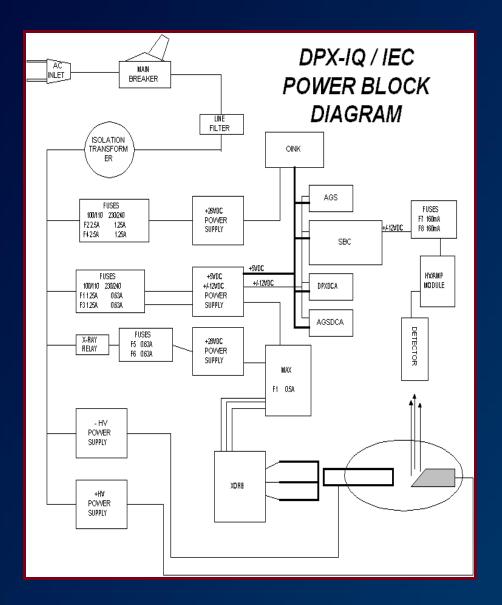


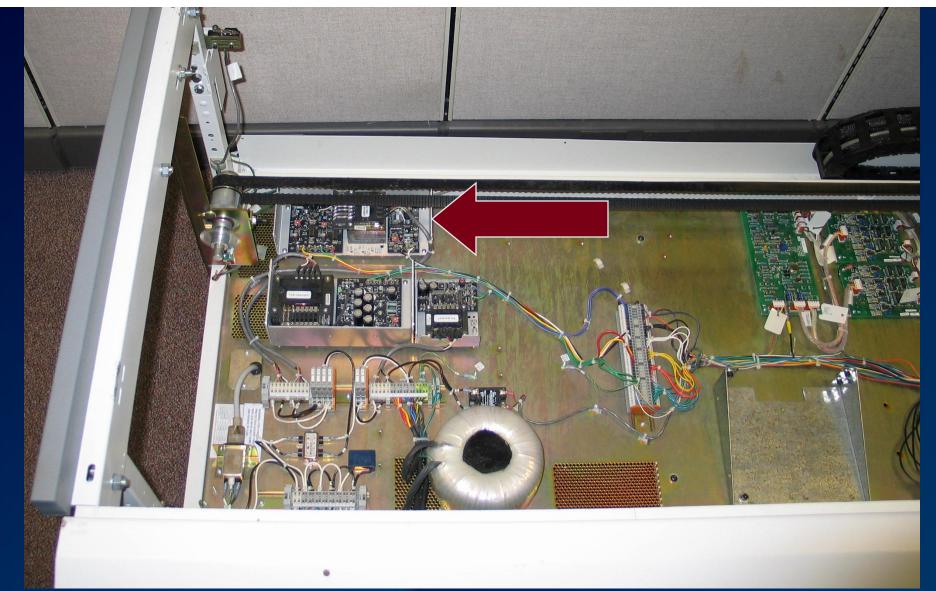
LUNAR

DPX consists of 4 Primary Modules

- X-Ray Generation
 - Tube
 - Power Supplies
- X-Ray Detection
 - Detector
 - Counting (AGS)
- Communication
 - Communications with Host PC
 - Error Detection
- Mechanics
 - Motion Control



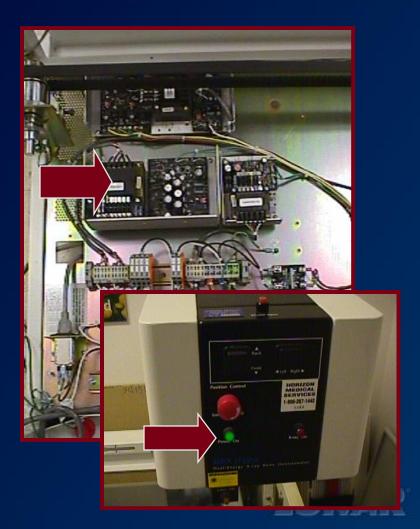
Power Sub-System



Power flow in the DPX-IQ

- AC Isolation Transformer
 Protects Unit from Voltage transients
- All power supplies are fused individually
- 120 /220 V AC systems alike only difference is in fusing
- Scanner and PC controller draws
 12.5 A max (120V) requires a
 15A dedicated line
- 6 Separate Power Supplies
 - +26 VDC (Mechanics)
 - +5 & +/- 12 VDC (Logic and Communications)
 - +28 VDC (Tube Current)
 - 2 High Voltage (X-Ray Generator)
 - 1 High Voltage (X-Ray Detector)

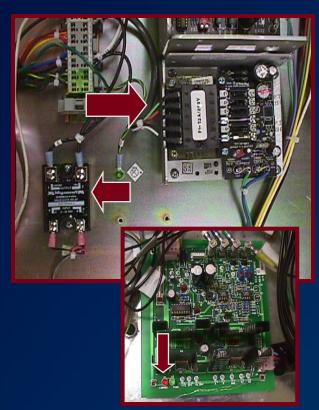
+5 and +/-12 VDC Supply: Scanner Control and Communications


+5 and +/-12 VDC Supply: Scanner Control and Communications

- This power supply drives
 - Logic circuitry (+5)
 - Communications (+/ -12)
 - Between the SBC and the Host Computer
 - CENTENT Pulses
 - Power the detector high voltage power supply (+12)
- Indicator Amber LED on the SBC

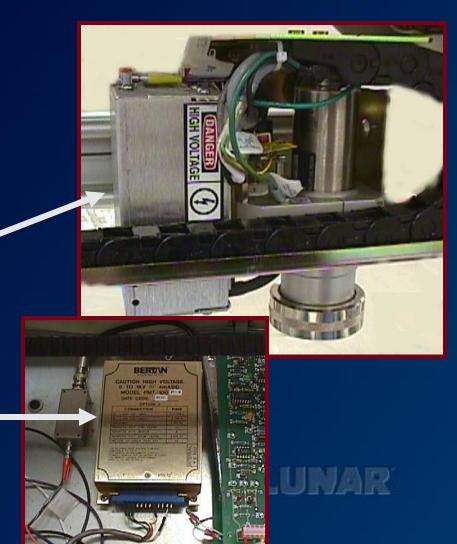
+26 VDC: Drives Motion, Mechanics and Positioning Aid

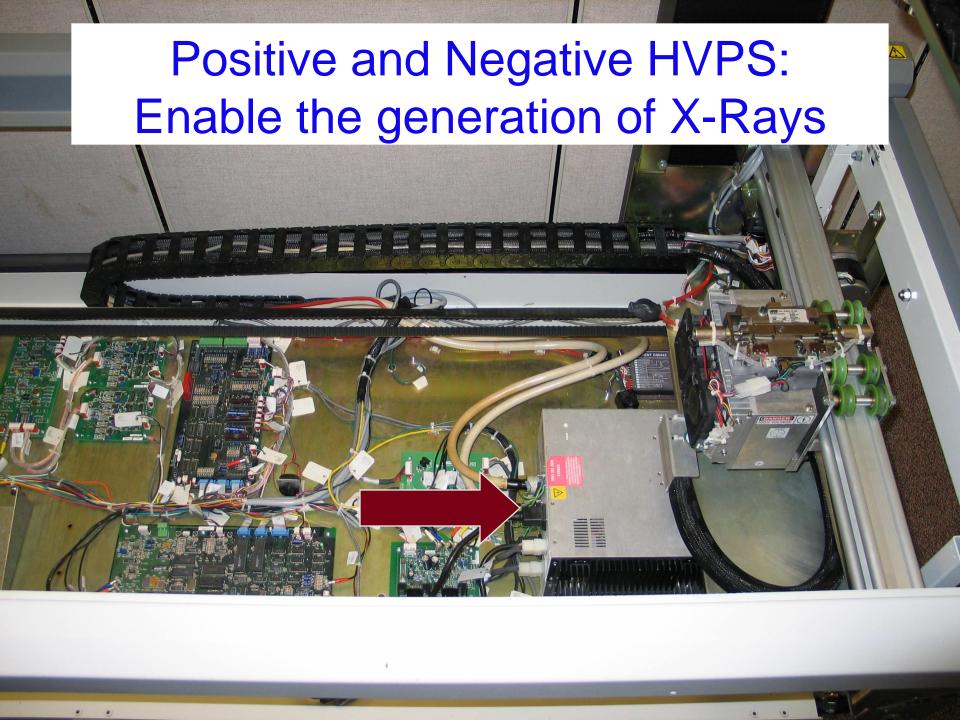
- Powers Tube Head Fans
- Powers Mechanics
 - Transverse Motor
 - Longitudinal Motor
 - Shutter / Collimator Solenoids
- Powers Patient Positioning Aid
 - (Laser or large LED)
- Green light on scan arm is lit when this power supply is on.



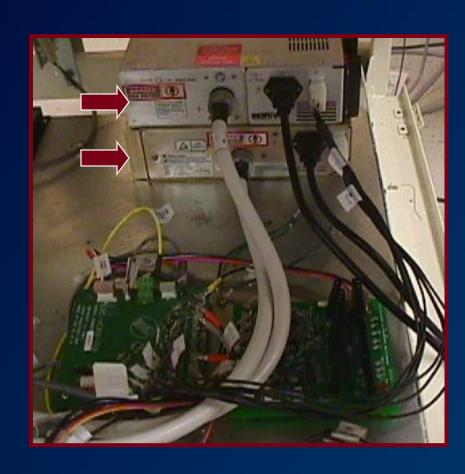
X-Ray Production: + 28 VDC Power Supply

X-Ray Production: + 28 VDC Power Supply

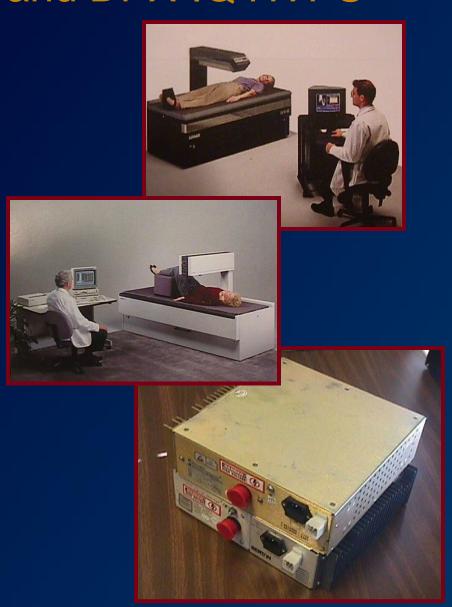

- Dedicated to the X-Ray Tube Head Filament
- Solid State Relay enables Power Supply and Tube Head Filament Transformer
- Only on when X-Ray Tube Head is being ramped up
 - Red LED on MAX Board indicates the presence of +28 VDC



Dedicated HV Power Supply for Detector

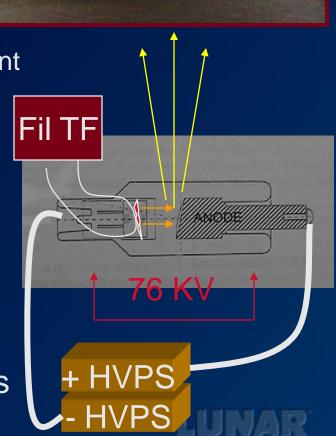

- Dedicated to power the detector
- Voltage Potential to 1000 VDC
- Typically 650 680 VDC
- Keeping system power on keeps detector at thermal equilibrium
 - Increased detector life
- + 12 VDC input
- IEC Systems
 - AMP Module
 - Incorporates AMP Board and Power Supply into single Unit
- Non IEC Systems
 - Power Supply is in Electronics Pan

Positive and Negative HVPS: Enable the generation of X-Rays

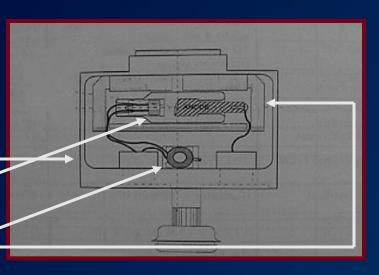

- Dedicated
- Create 76KeV (38KeV each) potential across X-Ray Tube Head insert
- As soon as 41 KeV potential exists X-Rays exist
 - Types vary depending on the subtype of scanner
- Programmed by the SBC
- 3mA Maximum Current

HVPS in High Current scanners: DPX-L, DPX-alpha, DPX-SF and DPX-IQ HVPS

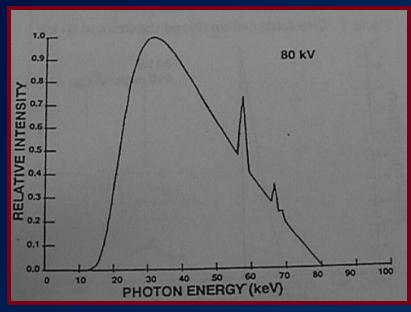
- New Spellman or Bertan
 - Units from the two vendors are interchangeable
 - Can mix and match but not recommended
- 3.0 mA Maximum Current
- Input from AC line
- Protected by Isolation Transformer
- +/- 40 KeV DC (38 KeV per power supply)
- Service Tip: Use care when changing power supplies mounting screws are different



X-Ray Production Subsystem


Basic Theory of X-Ray Production

- Tube Head Insert
 - fixed anode
 - Filament
 - Warm it up low current from Filament Transformer
 - 76 KeV Potential across Insert (0.150mA to 4.750mA)
 - Electrons (-e) "boil off of filament" (Cathode)
- -e Accelerated across 76 KeV
 potential strike Tungsten Target
 (Anode) knocks an -e off of target, as
 another e- falls into the orbit an X Ray (Photon) is produced

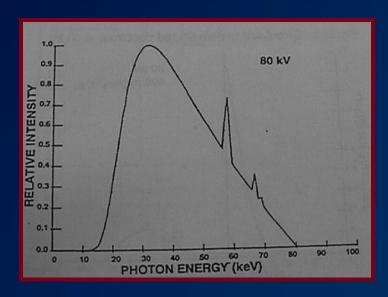

Components of the LUNAR DPX X-Ray Tube Head

- FDA certified component
- Lunar Manufactures
- Oil Filled Metal Housing
- Fixed Anode X-Ray Insert
- Lead Shielded-
- Filament Transformer
- Beam Hardening Tungsten is boiled off of Anode (pits) and collects on the glass of the insert - absorbs X-Rays
 - Pitting due to high temperature damages Anode focal Spot
- Filament can burn out (similar to incandescent light bulb)
- Oil leak possible causing arcing due to air in tube

X-Ray Production in the LUNAR DPX Tube Head

- X-Ray Tube Ramped up to proper operating voltage and current (HVPS)
- X-Ray Insert Converts current into X-Rays
- Produces broad spectrum of photon energies (15-80KeV)

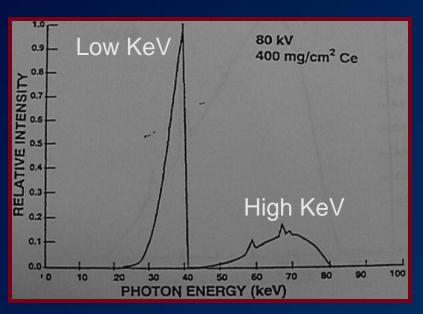
Unfiltered X-Ray Spectrum at 80 KV


The small peaks are characteristic of the tungsten target used in the tube head insert

Requirements for Accurate Determination of Bone Density

- Two Unknowns in Image
 - Tissue
 - Bone

Requires two measurements be made of the same area and compared


Unfiltered Spectrum has single Peak - can only measure attenuation of single uniform substance or an object containing two substances where one of the two has a known value

K-Edge Filtration

- K-edge filter: Cerium (Ce)
- Ce has a K-shell Absorption Edge at 40 KeV
- Filters both low and high energy photons
- Thickness of filter effects count rate
- Two peaks are visible after the X-Ray beam has passed through the Cerium filter
 - 38 KeV
 - 70 KeV
- Note the relative numbers of counts for the two energy peaks

Collimator

Beam Limiting Device

Collimator: Control of the X-Ray Exposure

Collimator: Control of the X-Ray Exposure

- FDA Certified component
- 2 Slides / 2 limit switches controlled by linear solenoids and springs
 - Shutter
 - blocks beam
 - Tantalum attenuates X-Rays keeps them contained prevents exposure during ramping and patient positioning
 - Collimator slide
 - Determines Beam size
 - two holes
 - 1.68mm (Medium)
 - .84mm (Fine)
 - software determines beam size to limit patient exposure during exam

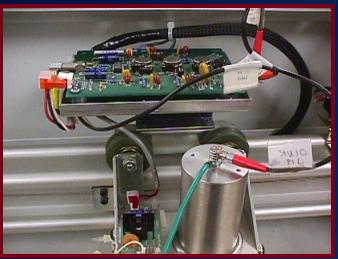
X-Ray Detection Sub System

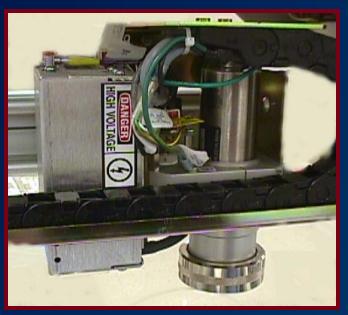
X-Ray Detection Detector = PMT

- Scintillating Material
 - Sodium Iodide converts photons into visible light, then to an electrical pulse
- Each photon creates a single pulse
 - Pulse Amplitude is directly proportional to the energy of the X-Ray which produced it
 - ~ 6-7 mV for Low Energy
 - ~ 10 mv for High Energy
- PMT Photo Multiplier Tube increases signal strength
 - Variable HVPS 1000VDC Max
 - Potential set by SBC typically 600-800 VDC
- Signal out rides piggy back on ~ 700VDC power in
- As scintillation crystal or photocathode deteriorate the detector will loose resolution and must be replaced
 - All counts decrease, lows faster than highs causing air ratio to increase
 - Spillover will also increase due to high energy counts getting weaker

X-Ray Detection

AMP Board
AGS Board
AGSDCA Board
DPXDCA Board



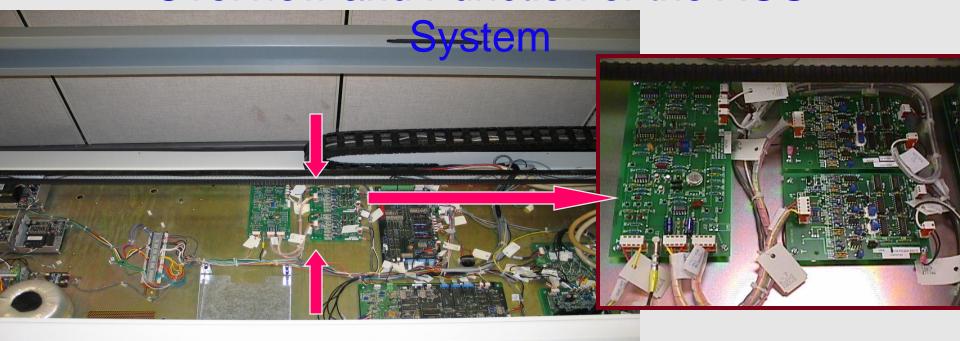

AMP Board

AMP Board - Amplification and Pulse Shaping _____

- Amplification of charge pulses from the PMT
 - Gain of approximately 240Av
- Shape signal into a stable bipolar pulse
- Drive the pulse down a 50 Ohm coaxial cable to the AGS board (5m of cable)
- + 12 VDC drives amps
- Located next to detector in metal case on IEC Certified systems / part of AMP Module which also includes the detector power supply
- Separate board on older systems (non-IEC)

Troubleshooting the AMP Board

- Symptoms
 - No Counts
 - No Amp / Attenuate
 Lights on AGS Board
- AMP TP6 to TP4 on AGS should be continuous - if not signal cable break exists
- Never Unplug J2 LEMO (HV in) with scanner power on - it will destroy the AMP Board (ONLY non-IEC systems)


Test Point	Signal	Expected Value
TP 2	Input Pulse	~1.0 mVDC
TP 6	Output (Bipolar Pulse)	~2.4 VDC (High) ~1.6 VDC (Low)
TP 7	+ 12 VDC	~ 12VDC
TP 8	- 12 VDC	~-12 VDC
TP 9	Ground	~ 0 VDC LUMAR

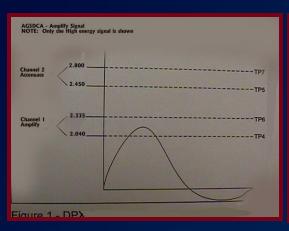
The AGS System

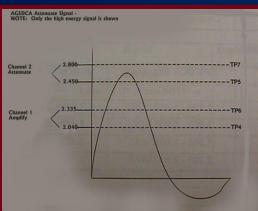
AGS Board AGSDCA

Overview and Function of the AGS

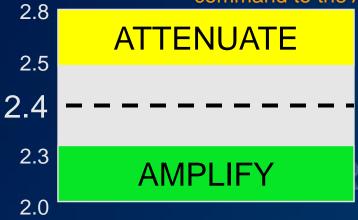
- AGS (Automatic Gain Stabilization System)
- Consists of:
 - AGS Board
 - AGS DCA (Dual Channel Analyzer) Board
- Pulses come in from AMP Board at J11 (TP4)
- 2.4 VDC bipolar pulse carrying both high and low energy signals
- AGS routes same signal to both AGS DCA and DPXDCA (J4 and J7)
- Two LED's on AGS Board
 - 1.Amplify
 - 2. Attenuate
- AGS adjusts gain on High and Low energy signals from input from AGSDCA
- OP / CAL Signal SBC disables the AGSDCA during the system QA so that the PMT can be peaked

Overview and Function of the AGS


- · AGS (Automatic Gain Stab 由) Again System)
- Consists of:
 - AGS Board
 - AGS DCA (Dual Channel Analyzer)
 Board
- Pulses come in from AMP Board at J11 (TP4)
- 2.4 VDC bipolar pulse carrying both high and low energy signals
- AGS routes same signal to both AGS DCA and DPXDCA (J4 and J7)
- Two LED's on AGS Board
 - 1.Amplify
 - 2. Attenuate
- AGS adjusts gain on High and Low energy signals from input from AGSDCA
- OP / CAL Signal SBC disables the AGSDCA during the system QA so



Single Purpose of the AGSDCA Board: Where is the Pulse?

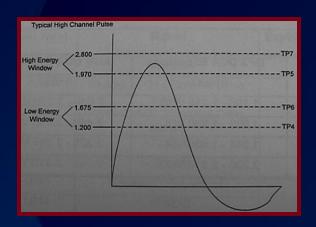

- Compares voltage of High Energy Pulses to set limits
- Sends back logic signal that instructs the AGS Board to Amplify or Attenuate the incoming signal from the PMT
- Gain is constantly adjusted to keep the high energy peak within a preset window
 - (~2.4VDC)
- By stabilizing the gain on the high signal the low is stabilized as well
 - Adjustment is to raw Data
 - Both High and Low Energy Pulses

High energy signal is in Channel 1 window sends "Amplify" command to the AGS

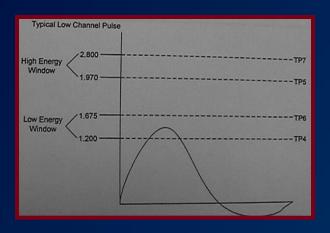
High energy signal is in Channel 2 window sends "Attenuate" command to the AGS

DPXDCA

Dual Photon X-Ray Dual Channel
Analyzer

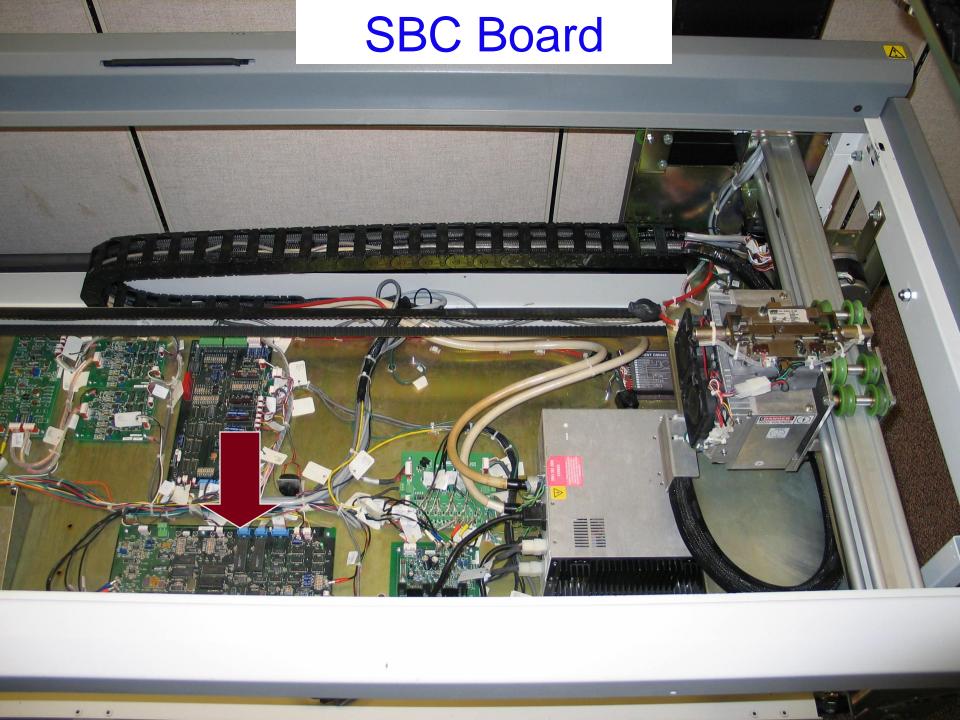


Primary Function of the DPXDCA: Discrimination of High and Low Energy Pulses


- Sends logic signal to SBC for each low and each high energy signal it detects
 - Reads High and Low energy signals
- Does not do the counting only recognition of signal
- Electronically identical to AGSDCA, however, potentiometer settings are very different

Discriminating High and Low Energy Pulses DPX DCA Windows

A single pulse passes through the high energy window (channel 2) - the DPXDCA sends a single logic pulse to the high energy counter on the SBC



A single pulse passes through the low energy window (channel 1) - the AGSDCA sends a single logic pulse to the low energy counter on the SBC

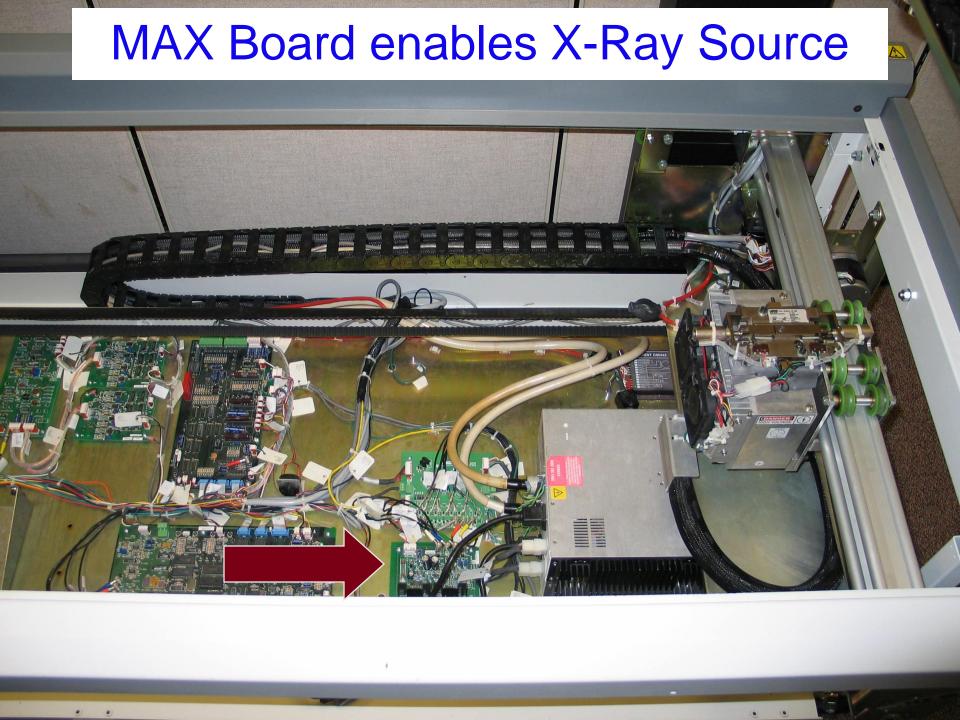
SBC Board

Single Board Controller

SBC: Scanner Control and Communication Functions

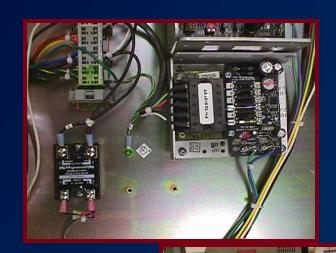
- "Brains" of scanner
 - 8032 Intel Processor
- Overall operation and control
 - Motion control
 - pulse counting
 - limit switch sensing
 - Thermocouple Sensing
 - HV and Current settings

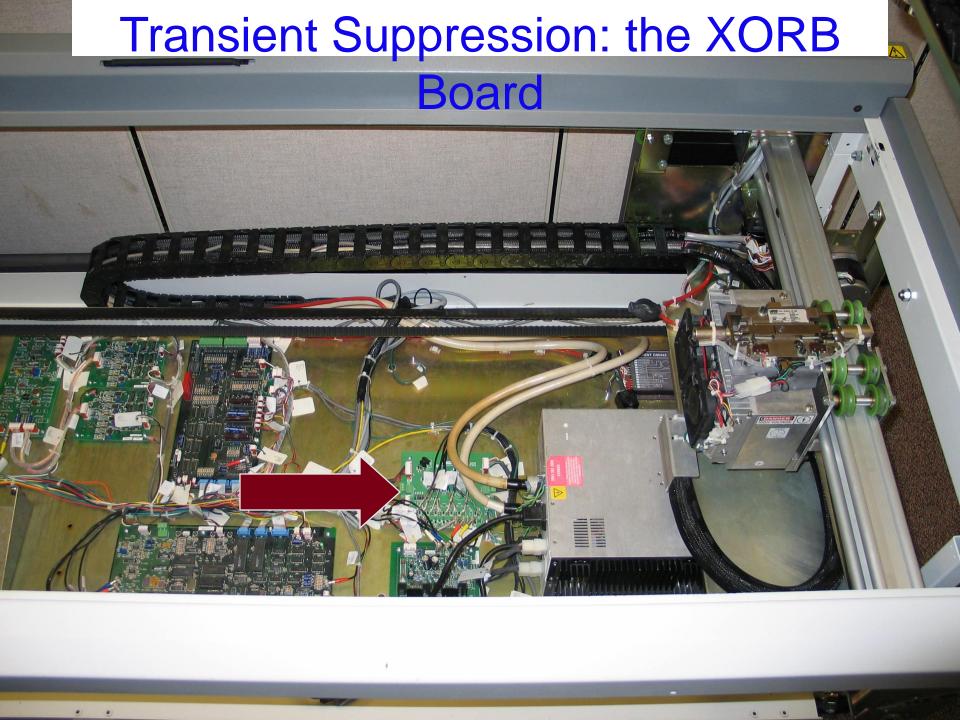
- RS232 communications with host computer
- 56 K available memory


SBC Microprocessor Reset

- The Processor will reset itself
 - if the scanner is powered up
 - if the Comm port is interrupted
 - if other circuit boards fail (fail safe)
 - if the RESET button on SBC is pressed
 - if the E-Stop button is pressed

An Error has Occurred See Appendix I


There is no Appendix I


MAX Board enables X-Ray Source

- SBC enables the +28 VDC power supply via the OINK and the High Voltage Power Supplies through the solid state relay
- MAX and Filament Transformer in the Tube Head work with power from the +28 VDC power supply
- MAX regulates X-Ray Insert Filament temperature by controlling the filament current
 - As filament temperature increases the number of electrons available for X-Ray production increases
- SBC reads feedback from HVPS and adjusts filament current accordingly

Transient Suppression: the XORB Board

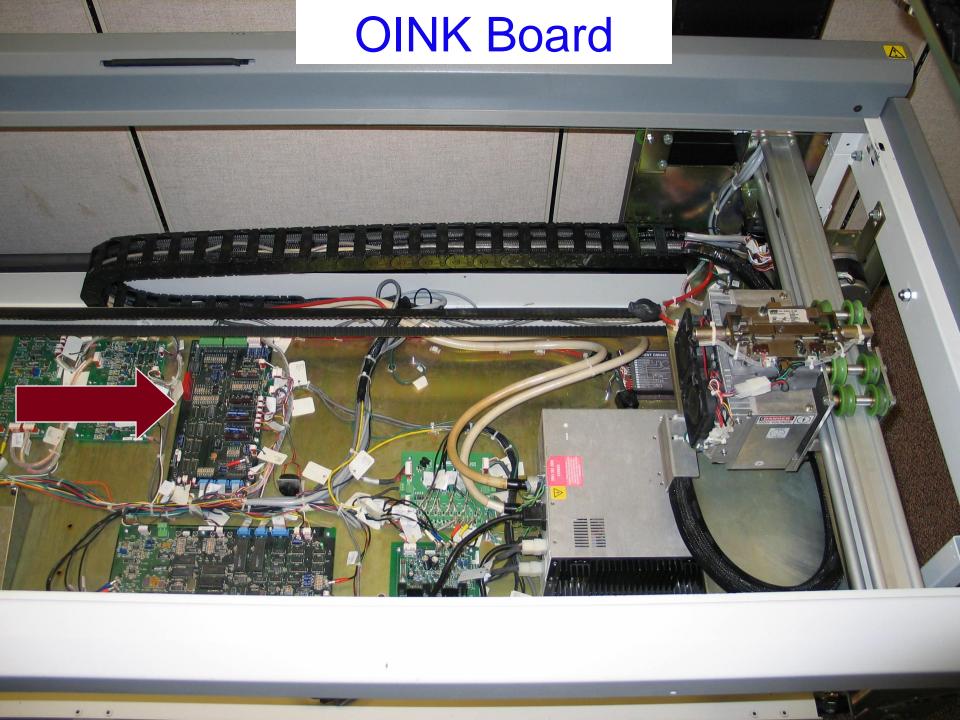
- Xorb is short for tranzorbs
 - optical isolation of HV and ground
 - protects logic circuitry

•	XORB's primary function is to
	ground out high voltage
	transients or "spikes" in the
	X-Ray generation system
	(logic circuit protection)

All X-Ray Generation system power flows through the XORB - good place to check signals and power

Test Point	Signal	Expected @ 76k\
TP1	-uA Monitor	and .750mA .750 VDC
TP2	-kV Monitor	3.800 VDC
TP3	-kV Programming	3.800 VDC
TP5	+uA Monitor	.750 VDC
TP6	+kV Monitor	3.800 VDC
TP7	+kV Programming	3.800 VDC

Mechanics


OINK Board
OMI Board
SBC Board

OINK Board

Optical Isolation Noise Reduction (OINR) or (OINK)?

OINK Board Functions

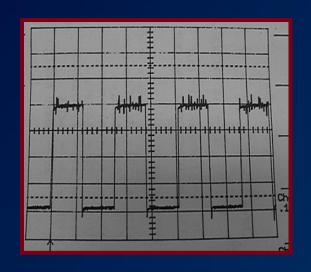
- 4 Main Sections
 - Mechanics Control
 - Motor Control
 - Fan Control
 - 26 VDC to fans normal operation always on.
 - User Interfaces
 - Indicator Lights
 - Rocker Switches for Manual Motion
 - Error Detection
 - All Subsystems
 - E Stop
 - Collimator Control
 - Solenoids
 - Sensing of Collimator Limit Switches
 - OINK to collimator also goes through XORB

Control signals ARE NOT generated here. This is a way-point where control signals generated by the SBC are Optically Isolated

User Interface: What's the scanner doing?

- Light Indicators
 - shutter light must illuminate when shutter opens
 - Normally closed circuit
 - x-ray on light on when >0.1 mA
 of current runs through tube
 - driven by mA feedback through the SBC
- Patient Localizer (laser)
- Positioning controls on arm
- End of Exposure Alarm
 - triggered by loss of mA feedback or closing of the shutter

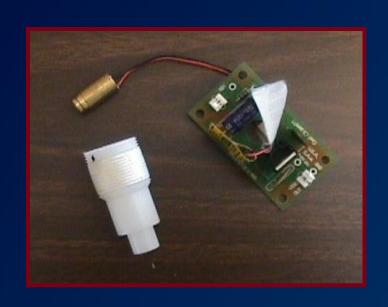




Motor Control: Moving the Scan Arm

- SBC sends commands to OINK -OINK routes to CENTENT
- Commands Run / Hold and Direction
 - Motors are placed in "Hold" upon generation of X-Rays
 - CENTENT motor controller
 - Drives Stepper motors
- Different Rev's of Motors require different wiring configurations - be careful!!

Refer to manual for directions



Stepping Pulse

- Sent By SBC
- Measured at OINK
 TP6 (Transverse) or
 OINK TP 12
 (Longitudinal)

Laser Board: Drives patient Positioning Aid

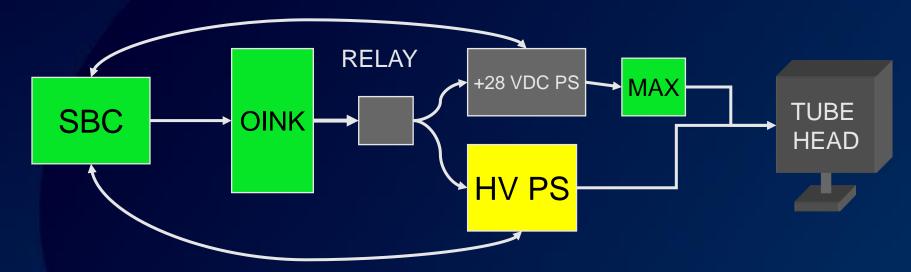
- This board is idle until the SBC sends a signal to the OINK which in turn sends +26 VDC to the Laser Board.
- The Laser board steps the +26 VDC input down to +5 VDC which activates the Laser
- Do Not Plug / Unplug +26
 VDC (Video In) with the power on this will destroy transistor (Q1) on the OINK and the laser will not turn off

OMI Board

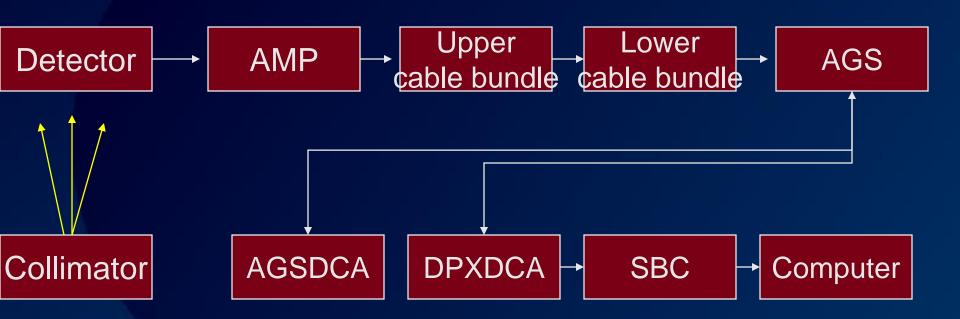
Optical Motion Interrupt

OMI Function: Detect arm movement

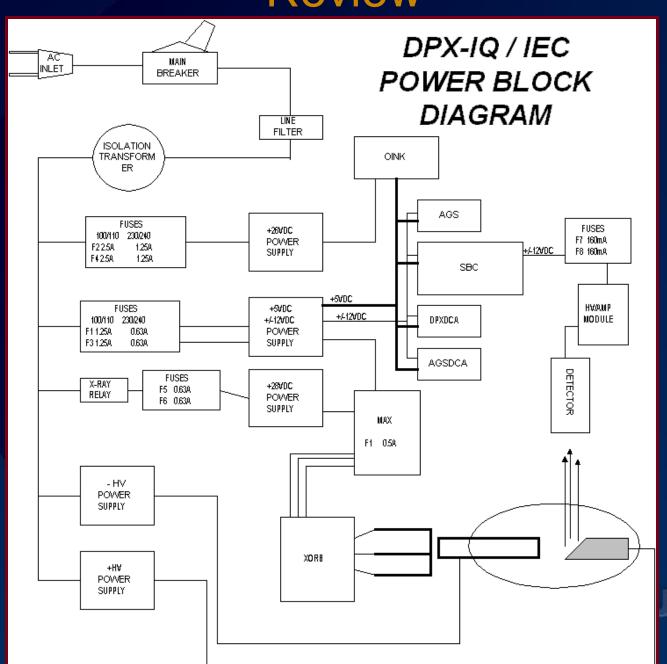
- There are 2 OMI's on a DPX series scanner
 - longitudinal
 - transverse
- These boards have an infra-red beam emitter / detector
- A slotted wheel which rotates while the mechanics are functioning breaks the beam
 - When the beam is broken the OMI sends a pulse to the OINK
 - If the pulses are absent the OINK reports a motion error



Sub-system interaction: putting it all together



X-Ray Production: + SBC is the command, OINK is the key and the relay is the lock


- The SBC sends the command to generate X-Rays to the OINK
- The OINK trips the relay
- The relay turns on AC to the +28 VDC supply and the HV power Supplies
 - +/- kV flows to the tube head
 - +28 VDC flows to the MAX / Tube head
 - The SBC regulates and monitors the kV and mA following a ramping profile until the desired kV / mA are set

X-Ray Detection: Collimator— Detector— Amp— Upper cable bundle— Lower cable bundle— AGS— AGSDCA— DPXDCA— SBC-- Computer

Review

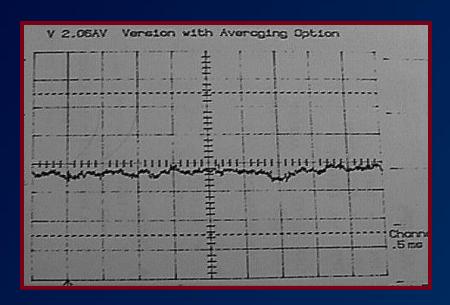
Troubleshooting

Troubleshooting the AGS System

Signs

- Low BMD
- Total Body Scans have Halo
- White lines on Femur or Spine Scans

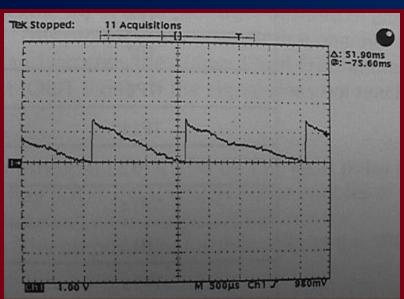
Checks


- QA History Look for Air Count flux
- TP 12 Rollover
- Aluminum Wedge test checks stability of AGS

Actions

- Replace PMT
- Adjust AGSDCA TP 4 (see Service Manual Section 6.2) tightens window - lessens number of amplify commands

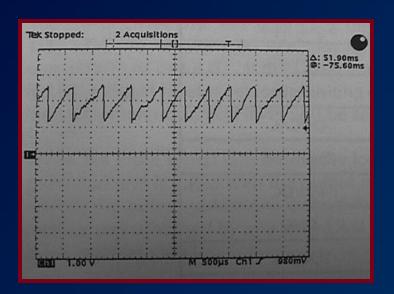
Stable, correctly adjusted AGS


- TP 12 signal monitor
- Should see stable 2.4 VDC signal (with voltmeter or with oscilloscope)
 - Signal is Amplified or Attenuated based on input from AGS DCA
 - Desired output is 2.4 VDC Signal
- If the Signal
 - Spikes UP
 - AGS Rollover
 - Spikes DOWN
 - AGS Rollunder
 - Either condition above is trouble

Test Points	Signal	Expected
TP 1	+ 12 VDC	+ 12 VDC
TP 2	GND	0 VDC
TP 3	-12 VDC	-12 VDC
TP 4	Signal In	2.4 VDC
TP 14	+5 VDC	+ 5 VDC
TP 19	Output 📙	2.4 VDC

AGS With Rollunder

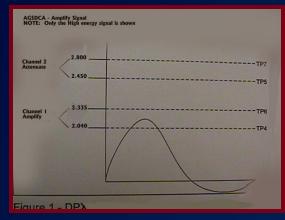
- TP 12 Monitor
- Peaks Downward unstable signal
- Signal is coming in too high
 - AGS is sent too many attenuate commands
 - signal out of range
 - the attenuate counters 'Rollunder' causing INACCURATE BMD results.
 - Counters reach maximum number of attenuate commands - reset and try to bring signal into range again
 - New detector with old AGS may cause this or a mis-adjusted AGS system

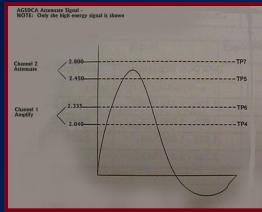

AGS With Rollover

TP 12 Monitor

 Unstable signal - peaking upwards

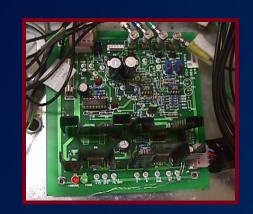
Rollover


- signal comes in too low in window
- too many amplify commands sent to AGS -
- the amplify counters 'Rollover' causing INACCURATE BMD results.
 - Counters reach maximum and reset to lowest setting
 - try and bring signal back into range
- Causes: deteriorating detector, weak amplifier, bad ground or signal cable mis-adjusted AGS system



AGSDCA: Produces Gain Control Data for the AGS

- Provides Amplify or Attenuate signal to AGS Board
- 2 Windows
 - Amplify if Signal comes in Low
 - Attenuate if signal comes in High
- One of the two LED's on the AGS will flash each time an amplify or attenuate signal is sent by the AGSDCA
- Note this is a logic signal not the actual data signal being sent back to the AGS
- Electronically identical to DPXDCA, however, potentiometer settings are very different


High energy signal is in Channel 1 window - sends "Amplify" command to the AGS

High energy signal is in Channel 2 window sends "Attenuate" command to the AGS

Troubleshooting the MAX Board

- Red + 28V DC present Green - Fuse is good
- LED's will only be lit when the relay is triggered
- Troubleshooting tip TP4, TP5 and TP13
 should be continuous
 when the Tube Head
 control cable is hooked
 up
 - Indicates THFilament is good

Test Point	Signal	Expected @ 76kV .750mA
TP 3	Ground	0.000 VDC
TP 4	Q1 Output (Filament Drive Signal)	~ 16 VDC
TP 5	Q2 Output (Filament Drive Signal)	~ 16 VDC
TP 6	+ 12 VDC	+ 12 VDC
TP12	+ 28 VDC	+28 VDC
TP 13	Filament Drive Signal	~16 VDC
TP 14	- 12 VDC	-12 VDC

Troubleshooting with the XORB

 If ramping trouble exists TP 1, 5, 2 and 6 good troubleshooting guides

_	~ 7 sec after SBC
	receives command to
	generate x-rays

- voltage ramping signal
 - ~ 7 sec after SBC receives command to generate x-rays

Test Point	Signal	Expected @ 76k	
TP1	-uA Monitor	and .750mA .750 VDC	
TP2	-kV Monitor	3.800 VDC	
TP3	-kV Programming	3.800 VDC	
TP5	+uA Monitor	.750 VDC	
TP6	+kV Monitor	3.800 VDC	
TP7	+kV Programming	3.800 VDC	

Troubleshooting at the SBC

Test Point	Signal	Expected @ 76kV .75mA	· =	
TP 18	PMT HV Feedback	1 VDC / 1000V at detector		
TP14	Current Set	.750 VDC	200	
TP 17	Current Feedback	.750 VDC	LED	Power Present
TP 15	kV Set	3.80 VDC		1 3 11 3 1 1 1 3 3 3 1 1
TP 16	+ kV Feedback	3.80 VDC	Green	+ 5 VDC
TP 24	- kV Feedback	3.80 VDC	Red	
			Amber	-12 VDC

Unknown errors

- 31-6 errors
 - multiple error events occurring at the same time
 - thermostat and +28VDC errors
 - A thermostat error disables the +28 VDC so a 31-6 is typically a thermostat error
 - An arc may also cause an error in the MAX which sends a false thermostat error
 - The tube head thermostat never opens because of heat, typically this is a tube head control cable failure or a short inside the tube

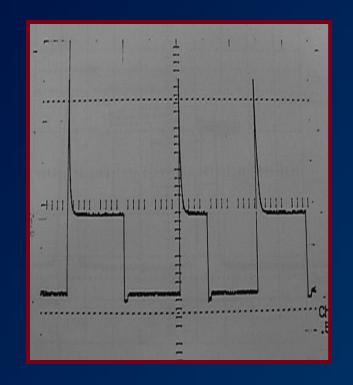
An Error Has Occurred

31-6

Unknown Error

Esc to Continue

Error Detection: Sensing System Faults


- Emergency Stop Detection
- Error Detection
 - Motion Detection
 - Signal sent by OMI Board
 - Monitor on Pin 2 of J 13 ONIK Board
- This section of the board detects system faults - it then sends a signal to the SBC to shut down X-Ray production and mechanics
 - Hard interrupt signal is sent via J19 causing motors and x-ray shutdown
 - error determination follows

Errors Detected by OINK			
HEX Code	Error	Possible Cause	
15-4	Transverse Motion	OMI signal lost Continuous resetting of watch dog on OINK	
23-3	Longitudinal Motion		
27-2	+28VDC PS	Loss of power to TH (via MAX and/ or OINK)	
29-1	E-Stop	E-Stop circuit open	
30-0	TH Thermostat	TH thermostat circuit open (OINK)	
31-6	Unknown	Any of the above	
Transver	Has Occurred 15-4 se Mechanics Continue	LUNAR	

Control and Sensing of the Shutter and Collimator

- Solenoid control from SBC to OINK
 - Actuation Pulse
 - 26 VDC to Open
 - Drops to hold current when Limit switch is tripped
 - Newest OINK (Rev L) continuously triggers shutter to hold open
- Limit Switches
 - Sense Position of Slides in Collimator used as feedback mechanism

Collimator Actuation Pulse

Measured at OINK Board Anode of D2

DPX Series X-Ray Generation

- + 28 VDC must be present to enable the tube head filament
 - via a transistor
- kV at HVPS must also be present to enable filament current
 - loss of kV or 28 VDC disables filament current
- mA feedback from HVPS and mA program from SBC drive filament current per voltage from SBC
 - Zero mA feedback causes full drive of the filament current which will immediately correct itself (under normal operating conditions) because of the feedback control loop
 - an arc or a short will cause a ramping failure
 - If SBC drive signal and mA feedback are equal the filament drive stays the same
- A kV spike may not cause a system fault, but due to V=RI, the current must increase, this causes our count rate to increase causing white lines as the detector becomes saturated
 - If scanner errors it will be a single line entry kV mA out of spec typically mA will be high due to the principle described above

