Service Manual

BRS
Basic Radiographic System

STEPHANIX
rue Jean Moulin
Zone Industrielle du Bayon
42150 La Ricamarie
FRANCE
Tel. : 00 33 4 77 47 81 60 ; Fax : 00 33 4 77 37 55 19
REVISION HISTORY

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>REASON FOR CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>April 22, 2003</td>
<td>First edition</td>
</tr>
<tr>
<td>1</td>
<td>30 March, 2004</td>
<td>Installation and dimensions modified.</td>
</tr>
<tr>
<td>2</td>
<td>07 May, 2005</td>
<td>Installation improvements.</td>
</tr>
<tr>
<td>3</td>
<td>12 Jul, 2005</td>
<td>New schematics and updated photos.</td>
</tr>
</tbody>
</table>

This Document is the English original version, edited and supplied by the manufacturer.

The Revision state of this Document is indicated in the code number shown at the bottom of this page.

ADVISORY SYMBOLS

The following advisory symbols will be used throughout this manual. Their application and meaning are described below.

- **DANGER!**

 DANGERS ADVISE OF CONDITIONS OR SITUATIONS THAT IF NOT HEEDED OR AVOIDED WILL CAUSE SERIOUS PERSONAL INJURY OR DEATH.

- **WARNING**

 ADVISE OF CONDITIONS OR SITUATIONS THAT IF NOT HEEDED OR AVOIDED COULD CAUSE SERIOUS PERSONAL INJURY, OR CATASTROPHIC DAMAGE OF EQUIPMENT OR DATA.

- **CAUTION**

 Advise of conditions or situations that if not heeded or avoided could cause personal injury or damage to equipment or data.

- **Note**

 Alert readers to pertinent facts and conditions. Notes represent information that is important to know but which do not necessarily relate to possible injury or damage to equipment.
SAFETY SYMBOLS

The following safety symbols will be used in the equipment. Their meaning are described below.

⚠️ Attention, consult accompanying documents.

☢️ Ionizing radiation.

👨‍⚕️ Type B equipment.

⚡️ Dangerous voltage.

接地

Ground.

This symbol indicates that the waste of electrical and electronic equipment must not be disposed as unsorted municipal waste and must be collected separately. Please contact an authorized representative of the manufacturer or an authorized waste management company for information concerning the decommissioning of your equipment.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Tools</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Pre-Installation Checks</td>
<td>1</td>
</tr>
<tr>
<td>2 UNPACKING</td>
<td>3</td>
</tr>
<tr>
<td>3 INSTALLATION</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Positioner Installation overview</td>
<td>5</td>
</tr>
<tr>
<td>4 ADJUSTMENTS</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Adjustment tools</td>
<td>15</td>
</tr>
<tr>
<td>4.2 Alignment of X-ray Beam</td>
<td>18</td>
</tr>
<tr>
<td>4.2.1 Alignment of Light Field with X-ray Field</td>
<td>22</td>
</tr>
<tr>
<td>4.2.2 Perpendicularity Adjustment of X-ray Beam with Image Receptor</td>
<td>25</td>
</tr>
<tr>
<td>4.2.3 Centering of X-ray Field and Image Receptor Bucky Assembly</td>
<td>27</td>
</tr>
<tr>
<td>4.3 Field Size Indicator Test</td>
<td>28</td>
</tr>
<tr>
<td>4.4 X-ray Tube or Collimator Replacement</td>
<td>30</td>
</tr>
<tr>
<td>4.5 Adjustment of rotation Plate</td>
<td>30</td>
</tr>
<tr>
<td>5 RENEWAL PARTS</td>
<td>31</td>
</tr>
<tr>
<td>6 MAINTENANCE</td>
<td>33</td>
</tr>
<tr>
<td>7 INTERCONNECTION MAPS</td>
<td>35</td>
</tr>
</tbody>
</table>
SECTION 1 INTRODUCTION

1.1 TOOLS

The following hand tools are required for the Installation:

- Standard service engineers tool kit.
- Electric drill motor and assorted bits.

1.2 PRE-INSTALLATION CHECKS

Prior to beginning installation it is recommended to inspect the site and verify that the X-ray room complies with requirements such as:

- The maximum dimensions and system movements to plan the minimum space required in the room:

 Maximum Height 2500 mm
 Maximum Width 1550 mm
 Maximum Length 1340 mm

- Conduits and walls are ready to install the System.

- Electricity installation:

 Power Line (for Collimator Lamp): 24 VAC, 50/60 Hz, 6.5 A
 Power Line (for Movement Locks): 24 VDC, 0.2 kVA

DANGER!

ACCORDING TO MDD93/42/CEE, THIS UNIT IS EQUIPPED WITH EMC FILTERS. THE LACK OF THE PROPER GROUNDING MAY PRODUCE ELECTRICAL SHOCK TO THE USER.
Illustration 1-1
Dimensions

Max. Height = 2500 mm.
Altura Max. = 2500 mm.
Max. Travel = 1400 mm.
Recorrido Max. = 1400 mm.
Column Max. height = 2240 mm.
Altura Max. Columna = 2240 mm.

(*) Dimensions Subject to change depending on the type of tube
(*) Dimensiones sujetas a cambio dependiendo del tipo de tubo
SECTION 2 UNPACKING

The Unit is shipped in one box to facilitate transport and installation. Upon receipt of the X-ray unit and associated equipment, inspect all shipping containers for signs of damage. If damage is found, notify the carrier or his agent immediately.

1. Place the shipping pallet near its final site in the room and remove all its laterals. Do not discard any packing material such as envelopes, boxes, bags until all parts are accounted for as listed on the packing list.

WARNING

AT LEAST THREE PEOPLE ARE REQUIRED TO REMOVE ALL HEAVY COMPONENTS FROM THE SHIPPING PALLET.

2. When the equipment is unpacked, check part numbers and serial numbers of each component with its identification labels. Inspect all pieces for visible damages. If any damaged part is found, repair it or order its replacement to prevent unnecessary delay in installation.

3. Verify that all items on the customer order are present.

4. Leave a working area around equipment until its final installation is complete.
This page intentionally left blank.
SECTION 3 INSTALLATION

3.1 POSITIONER INSTALLATION OVERVIEW

TICK BOXES WHEN DONE

1.- Install the Support of the Tube-Collimator Assembly and the Control panel (in some cases it is factory installed)

2.- Install the Wall Support at the back of the Column (the Column laid on the pallet)

3.- Drill WALL HOLES and anchor the Wall Support.

4.- Install the Collimator and the X-ray tube.

5.- Remove the Safety Locking Rod/Central carriage Screw.

6.- Install all the counterweight plates supplied.

7.- Install the Oscillating Grid Assembly or Fixed Grid Assembly. (level it)

8.- Drill FLOOR HOLES and anchor the unit to the floor.

9.- Connect cables (HV, Tube, Stator, Bucky or Grid) and guide them.

10.- Check levels on Column, Tube-Collimator Assembly and Receptor Assembly.
Perform Installation following the order described below.

WARNING

DO NOT REMOVE SAFETY LOCKING ROD FROM THE COUNTERWEIGHT CARRIAGE AND/OR THE CENTRAL CARRIAGE SCREWS (2) BEFORE SPECIFICALLY INSTRUCTED IN THIS DOCUMENT.

Due to packaging requirements, some Units may not include the Tube Collimator Assembly and the Control panel factory pre-installed. If that is the case, follow steps 1 and 2, if not, go to step 3.

1. Assemble the Support of the Tube-Collimator Assembly to the Upper area of the Swivel Arm using the four Safety Screws installed in the Arm.

2. Assemble the Control Panel in the Support with the two screws, washers and nuts attached to the Control Panel.
3. Assemble the Upper Wall Support to the Column. Lift the Column as much as necessary as to mount the Upper Wall Support in its upper part.

Note: At least two people are required to perform the next operation.

4. Position the column against the wall on its final site in the room. While one person is holding up the Column, the other one should level it vertically on both lateral sides and on the front. Also use the leveling screws at the base of the column.

5. Mark its anchoring positions on the wall (not to the floor yet).

Note: Distances shown on Illustration 3-1 may also be taken as reference to mark the anchoring holes position.
Illustration 3-1
Drill Template

FOUR WALL MOUNTING HOLES
FOR SCREWS 8 mm.

FOUR FLOOR MOUNTING HOLES
FOR SCREWS 10 mm.
6. Move the Column and prepare the anchorages.

WARNING

BEFORE ANCHORING THE UNIT, CHECK THAT THE WALL AND THE ANCHORING SYSTEM ARE STRONG ENOUGH (2000 NEWTON TRACTION FORCE) TO ENSURE A SAFE INSTALLATION. SOME NON BRICK WALLS MAY REQUIRE ADDITIONAL ANCHORAGE INSTALLATION.

7. Drill holes and anchor the Wall Support. Make sure the Column is firmly anchored and leveled at front, sides and base.

8. Install the X-ray Tube in the Upper Support of the Column using the Collimator Adaptation Ring and its four Safety Screws (Allen).

9. Before installing the Collimator, unscrew the same number of turns the four Centering Adjustment and Safety Screws (Allen) to allow the Collimator installation in the Collimator Adaptation Ring. Adjust the Collimator Blades to their widest setting and carefully install the Collimator centering it with the X-ray Tube window.

Tighten carefully the four Centering Adjustment and Safety Screws (Allen) equally (same number of turns) until Collimator is centered and held firmly on the Coupling Ring (support). (Also, refer to Collimator Manual).

Illustration 3-2
Installation of X-ray Tube and Collimator

10. Remove the X-ray Tube and Collimator covers and connect the wires from the upper harness to the X-ray Tube and Collimator according to their identification (refer to 54301065).
11. Remove now the Safety Locking Rod from the Counterweight Carriage and the Central Carriage Screws (2). The carriage may go down.

12. Add all the counterweight pieces to both entrances at the back side of the Column and secure them with the provided nuts. The unit is factory counterweighted, so the counterweights provided are to be installed.

13. Add all the counterweight pieces to both entrances at the back side of the Arm and secure them with the provided nuts. The unit is factory counterweighted, so all the counterweights provided are to be installed.

14. Now install the Oscillating Grid Assembly or the Fixed Grid Assembly. Follow steps 14 to 17 for Oscillating Grid Assembly or steps 18 to 21 for Fixed Grid Assembly.
15. **Oscillating Grid Assembly installation**: Take out Table-Top of the Oscillating Grid Assembly - Four screws at the corner of the Oscillating Grid Assembly.

16. Install the Oscillating Grid Assembly in the Swivel Arm with the 2 sets of screws (4 screws in each set). A set of gauges (included in the package) can be installed for perpendicularity adjustment.

17. Connect J1 (only for Oscillating Grid Assembly with motorized Grid), J2 and GND from the Harness to the Oscillating Grid Assembly.

18. Reinstall the Oscillating Grid Assembly Table-top.
19. **Fixed Grid Assembly Installation:** Remove the Safety Screws installed in the Fixed Grid Assembly.

20. Remove the Back Cover of the Swivel Arm end.

21. Install the Fixed Grid Assembly in the Swivel Arm with the Safety Screws previously removed. (Before connect J2).

22. Level the Assembly with the leveling screws and re-install the Back Cover.

23. Connect the cables from the main harness (Stator, Bucky, Power Line, Collimator and ground (GND) cables routed directly from the Column) to the Generator *(for these connections refer to Interconnection Map 54301065 and also Generator Service Manual)*.

24. Connect directly the ground cables (GND) from the Column to the Main ground stud (GND) of the Generator.

CAUTION

Terminal Pins of HV Cables are extremely delicate and they are easily damaged. Take particular care to handle them carefully. Make sure that they remain straight and that the splits in the pins are open (parallel to sides).
Prepare the High Voltage terminals that will be installed in the X-ray Tube receptacles. Apply Silicone Paste over the entire surface of the Plug including the Pins.

Carefully connect cables to their related receptors of the Tube and fix their nuts tightly.

26. Fasten HV cables to lateral side of Pivoting Arm with the clamp on the carriage of the Tube Collimator Assembly. Give the cable length enough to enable movements of the of Pivoting Arm.

![Diagram of HV cables and fasteners](image)

Note
Tube HV Cables may also be tied up to a ceiling pole to avoid collisions and to easy movements of the system.

27. Mark and drill the anchoring positions on the floor. Check leveling again in different sides of the unit and correct if necessary before fixing the unit definitely.

28. Anchor the Column to the floor.

Note
Distances shown on Illustration 3-1 may also be taken as reference to mark the anchoring holes position.

29. Snap in the decorative base of the Column (pressing it).

30. Turn the system on and check that all controls and movements operate correctly.
This page intentionally left blank.
SECTION 4 ADJUSTMENTS

4.1 ADJUSTMENT TOOLS

The following special Tools have been used for adjustment of the X-ray System (these tools are not included with the System):

• Collimator Test Tool (Model RMI 161B9).
• Beam Alignment Test Tool (Model RMI 162A).
• SID Test Stand Tool (Inside Case: RMI Model 175).
• Light Meter (Standard).
1. Check / Correct levels of Column and tube

2. Check / Correct levels of Receptor

3. Check / Correct alignment of the light field with the X-ray field
Illustration 3-1 (cont)
Checkings Overview

4. Check / Correct the perpendicular adjustment of the X-Ray Beam with the Image Receptor

5. Check / Correct centering of X-Ray field and Image Receptor (same adjustments as step 4)

6. Field Size Indicator Test

7. Collimator Lamp Brightness Test
4.2 ALIGNMENT OF X-RAY BEAM

1. Check with a level the vertical/horizontal position of the Column. If necessary, modify the position of the Column with the screws attached to the Base of the Column, a correct installation starts with a good leveling of the column.

2. Check the level of the Tube-Collimator Assembly. The mechanical installation provides a levelled Assembly, anyway check parallelism. If necessary reinstall the Tube-Collimator Assembly. (Refer to installation section).

3. Check the Receptor, first in horizontal position (thorax), then in vertical position (Undertable). If necessary, move up or down the Receptor assembly with the Receptor Assembly leveling screws.

4. Place the Pivoting Arm in vertical position. The Tube-Collimator Assembly has to be perfectly aligned with the Receptor Assembly. Check with a level correct horizontal position of both assemblies.

Illustration 4-2
Vertical Position of Pivoting Arm with Alignment Tools
5. Turn on Collimator light and center the Collimator in relation to the Receptor Table-Top. Horizontal and transversal position of the light axes projected by the Collimator Lamp must be in line with the axes or film sizes marked on the Table-Top.

If needed, modify Collimator position by carefully unscrewing and screwing the four Centering Adjustment and Safety Screws (Allen) of Collimator.

Illustration 4-3
Collimator Screws

6. Position the Collimator Test Tool (RMI model 161B) on the Receptor Table-Top.

7. Turn on Collimator light and by means of the Collimator Control Knobs, center the Collimator Test Tool with the light axes projected by the Collimator Lamp.
8. Adjust the Light Field of the Collimator Lamp to the rectangle drawn inside the Collimator Test Tool.

9. Place centered the Beam Alignment Test Tool (RMI model 162A) on the Collimator Test Tool.

Illustration 4-4
Alignment Test Tools

10. Load Cassette film Tray with cassette film 24x30 and insert it.

11. Make an exposure at 60 kVp / 5 mAs.

12. Process film and:
 a. Check that the X-ray Field falls just within the image of the inner rectangle of the Collimator Test Tool.

 If an edge of the X-ray Field falls out of the inner rectangle means a misalignment of the Light Field respect to the X-ray Field. The maximum misalignment allowed is 2 % of SID (for SID 1.4m = 2.8 cm tolerance).

 Refer to Section 4.2.1 for alignment of Light Field with X-ray Field.
b. Check that the X-ray Beam is perpendicular to the plane of the Image Receptor. If the Image receptor is parallel to the Table-Top, the perpendicularity of the X-ray Beam can be checked using the Beam Alignment Test Tool with the Collimator Test Tool.

Based on next illustration, the criteria for SID at 1.4 meter is:

- If the image of the two balls overlap (A) the X-ray Beam is perpendicular to within 0.5°.

- If the image of the top ball (larger shadow) intercepts the first circle (B), the X-ray Beam is about 1.5° away from the perpendicular.

- If the image of the top ball (larger shadow) intercepts the second circle (C), the X-ray Beam is about 3° away from the perpendicular.

In cases (A) and (B) perpendicularity is within tolerance for SID at 1 meter (top ball is within or intercepting the first circle). The third case (C) needs readjustment.

Refer to Section 4.2.2 for perpendicularity adjustment.

![Diagram](image)

A B C

c. Check that the X-ray Beam is properly centered with the Image Receptor. To determine the center of the Image Receptor, draw diagonal lines from corner to corner of the X-ray Film. (Alternatively, the film can be folded in half and creased at the center). The two lines will cross in the center of the Image Receptor (film). Then draw diagonal lines from the corners of the imaged X-ray Field.

If the center of the X-ray Field and Image Receptor is the same, the diagonals of both sets of lines should cross at the same point. The maximum misalignment allowed is 2% of SID (for SID 1.4m = 2.8 cm tolerance).

Refer to Section 4.2.3 for centering of X-ray Field and Image Receptor.
4.2.1 ALIGNMENT OF LIGHT FIELD WITH X-RAY FIELD

1. Place the Pivoting Arm in vertical position. The Tube-Collimator Assembly has to be perfectly aligned with the Receptor Assembly. Check with a level correct horizontal position of both assemblies.

2. Position the Collimator Test Tool (RMI model 161B) on the Receptor Table-Top.

3. Turn on Collimator light and center the Collimator Test Tool with the light axes projected by the Collimator Lamp.

4. Adjust the Light Field of the Collimator Lamp to the rectangle drawn inside the Collimator Test Tool.
5. Check on the processed film the adjustment required to meet the Light Field with the X-ray Field. Identify the deviation on the axes imaged on the film.

LIGHT FIELD MISALIGNMENT

GOOD FIELDS ALIGNMENT
6. Do not remove the Collimator Test Tool from its original position and adjust the Light Field by moving the Collimator Unit and/or the Collimator Lamp.

 a. Collimator Lamp must be ON during Light Field adjustment.

 b. Modify Collimator position by carefully unscrewing and screwing the four Centering Adjustment and Safety Screws (Allen) until the Light Field coincides with the axes reference imaged (numbers and dots) on the processed film.

Illustration 4-5
Collimator Screws

 c. If adjustment is still necessary, modify position of Collimator Lamp (refer to Collimator Manual).

7. Repeat exposure and procedure until the result is satisfactory. The maximum misalignment allowed is 2 % of SID (for SID 1.4m = 2.8 cm of tolerance).
4.2.2 PERPENDICULARITY ADJUSTMENT OF X-RAY BEAM WITH IMAGE RECEPTOR

In case that perpendicularity is out of tolerance (top ball is out of first circle), adjust perpendicularity as follows:

1. Place the Pivoting Arm in vertical position. The Tube-Collimator Assembly has to be perfectly aligned with the Receptor Assembly. Check with a level correct horizontal position of both assemblies.

 The Receptor Assembly is factory adjusted (slightly up) and it is recommended do not perform any additional correction. During procedure, it must be horizontally placed at 0° (check position with a level and with its indicator plate).

2. Position the Collimator Test Tool (RMI model 161B) on the Receptor Table-Top.

3. Turn on Collimator light and center the Collimator Test Tool with the light axes projected by the Collimator Lamp.

4. Place centered the Beam Alignment Test Tool (RMI model 162A) on the Collimator Test Tool and observe if shadow of the Beam Alignment Test Tool is projected in equal proportion around it.

5. Check on the processed film the adjustment required to center the top ball mark. Shadow around the Beam Alignment Test Tool can also help to make a first correction.

6. Loosen slightly the four Safety Screws (Allen M8) of the Tube-Collimator Assembly. If required, perform the following adjustments:

 - For horizontal correction move horizontally the Tube-Collimator Assembly before tightening the four Safety Screws.

 - For vertical correction loosen or tighten carefully the four Leveling Screws (Allen M6) of the Tube-Collimator Assembly before tightening the four Safety Screws.

7. Repeat exposure and procedure until the result is satisfactory (top ball must be inside of the first circle).
Illustration 4-6
Adjustments in the Tube-Collimator Assembly

1. - **Leveling Screws:** The Tube-Collimator Assy. moves slightly up or down from one side.

2. - **Positioning screws and Fixing Screws:**
 2a: Loose first the Fixing Screws, then adjust the tube-collimator with the positioning screws
 2b: then tighten the Fixing Screws.

3. - **Shims** (factory installed/adjusted, and extra units included in package). These plates can be added or removed in order to extend/reduce the length of the Tube-Collimator Assembly.
4.2.3 CENTERING OF X-RAY FIELD AND IMAGE RECEPTOR RECEPTOR ASSEMBLY

The error between centers of the X-ray Field and the Image Receptor should not be greater than 2% of the SID. (for SID 1.4m = 2.8 cm tolerance).

If the deviation is greater than 2% of SID, perform the following procedure:

1. Check on the processed film the correction required for centering the X-ray Field with the Image Receptor. Adjustments will be performed as the same way described for Perpendicularity correction, so only re-adjust it if really is necessary.

 CAUTION

 Centering adjustments may affect to perpendicularity corrections.

2. Repeat exposure and check centering until the result is satisfactory (centers position are within tolerance).
4.3 FIELD SIZE INDICATOR TEST

Note
Before starting with the Field Size Indicator Test, the Alignment of X-Ray Beam Test, the Alignment of Light Field with X-Ray Field Test and the SID Indicator Test should be performed.

1. Place the Pivoting Arm in vertical position. The Tube-Collimator Assembly has to be perfectly aligned with the Receptor Assembly. Check with a level correct horizontal position of both assemblies.

2. Open the Collimator blades to set a Field Size of 24 x 30 cm for SID 1,4 m.

3. Turn on the Collimator Light and center the Collimator in relation to the Receptor Table-Top. Horizontal and transversal position of the light axes projected by the Collimator Lamp must be in line with the axes or Film Size marked on the Table-Top.
4. Load on the Cassette Film Tray with a Cassette Film of 35 x 43 cm centered and insert it.

5. Make an exposure at 60kVp, 1mAs.

6. Process film and check the following measurements known (refer to Illustration 4-7):
 a. Measure the length of the X-ray Field on the Processed Film (identified as L)
 b. Measure the width of the X-ray Field on the Processed Film (Identified as W)

Illustration 4-7
X-ray Field Size

7. With the measurements obtained and according to the field size indication selected, the results should be:
 - Length dimension (L) = 300 mm
 - Width dimension (W) = 240 mm

8. The difference between the indicated Field Size and the obtained Field Size may not exceed 1.5 % (rejection limit) of the SID in either direction. Therefore the deviation in any direction should not be higher than 21 mm (rejection limit) for SID at 1.4 meter.

9. If the deviation of Field Size Indication is out acceptance limits, it is necessary to readjust the index of Collimator Blades Control Knobs. For that, loosen each Collimator Control Knob and position it according to deviation. Repeat the complete tests until the X-Ray Field Size selected (24 x 30 cm) is obtained.
4.4 X-RAY TUBE OR COLLIMATOR REPLACEMENT

This section only applies to systems where the X-ray Tube or the Collimator has to be replaced by a new different X-ray Tube or Collimator (different weight) or when the Swivel arm is not vertically balanced.

1. Place swivel Arm in horizontal position.
2. Remove the top cover of the Tube-Collimator Assembly Support.
3. Add or remove counterweight plates until the Arm is balanced.
4. Re-install the top cover.

4.5 ADJUSTMENT OF ROTATION PLATE

This section only applies to systems where the rotation plate does not match with the real angle.

1. Place swivel Arm in horizontal position.
2. Loose Safety Screws and adjust correct angle with a level.
3. Tighten Safety Screws.
SECTION 5 RENEWAL PARTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Switch button (black)</td>
<td>3</td>
<td>2</td>
<td>N</td>
<td>50613013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Handle</td>
<td>3</td>
<td>2</td>
<td>Y</td>
<td>S02.05.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Solenoid 24 VDC</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>52301006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Electrobrake 24 - 35 VDC (positive)</td>
<td>5</td>
<td>1</td>
<td>N</td>
<td>52301011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Basic Mill. Control PCB</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>A3510-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bucky Midwest</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>6685-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Collimator</td>
<td>1</td>
<td>2</td>
<td>N</td>
<td>6693-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Lamp (Collimator)</td>
<td>1</td>
<td>2</td>
<td>N</td>
<td>54203005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION 6 MAINTENANCE

The Optima BRS has been designed as a long term X-ray positioner with minimum maintenance.

The mechanical parts of the Optima BRS require a yearly basis service maintenance from the installation date in the following way:

Visual Check: Covers, Pushbuttons, Table-top, Receptor Assembly, Steel Cables appearance (from the Column Slot side), connectors and electrical cables.

Functional Check: Push-buttons, movements of the carriage and arm, cassette tray, perform an exposure and check correct alignment of film, Collimator and Collimator light (refer to Section 4).

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push-buttons</td>
<td>Visual Check, correct contact and corresponding movement.</td>
</tr>
<tr>
<td>Movement of Carriage</td>
<td>Check complete travel of carriage, it should be soft and noiseless.</td>
</tr>
<tr>
<td>Movement of Arm</td>
<td>Check complete angle travel of the Arm, it should be soft and noiseless.</td>
</tr>
<tr>
<td>Both Steel Cables</td>
<td>Move carriage to the lowest position and check appearance of both steel cables from the side slot of the column. Check connection plate and disassembly top cover to check the whole cable travel. They should be in without stranded or broken hairs.</td>
</tr>
<tr>
<td>Cassette Tray</td>
<td>Check correct positioning inside Receptor assembly, correct clamping of film.</td>
</tr>
<tr>
<td>Collimator and Tube</td>
<td>Refer to Section 4 in this Manual and Generator maintenance Section.</td>
</tr>
</tbody>
</table>
SECTION 7 INTERCONNECTION MAPS

Refer to the following maps for details of the wire connections.

- Optima BRS-Who interconnections 54301083
- BRS System IM-339
INTERCONEXIONES OPTIMA BRS-WHO

NOTA.- Para modelos de Generador Alto, conectar el Cable Alimentación a la regleta TS1 (+24VDC a TS1-31, 0 VDC a TS1-32, 24 VAC a TS1-19, y 0 VAC a TS1-20).

Notes.- For Tall Generator models, connect the Supply Cable to terminal strip TS1 (+24VDC to TS1-31, 0 VDC to TS1-32, 24 VAC to TS1-19, and 0 VAC to TS1-20).
BRS with FIXED GRID

See schematic 54301083 for interconnections

CABLE ASSEMBLY

LOCKS SUPPLY CABLE (A7423-XX)

COLLIMATOR CABLE (A3111-XX)

GND CABLE (A6283-XX)

TUBE STATOR CABLE (See Note 2)

CA/THODE CABLE

ANODE CABLE

Note 2 - Cable code:
A28123-XX for only Low Speed
A7014-XX for Low/High Speed

GENERATOR CABINET

LOCKS BOARD

TB7

TB7

VAC SUPPLY

AC LINE

GENERATOR SUPPLY CABLE (See Note 1)

POWER CABLE (A7021-XX)

COMMUNICATION CABLE (A7022-XX)

INTERFACE CABLE (A7069-XX)

GND CABLE

X-RAY TUBE

COLLIMATOR

TS1

Chasis GND

CHASSIS GND

POWER CABLE (A7021-XX)

INTERFACE CABLE (A7069-XX)

GND CABLE

GENERATOR CONSOLE

ATP CONSOLE BOARD

J1

J2

J3

J2

J3

J1

THIS SHEET ONLY APPLIES TO BRS with FIXED GRID

Note 1 - Cable code:
A8410-01 for Compact Generator - single phase
A8411-01 for Compact Generator - three phase
A8412-01 for Battery Generator
A8413-01 for Capacitor Generator

Note 2 - Cable code:
A3052-XX for only Low Speed
A7014-XX for Low/High Speed
BRS with OSCILLATING GRID and AEC

See schematic 54301083 for interconnections

COLLIMATOR

ION CHAMBER (Preamplifier)

BUCKY

X-RAY TUBE

GENERATOR CABLE (A3253-XX)

ION CHAMBER (Preamplifier)

COLLIMATOR CABLE (A3111-XX)

POWER CABLE (A7021-XX)

COMMUNICATION CABLE (A7022-XX)

INTERFACE CABLE (A7069-XX)

GND CABLE

GENERATOR SUPPLY CABLE (See Note 1)

AC LINE

AEC INTERFACE CABLE (A3251-01)

AEC ADAPTATION BOARD

See schematic IM-010

J1 U2 J3 J4

TS1

BUCKY CABLE (A3343-XX)

GND CABLE (A6383-XX)

LOCKS SUPPLY CABLE (A7622-XX)

LOCKS BOARD

TB7

TB7

TUBE STATOR CABLE (See Note 2)

CATHODE CABLE

ANODE CABLE

HV TANK

Note 1 - Cable code:
A8410-01 for Compact Generator - single phase
A8411-01 for Compact Generator - three phase
A8412-01 for Battery Generator
A8413-01 for Capacitor Generator

Note 2 - Cable code:
A3052-XX for only Low Speed
A7014-XX for Low/High Speed

VAC SUPPLY

GENERATOR CONSOLE

ATP CONSOLE BOARD

GENERATOR SUPPLY CABLE (See Note 1)

POWER CABLE (A7021-XX)

COMMUNICATION CABLE (A7022-XX)

INTERFACE CABLE (A7069-XX)

GND CABLE

TUBE STATOR CABLE (See Note 2)

CATHODE CABLE

ANODE CABLE

HV TANK

Note 2 - Cable code:
A3052-XX for only Low Speed
A7014-XX for Low/High Speed

THIS SHEET ONLY APPLIES TO BRS with OSCILLATING GRID and AEC

BRS SYSTEM