

5.3 EHV Setting Optimization

With the Iris still in the open position, optimize the EHV settings, especially the center focusing (vg2).

5.4 Dose

Perform the adjustments described in Job Card RG 251.
3–4 IMAGEUR TROUBLESHOOTING SHEETS
Blank page
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card LA 450

Purpose: IMAGEUR TROUBLESHOOTING

SECTION 1
NECESSARY REPLACEMENT

None.

SECTION 2
REQUIRED EQUIPMENT

- Test pattern (or phantom).

SECTION 3
SAFETY PRECAUTIONS

Read the safety precautions concerning x-ray equipment.

SECTION 4
PREREQUISITES

Place a test pattern (or phantom) in the x-ray path.

Run a fluoro sequence in nominal conditions:

- No image appears on the screen – see LA 451.
- The video mask is present, but there is no image during x-ray emission – see LA 452.
- There is an image, but it is out of focus – see LA 453.
- There is an unstable image – see LA 454.
- There is a clear image, but with the wrong brightness – see LA 455.

This manual describes the most common faults only. For other faults, the Field Engineer must decide the course of action according to the complexity of the work to be done.
Purpose: NO IMAGE APPEARS ON THE SCREEN

- No video mask.
- No fluoroscopy symbol.

Date:

Time:

Manpower:

No image.

Video signal at monitor(s) input?

Yes

Defective monitor(s).

No

Video signal at DSM output?

Yes

Defective DSM/Monitor video connecting cable

No

Video signal at DSM input?

Yes

Check DSM or DSM/Stenoscop interface.

No

Remove rear cover from Imageur.

Composite video signal at TP3/CCD video during Fluoroscopy?

Yes

Defective Imageur/Stenoscop interface cable

No

Check for presence of +24 V on CCD Power Supply Board (DS1).

LA 456

1

A
Job Card LA 451 2 of 4

A

DS1/CCD Power Supply Board lit?

Yes

Check Fuse F1 on CCD Power Supply Board

Fuse F1 OK?

Yes

Replace F1. Find cause of F1 burn–out

No

– Check Imageur/Stenoscop Interface cable.
– Check 24–V Power Supply on Stenoscop.
– Check Switch S1/CCD Power Supply Board

Fuse F1 burn–out again?

Yes

Replace CCD Power Supply Board.

No

DS1/CCD Power Supply Board lit?

Yes

B

DS2, DS3, DS4 on CCD Power Supply Board lit?

Yes

Put CCD Video Board on extension board.

Observe composite blanking signal on TP36/CCD Video.

No

Disconnect CCD Video and CCD Interface Boards.
If at least one of the three LEDs stays extinguished, replace CCD Power Supply Board.
Signal on TP36/CCD Video is permanently at Logical State 1. (+5V)

Yes

Go to Black Signal on Pin 2 of Switch X7/CCD Video is at State 1?

Yes

Imageur/Stenoskop interface is malfunctioning. Check Go to Black command (Pin 18 on the Imageur interface cable). This command must not be at Logical State 0 in Fluoroscopy.

No

Video signal present?

Yes

Replace CCD Video Board.

No

Remove cover from optical system.

Observe CCD Video Board video input signal in TP2/CCD Video during a Fluoroscopy exposure.

Observe CCD Module video output signal (TP3/CCD Module), during a Fluoroscopy exposure.

Check CIRC BLK signal at A22 on Connector J1.

No

END

Yes

The Imageur can operate by disabling the Go to Black function, which is not used (Switch X7 in Q position on the CCD Video Board).

Image reappears
Video signal present?

- Yes
 - Replace coaxial cable between CCD Module and CCD Video Board.
 - Yes
 - Exercise EHV Power Supply connections (HV cables and flat cable).
 - Yes
 - Replace EHV Power Supply.
 - No
 - Connections OK?
 - Yes
 - Iris OK?
 - Yes
 - Replace CCD/optical system assembly.
 - No
 - Signal OK?
 - Yes
 - Replace CCD Video Board.
 - No
 - Replace ribbon cable between CCD Module and backpanel.
 - No
 - Replace CCD Video Board.
 - No
 - Iris blocked in closed position?
 - Yes
 - Connections OK?
 - Yes
 - Replace EHV Power Supply.
 - No
 - Signal OK?
 - Yes
 - Replace CCD/optical system assembly.
 - No
 - Replace optical system/CCD Module assembly.
 - No
 - Replace EHV Power Supply.
 - Replace CCD Video Board.
 - Replace HD and VD signals on CCD Module.
 - HD = Pin 7/J1
 - VD = Pin 6/J1

CIRC BLK at Logical State 1?

- Yes
 - Check BLK signal at TP31/CCD Video.
 - BLK at Logical State 1 permanently?
 - Yes
 - Replace CCD Video Board.
 - No
 - Replace CCD/optical system assembly.
 - Replace ribbon cable between CCD Module and backpanel.
- No
 - Turn R16/CCD Interface Board completely clockwise. If no image appears, replace CCD Interface Board.
Purpose: VIDEO MASK ONLY VISIBLE ON SCREEN

Observe CCD Video Board video input signal in TP2/CCD Video during a Fluoroscopy exposure.

Video signal present?

Yes

Replace CCD Video Board.

No

Remove cover from optical system.

Observe CCD Module video output signal (TP3/CCD Module), during a Fluoroscopy exposure.
Video signal present?

Replace coaxial cable between CCD Module and CCD Video Board.

Video signal present?

Iris blocked in closed position?

Check EHV Power Supply connections.

Connections OK?

Redo the connections

No

Yes

Iris OK?

Yes

Replace EHV Power Supply.

Replace CCD/optical system assembly.

END
Purpose: X–RAY IMAGE OUT OF FOCUS

<table>
<thead>
<tr>
<th>Purpose:</th>
<th>X–RAY IMAGE OUT OF FOCUS</th>
<th>Version No.: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td></td>
<td>Date:</td>
</tr>
<tr>
<td>Time:</td>
<td></td>
<td>Manpower:</td>
</tr>
</tbody>
</table>

Remove rear cover from Imageur.

Place a Funk Type 23 Test Pattern or equivalent on input window of II. Run a wide open Fluoroscopy sequence at Dose 1.

Go to Dose 2. Run a fluoro sequence under same conditions.

- **Yes**
 - **Image sharper?**
 - **Yes**
 - Readjust the focus. See Job Card RG 351 Para 5.2.2.
 - **No**
 - **Image OK?**
 - **Yes**
 - **END**
 - **No**
 - Check value of the +24 V on S1/CCD Power Supply (+10/-15%).

- **No**
 - **Image OK?**
 - **Yes**
 - **No**
Check control voltage of II tube. To do so use:

a. II tube Job Card,
b. Transformation formulas of Job Card RG 350 Section 5 and if necessary,
c. Focalisation optimization adjustments of II tube (see Job Card RG 350 Section 5)

Check 24 V power supply on Stenoscop.

- On the 22 cm, Vg2 is adjusted using R4 and R5.
- On the 16 cm, Vg2 is adjusted using R7.

CAUTION:

Unable to readjust the voltage in question? (It stays at 0 V for example.)
A

Disconnect the connector from J2/CCD Interface.

B

Check ribbon cable between CCD Interface Board and EHV Power Supply.

Cable OK?

Yes

Replace cable.

No

Check II tube high voltage cable connectors.

High voltage cable connectors OK?

Yes

Replace connectors or redo cabling with the faulty connectors.

No

Still unable to adjust the voltage?

Yes

Replace the CCD Interface Board.

No

Disconnect the high voltage connectors on the EHV Power Supply, and measure the output voltage of the EHV Power Supply using the High Voltage Measurement Unit.

Voltage OK?

Yes

Replace the II tube.

No

Replace the EHV Power Supply.
Purpose: IMAGE IS PRESENT BUT UNSTABLE

Version No.: 0

Date:

Time:

Manpower:

Open Imageur rear cover

Is DS1 red LED lit or flashing?

No

Yes

Unstable Blow-up.
Check high voltage cable connections of II tube on EHV Power Supply.

Connections OK?

No

Correct the connections

Yes

OK?

END

High voltage arcing.
Disconnect high voltage connections from II tube.
Red DS1/CCD Interface LED stays lit or flashes. Noise characteristic of arcing can be heard.

Replace EHV Power Supply.

No

Replace II tube.

END

Yes

Check stability of control voltage of EHV Power Supply on CCD Interface Board.

Voltage stable?

No

Replace CCD Interface Board.

Yes

Replace EHV Power Supply.

END
Purpose: IMAGE TOO BRIGHT OR TOO DARK

Note: Before starting this procedure, check that the problem is not due to aging of the image intensifier (see sm, Job Card RG 007).

Open rear cover of Imageur.

Generator goes to maximum stop in Auto Mode?

Yes

No

See LA 456

Check the video adjustments using the test signal (see Job Card RG 353, Para 5.2.4).

OK?

Yes

No

Run a fluoro sequence in Manual Mode with parameters which give an acceptable image.

Switch between Dose 1 and Dose 2 to check the operation of Iris.

Iris switches? (Video level changing)

Put CCD Interface Board on an extension board. Check Dose 1/ Dose 2 interface signal at B9 of Connector J1.

Check gain adjustment of CCD Module (see Job Card RG 351, Para. 5.2.4).

Note: To do this adjustment, ensure that Iris opening and parameters used allow proper saturation of sensor.
The signal switches during Dose 1/Dose 2 change.

Check operation of LEDs DS1 and DS2 on CCD Interface Board:
Dose 1 Mode = DS2 lit,
Dose 2 Mode = DS3 lit.

Check Ir iris connection cable and connection at J3/CCD Interface Board.
Check that Jumper X10/CCD Interface Board is in W position.

LEDs operated OK?

Replace Compact Optics/CCD Module assembly.

Adjustments OK?

Imageur operates correctly?

Make the cable compliant.

Jumper, cable and connections OK?
Disassemble Compact Optics and CCD Module assembly.

Iris locked? (with power supply switched off)

Yes

Attempt to unlock Iris by directly manipulating gears. Check for sticky areas and correct operation of Iris.

No

Check operation of Iris motor.

– Disconnect connector at J3/CCD Interface Board.
– Send +5 V to motor terminals (with both polarities).

Motor runs?

Yes

Replace Compact Optics/CCD Module assembly.

Replace the CCD Interface Board.

No

Check dose adjustments (see sm, Job Card RG 351 Para 5.2).

Adjustments OK?

Yes

Make compliant.

No

Check that aging of II tube is not the problem.

Adjustments OK?

Yes

Check CCD Video Board adjustments (see Job Card RG 353 Para. 5.2).

No

Replace the CCD Video Board.

END
Purpose: GENERATOR GOES TO MAXIMUM STOP IN AUTOMATIC MODE.

Remove rear cover of Imageur.

Place 2 mm of copper at x-ray tube level. Run a fluoro sequence in Automatic Mode.

Image present? (glare)

Yes

Display the ABD window by putting X8/CCD Video Board in S position.

Mask displayed? (50% of useful Image.)

Yes

Check gain and offset adjustments of ABD signal using test signal (see Job Card RG 351, Para 5.2.4).

Yes

OK after adjusting?

Yes

Replace the CCD Video Board.

No

END

See LA 451

1

A
Image stays black.

Put CCD Video Board on extension board. Check for presence of AGC WIND signal from CCD Interface Board at A25 on J1/CCD Video Board. (5–V amplitude pulses).

Signal OK?

Yes

No

Replace the CCD Video Board.

Check configuration of Jumper X7 on CCD Interface Board (X7 must be on E).

Configuration OK?

Yes

No

Put X7 on E

OK?

Yes

No

END
Check for presence of AGC WIND signal at 2 on Switch X7.

- Signal present?
 - Yes
 - Check ABD window adjustments on CCD Interface Board.
 - No
 - Loose contact between connector(s) and backpanel or, Defective backpanel board.

- Ok after adjustments?
 - Yes
 - END
 - No
 - Replace the CCD Interface Board.

No
3–5 MDA MEMORY DIAGNOSIS SHEETS
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card DI 570 1 of 2

<table>
<thead>
<tr>
<th>Purpose:</th>
<th>MDA MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CUSTOMER CONFIGURATION RESTORE</td>
</tr>
<tr>
<td>Time:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version No.:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>September 1997</td>
</tr>
<tr>
<td>Manpower:</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 1
SUPPLIES

None.

SECTION 2
TOOLS

- Standard tool kit.
- FE Laptop
 Null modem cable

SECTION 3
SAFETY PRECAUTIONS

1. Turn the power off.
2. Remove the cart back cover.
3. The « Customer configuration back-up » is inside a plastic envelop in the monitor cart
4. Take all usual safety precautions for manipulation of electronic boards (i.e., mats and bracelets to protect against electrostatic discharge)

SECTION 4
PROCEDURE

1. Switch the unit ON
2. Enter the service menu (system setup / permanent data), then insert the configuration floppy in the disk drive.
3. Press the « Restore config » key
 The message « Restore is OK » is displayed in the mail box.
4. Check the customer configuration in the Setup preset menu.

<table>
<thead>
<tr>
<th>Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow colour</td>
<td>disable</td>
</tr>
<tr>
<td>Grey colour</td>
<td>enable</td>
</tr>
<tr>
<td>Black colour</td>
<td>not selected</td>
</tr>
</tbody>
</table>

Note: Screen layout on MDA may have changed.
Purpose

<table>
<thead>
<tr>
<th>Purpose:</th>
<th>Version No.: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA MEMORY</td>
<td>Date: January 1997</td>
</tr>
<tr>
<td>CUSTOMER CONFIGURATION UPGRADE</td>
<td></td>
</tr>
<tr>
<td>Time:</td>
<td>Manpower:</td>
</tr>
</tbody>
</table>

GE SERVICE USE ONLY

Refer to the GE Service CD ROM

Or call your ON LINE support center
Blank page
SECTION 1
SUPPLIES
None.

SECTION 2
TOOLS
FE Laptop
Null modem cable

SECTION 3
SAFETY PRECAUTIONS
1. Take all usual safety precautions for manipulation of electronic boards (i.e. mats and bracelets to protect against electrostatic discharge)
2. Read the precautions to take when working with X-rays.

SECTION 4
PROCEDURE FOR WINDOW 3.11
The menu drawing are for Windows 3.11. Off course we can configure hyperterminal with Windows 95 with the same parameters. (With different menus).

LAPTOP CONNECTION IN TERMINAL MODE
The Laptop is connected on the MDA memory throught the COM5 port and this in the terminal mode. Cable number 3 must be chosen in the RS232 spider cable (4 outputs); this one is set on COM5
Open the TERMINAL window of the Laptop which is situated in the ACCESSORY group.
Configure the settings of the TERMINAL mode as described here after:

1. Settings

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Settings</th>
<th>Phone</th>
<th>Transfers</th>
<th>Help</th>
</tr>
</thead>
</table>

Phone Numbers:
- Terminal Emulation...
- Terminal Preferences...
- Function Keys...
- Text Transfers...
- Binary Transfers...
- Communications...
- Modem Commands...

Printer Echo
- Timer Mode
- Show Function Keys
2. Terminal emulation

![Terminal Emulation](image)

3. Terminal preferences

![Terminal Preferences](image)
4. Communications

When the settings are ended, save the file given in the MDA name.

This file will be recalled each time that a terminal connection will be done on the MDA memory.
SECTION 5
PROCEDURE FOR WINDOW 95

The Laptop is connected on the MDA memory through the COM5 Port and this is in the terminal mode.

Cable number 3 must be chosen in the RS232 spider cable (4 Outputs); this one is set on COM5.

Open the TERMINAL window of the Laptop which is situated in the ACCESSORY group.

Configure the settings of the TERMINAL mode as described hereafter:

1. Select Programs -> Accessory -> Hyper Terminal

![HyperTerminal window]

Double click on Hypertrm.exe

2. On Connection Description dialog box

Enter a name for the connection : Type MDA

![Connection Description dialog box]

Press <OK>
3. On *PhoneNumber* dialog box

 Select for *Connect using*: *Direct to COM1*

 ![PhoneNumber dialog box]

 Press <OK>

4. On *COM1 Properties* dialog box

 Select Port settings as:

 - **BITS PER SEC**: 19200
 - **DATA BITS**: 8
 - **PARITY**: NONE
 - **STOP BITS**: 1
 - **FLOW CONTROL**: NONE

 ![COM1 Properties dialog box]

 Press <OK>
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card DI 573

<table>
<thead>
<tr>
<th>Purpose:</th>
<th>MDA MEMORY DIAGNOSIS</th>
<th>Version No.: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td></td>
<td>Date: January 1997.</td>
</tr>
<tr>
<td>Manpower:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 1

SUPPLIES

None.

SECTION 2

TOOLS

- FE Laptop
- Null modem cable

SECTION 3

SAFETY PRECAUTIONS

1. Take all usual safety precautions for manipulation of electronic boards (i.e., mats and bracelets to protect against electrostatic discharge)
2. Read the precautions to take when working with X-rays.

SECTION 4

PREREQUISITES

1. See Job Card DI 571 for Laptop settings in Terminal mode
2. The Laptop must be connected and the Terminal mode selected.

SECTION 5

PROCEDURE

For version 4.11 software

1. On the MDA memory, select the Service menu by pushing on « System Set-Up » key then « Permanent Data ».
2. The following screen will be displayed.

 ![Diagnostic Menu](image)

3. Hit the « Diagnostic » key.
4. When the connection with the laptop (Terminal mode) is established, double click the laptop « Enter » key. Then password is required.
5. Type « SODA » (capital letters) taking time between the different letters. Type password on the laptop then press enter

Note: Screen layout on MDA may have changed.
MAIN MENU

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>Settings</th>
<th>Phone</th>
<th>Transfers</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Customer ID: Software rev: 3.07
System ID: 000006F67
Firmware rev: 4.34

ERROR LOG
PF1: Err Log | PF2: Data Base | PF3: Auto Test | PF4: Visu Config | ESC: Exit

ERROR LOG

This menu is selected by F1 key.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Date</th>
<th>Time</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 01080050.LOG</td>
<td>Jan 08</td>
<td>10:56:01</td>
<td>2362</td>
</tr>
<tr>
<td>b. 01080125.LOG</td>
<td>Jan 08</td>
<td>10:56:54</td>
<td>3684</td>
</tr>
<tr>
<td>c. 01080260.LOG</td>
<td>Jan 08</td>
<td>10:59:31</td>
<td>3737</td>
</tr>
<tr>
<td>d. 01080365.LOG</td>
<td>Jan 08</td>
<td>10:00:23</td>
<td>3737</td>
</tr>
<tr>
<td>e. 01080586.LOG</td>
<td>Jan 08</td>
<td>12:05:05</td>
<td>17725</td>
</tr>
<tr>
<td>f. 01080655.LOG</td>
<td>Jan 08</td>
<td>13:57:46</td>
<td>3736</td>
</tr>
<tr>
<td>g. 01080953.LOG</td>
<td>Jan 08</td>
<td>13:58:38</td>
<td>3737</td>
</tr>
<tr>
<td>h. 12170666.LOG</td>
<td>Nov 26</td>
<td>16:02:00</td>
<td>1285</td>
</tr>
<tr>
<td>i. 12170928.LOG</td>
<td>Nov 28</td>
<td>13:37:02</td>
<td>6503</td>
</tr>
<tr>
<td>j. 12170955.LOG</td>
<td>Dec 16</td>
<td>12:52:52</td>
<td>1599</td>
</tr>
<tr>
<td>k. 12170934.LOG</td>
<td>Dec 17</td>
<td>13:54:52</td>
<td>1564</td>
</tr>
<tr>
<td>l. 12170938.LOG</td>
<td>Dec 17</td>
<td>12:21:05</td>
<td>1641</td>
</tr>
<tr>
<td>m. 12170877.LOG</td>
<td>Dec 17</td>
<td>11:41:08</td>
<td>1539</td>
</tr>
</tbody>
</table>

use a-z to select and display log file
< : Previous Menu | UP : Prev Page | DOWN : Next Page | Esc: Exit

Then the displayed log can be selected by hitting the correspondant letter key.
MDA message list

<table>
<thead>
<tr>
<th>Error code</th>
<th>Time in ms before application fails</th>
<th>Message (see table here after)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRay start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XRay stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic review start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic review stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Acquisition start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Acquisition stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User request quality mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unable to build bitmap in LanguageAsChange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unable to build bitmap in ModifyText</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unable to create button element in InitDlg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unable to create text element in InitDlg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unable to create normal element in InitDlg
XRay Stop (start of treatment)
XRay Stop (end of treatment)
State machine error
Send image to video B

Midas error on send image to video B : %lx

Reading current image
Reading current mask
Treatments modified
Add image to dyn review
Extract image from dyn rev
Add image for acquisition
Extract image from acquisition
Set XPERM to : %d
Send bitmap to overlay %d

Midas error on send bitmap to overlay : %lx

Send LUT

Midas error on send LUT : %lx

Send log sub table

Midas error on send SUB table : %lx

Send mask log sub table

Midas error on send SUB MASK table : %lx

Send anti log sub table

Midas error on send mask SUB ANTI LOG table : %lx

Send NR table
Midas error on send NR table: %lx

Request start of auto test
Request start of auto test to MIDAS

Midas error on start of auto test

Get auto test result from MIDAS

Midas error on query auto test result

Midas error on MidasImageTransfer: %lx

Unable to send message %d to thread %d
Event undefine: Unable to send message %d to thread %d
Unable to send message %d to thread %d
Unable to send message %d to thread %s
Unable to send message %d to thread %s
Unable to send fast message %d to thread %s
Err dispatch message %u
Unable to find treatment for message %d
Starting film composer mode %d
Building graphical plan and LUT for monitor B
Erase image on monitor B
Setting visibility on graphical plan
Display system info on monitor B
Load build and display images on monitor B
Draw square on current image
OK, Film composer is ready on monitor B
Assertion failed in %s at line %d
MIDAS DRIVER ERROR MESSAGES (Which needs MIDAS board to be replaced).

define MIDAS_ERROR_MIDAS_DEVICE_NOT_FOUND 0xE0000011
define MIDAS_ERROR_UNABLE_TO_INIT_DMA 0xE0000012
define MIDAS_ERROR_UNKNOWN_COMMAND 0xE0000013
define MIDAS_ERROR_INVALID_IRQ 0xE0000014
define MIDAS_ERROR_INSUFFICIENT_MAP_REGISTER 0xE0000015
define MIDAS_ERROR_UNABLE_TO_START_APPLICATION 0xE0000016
define MIDAS_ERROR_NOT_RESPONDING 0xE0000017
define MIDAS_ERROR_UNABLE_TO_RELEASE_SEMAPHORE 0xE0000018
define MIDAS_ERROR_UNABLE_TO_LOCATE_MEMORY 0xE0000019
define MIDAS_ERROR_UNABLE_TO_OPEN_PROGRAM_FILE 0xE000001A
define MIDAS_ERROR_FILE_ERROR 0xE000001B
define MIDAS_ERROR_TIME_OUT 0xE000001C
define MIDAS_ERROR_INVALID_IMAGE_SIZE 0xE000001D
define MIDAS_ERROR_UNABLE_TO_ERASE_FLASH 0xE000001E

define MIDAS_ERROR_MAILBOX_START_DMA 0xE000001F
define MIDAS_ERROR_MAILBOX_SYNC_1 0xE0000020
define MIDAS_ERROR_MAILBOX_SYNC_2 0xE0000021
define MIDAS_ERROR_MAILBOX_SYNC_3 0xE0000022
define MIDAS_ERROR_MAILBOX_SYNC_4 0xE0000023
define MIDAS_ERROR_MAILBOX_SYNC_5 0xE0000024
define MIDAS_ERROR_MAILBOX_SYNC_6 0xE0000025
define MIDAS_ERROR_MAILBOX_SYNC_7 0xE0000026
define MIDAS_ERROR_MAILBOX_DMA_ACK 0xE0000027
define MIDAS_ERROR_INVALID_INTERRUPT_CODE 0xE0000028
define MIDAS_ERROR_MAILBOX_DMA_ADDRESS 0xE0000029
define MIDAS_ERROR_MAILBOX_END_SYNC 0xE0000030
define MIDAS_ERROR_DMA_TIMEOUT 0xE0000031
define MIDAS_ERROR_DMA_ADDR_ALIGN 0xE0000032
define MIDAS_ERROR_DMA_LENGTH_ALIGN 0xE0000033
define MIDAS_ERROR_DMA_CHECK_CODE 0xE0000034
define MIDAS_ERROR_DMA_UNDEFINED 0xE0000035
define MIDAS_ERROR_DRIVER_ALREADY_IN_ERROR 0xE0000036
define MIDAS_ERROR_SYNC_DMA_IN_USE 0xE0000037
define MIDAS_ERROR_ASYNC_DMA_IN_USE 0xE0000038
define MIDAS_ERROR_ERROR_SYNC_BLOCK_BUSY 0xE0000039
define MIDAS_ERROR_ERROR_DMA_ZERO_LENGTH 0xE000003A
define MIDAS_ERROR_ERROR_ABORT 0xE000003B
define MIDAS_ERROR_ERROR_READY_STATUS 0xE000003C
define MIDAS_ERROR_ERROR_CONTROL_ROUTINE 0xE000003D
define MIDAS_ERROR_ERROR_TIME_OUT_READ_MAILBOX 0xE000003E
define MIDAS_ERROR_WAITING_INT_ENABLE 0xE000003F
define MIDAS_ERROR_DRIVER_NOT_STARTED 0xE0000040
define MIDAS_ERROR_TIME_OUT_APPLICATION 0xE0000041
define MIDAS_ERROR_BAD_PARAMETER 0xE0000042
define MIDAS_ERROR_DATA_NOT_ALIGNED 0xE0000043
define MIDAS_ERROR_CREATE_EVENT 0xE0000044
define MIDAS_ERROR_BOOT_NEED_NOT_BE_UPDATED 0xE0000045
define MIDAS_ERROR_CANNOT_LOCK_MEMORY 0xE0000046

DATA BASE

Verification and correction of the data base is performed by hitting F2 key in the main menu then F1 to launch the program.

Press PF1 to start check of database

PF1: Run Check | <=: Previous Menu | ESC: Exit
When the verification is ended, the following screen is displayed:

That means that 4 files have been found and checked and that one of them is bad.
By hitting again F1, the programm is launched again and will automatically correct the defective file by cancelling the defective image.
If the defective image is the only one for this patient, the patient references will be cancelled.

AUTO TEST

They are launched through the F3 key in the main menu and then F1 key.

Press F1 to start Midos test
When the Auto Test are ended, the following screen is displayed if all the tests are OK.

<table>
<thead>
<tr>
<th>Err</th>
<th>Error Type</th>
<th>Test description</th>
<th>Error root cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Digital I/O test : EUK30 / VISU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Blank buffer allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Image buffers allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Image 0 video memory test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Overlay video memory test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Image 1 DRAM test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Image 2 DRAM test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Image 3 DRAM test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Image 4 DRAM test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Decompression buffer DRAM test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Mailboxes access test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Source FIFO acquisition test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Offset test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>PS/2 test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>FMR test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auto test stop.
Purpose: MDA CHECK UP

Date: November 1997

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>ROOT CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC does not turn ON</td>
<td>Power supply</td>
<td>Verify fuses
Verify PC power supply</td>
</tr>
<tr>
<td>GE logo appears, application screens work but no possibility to screen (X–ray)n</td>
<td>No video signal</td>
<td>Check video cable inside C–Arm and monitor cart cable. Verify connections.</td>
</tr>
<tr>
<td>GE logo appears, possibility to screen (X–ray) but application does not work</td>
<td>Hard disk problem</td>
<td>Change hard disk</td>
</tr>
<tr>
<td>Hard disk noisy</td>
<td>Hard disk mechanism</td>
<td>Change hard disk</td>
</tr>
<tr>
<td>GE logo does not appear on monitor screen during PC boot</td>
<td>MIDAS does not start</td>
<td>Check MIDAS board connection
Change MIDAS board</td>
</tr>
<tr>
<td>Stored image logo do not appear on B monitor Not seen by MDA test</td>
<td>MIDAS</td>
<td>Change MIDAS board</td>
</tr>
<tr>
<td>« solarization of image »</td>
<td>MIDAS</td>
<td>Change MIDAS board</td>
</tr>
<tr>
<td>PC reboots on application after X–ray</td>
<td>MIDAS</td>
<td>Change MIDAS board</td>
</tr>
<tr>
<td>Bad image quality on monitor screen</td>
<td>MIDAS</td>
<td>Change MIDAS board</td>
</tr>
<tr>
<td>Bad image quality on monitor screen</td>
<td>MIDAS</td>
<td>Change MIDAS board</td>
</tr>
<tr>
<td>Black image on monitor</td>
<td>AVIAS</td>
<td>Change AVIAS board</td>
</tr>
<tr>
<td>Touch screen display does not light</td>
<td>Cable connection E.L. display</td>
<td>Check connection
Replace E.L.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>ROOT CAUSE</td>
<td>SOLUTION</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Touch screen display does not light</td>
<td>VGA board</td>
<td>Change VGA board</td>
</tr>
<tr>
<td></td>
<td>Check configuration</td>
<td></td>
</tr>
<tr>
<td>Touch screen calibration is no more correct</td>
<td>Calibration has shift</td>
<td>Call OLC – need Autorun NT for calibration</td>
</tr>
<tr>
<td>Touch screen calibration is inverted left–up/ right down</td>
<td>Touch screen driver cable has been not well connected</td>
<td>Check cable connection, should be swapped</td>
</tr>
<tr>
<td>No DAP connection</td>
<td>Connection</td>
<td>Check cable connection</td>
</tr>
<tr>
<td>No DAP connection</td>
<td>Port connection–check board configuration</td>
<td>Change RS–232 board</td>
</tr>
<tr>
<td>No VCR connection configuration</td>
<td>Port connection–check board</td>
<td>Change RS–232 board</td>
</tr>
</tbody>
</table>
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card DI 575 1 of 4

SECTION 1
SUPPLIES
None.

SECTION 2
TOOLS
None.

SECTION 3
PROCEDURE

Select the Service menu by hitting the following keys:
– SYSTEM PARAMETER – PERMANENT DATA –

Then MENU SERVICE

Enter the password « PEGASE » in capital letter.
The following screen is displayed on the EL display.

CENTERING

Select « Pattern » then « Centering ».

Following pattern is displayed on A monitor.

Check and if necessary readjust the « ABD » window size in order to match with the central circle. See RG XX for window sizing.

Check and readjust the picture centering. See RG254 of the SM and RG351 of this ASM. CAUTION: do not exit from the centering pattern menu during X-ray else the memory will reboot.
DENSITY

Select « Density »

The monitor screen displays a pattern including two squares.

Density of the internal square can be modified by hitting the arrow keys.

Density values are displayed on EL display.

Density values raise by step of 17 pixels from 0 to 255
GLOBAL

Select « Global »

The monitor screen displays a pattern including different squares with different densities.
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card DI 576

Purpose: IMAGE QUALITY
 FTM MEASUREMENT

Date: January 1997

Time:

SECTION 1
TOOLS REQUIRED
– Standard tool kit.
– Funck pattern type 23

SECTION 2
PRELIMINARY PRECAUTIONS
1. Set the unit with II top side
2. Do not rotate the image when making FTM measurement
3. Noise reduction (FNR) must be set at 16
4. Read the safety precautions concerning X-ray systems.

SECTION 3
PROCEDURE
1. Set a 1mm copper plate over the X-ray tank and the Funck pattern with 0.6 L/cm or 1.2 L/cm area centered over the image intensifier.
2. Select Auto fluoro on the Stenoscop console.
3. Select the Service menu by hitting the following keys:
 – SYSTEM PARAMETER – PERMANENT DATA – SERVICE MENU
4. Enter the password « PEGASE » in capital letter.
5. Select « Image quality » menu.

Note: The screen layout on MDA may have changed.
6. Select « FTM »

7. Monitor A screen displays 3 different ROI and the following screen is displayed on the EL.

8. Make fluoro during 3s

10. Electroluminescent displays the following screen

Move the selected ROI to the white part of the picture (see ill.1).
11. Size the ROI to 32p/32p
12. Mean and RMS values are displayed on A.screen (density value must be close to 100 +/- 10).
 If value is not correct, adjust mA in manual fluoro.
13. Hit the « Valid key » to go back to FTM main menu
15. Move the ROI to the black part of the picture (see ill.1).
16. Size the ROI to 16p/16p
17. Mean and RMS values are displayed on a screen (density value must be close to 20)
18. Hit the « Valid key » to go back to FTM main menu
19. Select « FTM » on the touch screen.
20. Move the ROI to level 0.6 lines/mm on the picture (see ill.1).
21. Size the ROI to 8p height max value centered on 0.6 l / mm
22. Mean and RMS values are displayed on a screen (level must be close to 95)
23. Result of FTM is displayed on the right upper part of A monitor
24. Hit the « Valid key » to go back to FTM main menu
<table>
<thead>
<tr>
<th>Results</th>
<th>Measure</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTM @ 0.6 lp/mm</td>
<td>%</td>
<td>min (%)</td>
</tr>
<tr>
<td>22 cm FIELD</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>16 cm FIELD</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>FTM @ 1.2 lp/mm</td>
<td>%</td>
<td>min (%)</td>
</tr>
<tr>
<td>22 cm FIELD</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>16 cm FIELD</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card DI 577

Purpose: MEASUREMENT OF DENSITY AND RESOLUTION UNIFORMITY

Version No.: 0
Date: January 1997

Time:

Manpower:

SECTION 1
TOOLS REQUIRED
– Standard tool kit.
– MS3 leeds pattern

SECTION 2
PRELIMINARY PRECAUTIONS
1. Set the unit with II top side
2. Do not rotate the image when making measurement
3. Set the noise reduction to level 16
4. Open the collimator blades full size

SECTION 3
PROCEDURE
1. Select the Service menu by hitting the following keys:
 – SYSTEM PARAMETER – PERMANENT DATA – MENU SERVICE
2. Enter the password « PEGASE » in capital letter.
16 cm field

1. Run auto fluoro during 3 sec. with two mm copper on the X–ray tank.
2. Select ROI
3. Set a 50x50 ROI
4. Check that the grey level is close 100 +/- 4
5. If the value is not correct, set the unit in manual fluoro and adjust mA to reach 100 +/- 4
4. Select « UNIFORMITY »
5. Select « UNIFORMITY »
6. Monitor A screen displays 9 ROI

UNIFORMITY OF DENSITY

1. Make fluoro during 3s
2. Read the values displayed on the different boxes.
3. Check that the maximum difference between two values is: \(\frac{M_{\text{max}} - M_{\text{min}}}{M_{\text{max}}} \) <= 20 % for 16 cm
 <= 25 % for 22 cm

22 cm field

Run the same procedure.
UNIFORMITY OF RESOLUTION

1. Set the MS3 pattern on the II.
2. Select Auto fluoro on the Stenoscop console.
3. Make fluoro in auto mode
4. Read the values displayed on the different boxes.
5. Check that the maximum difference between two values is: \[
\frac{(\sigma/M_{\text{max}}) - (\sigma/M_{\text{min}})}{(\sigma/M_{\text{max}})} \leq 40 \%
\]
Blank page
SECTION 1
PREREQUISITES

Errors can occur during **POST** (Power On Self Test) which is performed every time the system is powered on. Fatal errors, which prevent the system to continue the boot process, are communicated through a series of audible beeps. Other errors are displayed on electroluminescent display in the following format:

ERROR Message Line 1
ERROR Message Line 2

For most displayed error messages, there is only one message. If a second message appears, it is “RUN SETUP”. If this message occurs, press <F1> to run BIOS Setup.

(A keyboard has to be connected on the PC memory)

Beep Codes

<table>
<thead>
<tr>
<th>Beeps</th>
<th>Error Message</th>
<th>Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Refresh Failure</td>
<td>The memory refresh circuitry on the motherboard is faulty.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>2</td>
<td>Parity Error</td>
<td>Parity is not supported on this product; error will not occur.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>3</td>
<td>Base 64 Kb Memory Failure</td>
<td>Memory failure in the first 64 Kb</td>
<td>Replace PC</td>
</tr>
<tr>
<td>4</td>
<td>Timer Not Operational</td>
<td>Memory failure in the first 64 Kb of memory, or Timer 1 on the motherboard is not functioning.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>5</td>
<td>Processor Error</td>
<td>The CPU generated an error.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>6</td>
<td>8042 – Gate A20 Failure</td>
<td>The keyboard controller (8042) may be bad. The BIOS cannot switch to protected mode.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>7</td>
<td>Processor Exception Interrup Error</td>
<td>The CPU generated an exception interrupt.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>8</td>
<td>Display Memory Read/Write Error</td>
<td>The system video adapter is either missing or its memory is faulty. This is not a fatal error.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>9</td>
<td>ROM Checksum Error</td>
<td>ROM checksum value does not match the value encoded in BIOS.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>10</td>
<td>CMOS Shutdown Register Rd/Wr Error</td>
<td>The shutdown register for CMOS RAM failed.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>11</td>
<td>Cache error / External Cache Bad</td>
<td>The external cache is faulty.</td>
<td>Replace PC</td>
</tr>
</tbody>
</table>
Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>8042 Gate – A20 Error</td>
<td>Gate A20 on the keyboard controller (8042) is not working. Replace the 8042.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Address Line Short!</td>
<td>Error in the address decoding circuitry on the motherboard.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Cache Memory Bad, Do Not Enable Cache!</td>
<td>Cache memory is defective. Replace it.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>CH-2 Timer Error</td>
<td>Most AT systems include two timers. There is an error in timer 2.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>CMOS Battery State Low</td>
<td>CMOS RAM is powered by a battery. The battery power is low.</td>
<td>Replace Battery</td>
</tr>
<tr>
<td>CMOS Checksum Failure</td>
<td>After CMOS RAM values are saved, a checksum value is generated for error checking. The previous value is different from the current value. Run AMIBIOS Setup.</td>
<td>Replace RAM</td>
</tr>
<tr>
<td>CMOS System Options Not Set</td>
<td>The values stored in CMOS RAM are either corrupt or no existent. Run Setup.</td>
<td>Replace RAM</td>
</tr>
<tr>
<td>CMOS Display Type Mismatch</td>
<td>The video type in CMOS RAM does not match the type detected by the BIOS. Run AMIBIOS Setup.</td>
<td>Replace RAM</td>
</tr>
<tr>
<td>CMOS Memory Size Mismatch</td>
<td>The amount of memory on the motherboard is different than the amount in CMOS RAM. Run AMIBIOS Setup.</td>
<td>Replace RAM</td>
</tr>
<tr>
<td>CMOS Time and Date Not set</td>
<td>Run Standard CMOS Setup to set the date and time in CMOS RAM.</td>
<td></td>
</tr>
<tr>
<td>Diskette Boot Failure</td>
<td>The boot disk in floppy drive A: is corrupt. It cannot be used to boot the system. Use another boot disk and follow the screen instructions.</td>
<td></td>
</tr>
<tr>
<td>Display Switch Not Proper</td>
<td>Some systems require a video switch on the motherboard be set to either color or monochrome. Turn the system off, set the switch, then power on.</td>
<td></td>
</tr>
<tr>
<td>DMA ERROR</td>
<td>Error in the DMA controller.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>DMA #1 ERROR</td>
<td>Error in the first DMA channel.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>DMA #2 ERROR</td>
<td>Error in the second DMA channel.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>FDD Controller Failure</td>
<td>The BIOS cannot communicate with the floppy disk drive controller. Check all appropriate connections after the system is powered down.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>HDD Controller Failure</td>
<td>The BIOS cannot communicate with the hard disk drive controller. Check all appropriate connections after the system is powered down.</td>
<td>Replace PC</td>
</tr>
</tbody>
</table>
Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTR #1 Error</td>
<td>Interrupt channel 1 failed POST.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>INTR #2 Error</td>
<td>Interrupt channel 2 failed POST.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Invalid Boot Diskette</td>
<td>The BIOS can read the disk in floppy drive A, but cannot boot the system.</td>
<td>NA</td>
</tr>
<tr>
<td>Keyboard Is Locked...</td>
<td>The keyboard lock is the system is engaged. The system must be unlocked to continue.</td>
<td>NA</td>
</tr>
<tr>
<td>Unlock It</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyboard Error</td>
<td>There is a timing problem with the keyboard. Set the Keyboard option in Standard CMOS Setup to Not Installed to skip the keyboard POST routines.</td>
<td>NA</td>
</tr>
<tr>
<td>KB / Interface Error</td>
<td>There is an error in the keyboard connector.</td>
<td>NA</td>
</tr>
<tr>
<td>Off Board Parity Error</td>
<td>Parity error in memory installed in an expansion slot. The format is:</td>
<td>Replace PC</td>
</tr>
<tr>
<td></td>
<td>OFF BOARD PARITY ERROR ADDR (HEX) = (XXXX)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXXX is the hex address where the error occurred.</td>
<td></td>
</tr>
<tr>
<td>On Board Parity Error</td>
<td>Parity is not supported on this product; error will not occur.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Parity Error ????</td>
<td>Parity error in system memory at an unknown address.</td>
<td>Replace PC</td>
</tr>
</tbody>
</table>

ISA NMI Messages

<table>
<thead>
<tr>
<th>ISA NMI Message</th>
<th>Explanation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Parity Error at x</td>
<td>Memory failed. If the memory location can be determined, it is displayed as x. If not, the message is Memory Parity Error?????.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>xxxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Card Parity Error at</td>
<td>An expansion card failed. If the address can be determined, it is displayed as x. If not, the message is I/O Card Parity Error?????.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>xxxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMA Bus Time-out</td>
<td>A device has driven the bus signal for more than 7.8 microseconds.</td>
<td>Replace PC</td>
</tr>
</tbody>
</table>
Plug and Play Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Bad PNP Serial ID Checksum</td>
<td>The serial ID checksum of a Plug and Play card was invalid.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>* Floppy Disk Controller Resource Conflict</td>
<td>The floppy disk controller has requested a resource that is already in use.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>* NVRAM Checksum, NVRAM Cleared</td>
<td>The ESCD data was reinitialized because of an VVRAM checksum error. Try rerunning the ICU.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>* NVRAM Cleared by Jumper</td>
<td>The “Clear CMOS” switch has been moved to the ON position and CMOS RAM has been cleared.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>NVRAM Data Invalid, NCRAM Cleared</td>
<td>Invalid entry in the ESCD area.</td>
<td>NA</td>
</tr>
<tr>
<td>Parallel Port Resource Conflict</td>
<td>The parallel port has requested a resource that is already in use.</td>
<td>NA</td>
</tr>
<tr>
<td>PCI Error Log is Full</td>
<td>This message is displayed when more than 15 PCI conflict errors are detected. No additional PCI errors can be logged.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>PCI I/O Port Conflict</td>
<td>Two devices requested the same resource, resulting in a conflict.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>PCI IRQ Conflict</td>
<td>Two devices requested the same resource, resulting in a conflict.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Primary Memory Conflict</td>
<td>Two devices requested the same resource, resulting in a conflict.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Primary Boot Device Not Found</td>
<td>The designated primary boot device (hard disk drive, diskette drive, or CD—ROM drive) could not be found.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Primary IDE: Controller Resource Conflict</td>
<td>The primary IDE controller has requested a resource that is already in use.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Primary Input Device Not Found</td>
<td>The designated primary input device (keyboard, mouse, or other, if input is redirected) could not be found.</td>
<td>NA</td>
</tr>
<tr>
<td>Secondary IDE Controller Resource Conflict</td>
<td>The secondary IDE controller has requested a resource that is already in use.</td>
<td>NA</td>
</tr>
<tr>
<td>Serial Port 1 Resource Conflict</td>
<td>Serial port 1 has requested a resource that is already in use.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Serial Port 2 Resource Conflict</td>
<td>Serial port 2 has requested a resource that is already in use.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>Static Device Resource Conflict</td>
<td>A non—Plug and Play ISA card has requested a resource that is already in use.</td>
<td>Replace PC</td>
</tr>
<tr>
<td>System Board Device Resource Conflict</td>
<td>A non—Plug and Play system resource has requested a resource that is already in use.</td>
<td>Replace PC</td>
</tr>
</tbody>
</table>

* : Should not happen ; if happen, change the PC.
STENOSCOP 2 6000/9000 C.C.D. – M.D.A Job Card DI 579

<table>
<thead>
<tr>
<th>Purpose: TOUCH SCREEN CALIBRATION</th>
<th>Version No.: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>Date:</td>
</tr>
<tr>
<td>Manpower:</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 1
SUPPLIES
None.

SECTION 2
TOOLS
None.

SECTION 3
SAFETY PRECAUTIONS
None.

SECTION 4
PROCEDURE
1. Switch the unit ON
2. Enter the service menu (system setup / permanent data).
3. Press the « Calibrate touch screen » key

4. The following screen will appear:

 ![Calibration Screen](image)

Note: Screen layout on MDA may have changed.
5. Hit the « Calibrate » soft key and follow the instructions displayed on screen.

Note: This is not the last screen.